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1) Density Matrix Renormalization Group - overview and
basics

2) Entanglement Entropy in condensed matter systems



What is the
Density Matrix Renormalization Group?

* DMRG is the established leading method for
simulation of statistics and dynamics of one-
dimensional strongly-correlated quantum Ilattice

models.

Steve White



Why do we need DMRG? |

* There are only a few “exact” numerical methods
capable of tackling quantum many-body problems
using classical computers
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Exponential state space

QO =2V




Why do we need DMRG? '

* There are only a few “exact” numerical methods
capable of tackling guantum many-body problems
using classical computers

Quantum Monte Carlo simulations
avoid this direct sum by statistical
sampling based on random numbers.
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Cannot simulate fermions (or frustrated spins)



Why do we need DMRG? |

* There are only a few “exact” numerical methods
capable of tackling quantum many-body problems
using classical computers

Exact Diagonalization

Exponential Hilbert Space: 2N

Maximum number of S=1/2 spins: 40~44



Renormalization Group

Reduce the size of this Hilbert space through
some clever decimation procedure

Keep only the important information

e Perform an ED using the remaining Hilbert
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Renormalization Group '

IXe nt
stable see: Tomorrow’s talks
point B



Wilson’s Numerical RG '

* Reduce the size of the Hilbert space by an RG-like
procedure that truncates the energy levels
% discard
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this can give very poor results |

* Truncating the higher energy eigenvalues only
works well for a few specific models - fails Iin
general

e 20 years after Wilson’s original idea, Steve White
fixed the method to produce DMRG

* The right quantity to truncate is the number of
entanglement degrees of freedom represented

0000000000000000




Particle in a box '

e Consider a particle in a box

A B



Particle in a box |

e Consider a particle in a box

A B




Particle in a box |

e Consider a particle in a box

Solutions built from the
smaller blocks have a node at
the center



Particle in a box '

e Consider a particle in a box

System ground state # product of
subsystem low energy states

\




Numerical RG results

® |0 blocks (2048 sites), 8 states kept
® Very poor results
® Treatment of boundary condition is critical

A B State Exact NRG

Eo 2.351 x 1076 1.9207 x 1072

E| 9.403 x 1076 1.9209 x 102

E> 2.116 x 10> 1.9714 x 102

S.R. White and R.M. Noack, PRL 68, 3487 (1992)



Particle in a box: Better Solution '

® Embed A in an environment

® Diagonalize the system+ environment,
then increase size

A B




Subsystem States '

® What are the most important subsystem states !

Hamiltonian
H=Hg+ Hp+ Hgpg

Wavefunction
V) =i aWViall)s|)E

Best approximation with m subsystem states:

|QZ> — S: S:zzn,oz |¢n>5 |OK>E

n=1 « 7 :
Minimize the distance between states: S = |W> - W>|




Reduced density matrix ]

* Instead of energy levels, truncate the eigenvalues of
the reduced density matrix

V) =

% keep
% discard

* The eigenvalues are probabillities A

Y Ai=1
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number of “states”

)\max
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% discard

* In general, the number of DMRF

eigenvalues of the

% keepm reduced density matrix

G states that you

need to keep to faithfully represent a wavefunction is
related to the entanglement entropy between the

two blocks:

m = f(9)

?



Outline

1) Density Matrix Renormalization Group - overview and
basics

2) Entanglement Entropy in condensed matter systems



entanglement entropy |

von Neumann @ D

S1(pa) = —Tr(palnpa)

pa = Trp(p) IIIIIIIIIIIIIIIt

e Quantifies the entanglement between subregions A and B

e Does not depend on any choice of observable

o Si(pa) = 5S1(pB)

e Si(pa) =0 if region A and B are unentangled



entanglement entropy of two spins '

/ 4= 4
W) =cosé [P +sing [|)]) -
2 -5
[ cos” ¢ 0
A= ( 0 sin?¢ >
S1 = —cos® ¢ lncos? ¢ — sin® ¢ Insin® ¢
Sl(oz)
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Renyi entanglement entropy '

Su(pa) = - In [Tr(p)’

S1(pa) = =Tr(palnpa) S2(pa) = —In {Tr(pi)}
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entanglement and number of “states” |

% keep

discard

)\max

pa =Y Alia)(ial

/) )\m—|—1

o Si(pa) =0 minimally (for a product state)

e Si(pa)=1In(M)maximally (when all eigenvalues are equal)

in analogy, the effective number of states one needs in order to
properly capture the entanglement between A and B is:

moces1



* Therefore, the success of DMRG depends on the
wavefunctions of interest having a “low degree” of
entanglement

* This is the basis of the reformulation of DMRG in the

Matrix Product State representation (see talks
tomorrow)

—0——0—"0—0—"0—0—=0

* \We take a minute to examine entanglement in some
prototypical models of condensed-matter physics



entanglement in one dimension '

e gapped system
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D = S U-I) Si(ea) =In(2)

m oc e’ = m o 2 ( constant)



entanglement in one dimension j

* For periodic boundary conditions in 1D, you need to
keep the square of the number of states needed for open
boundary conditions



entanglement in one dimension ]

e gapless/critical system H=J) S;-S;
(i)

Si o< eln[L] = m oc L

 computational cost grows as the size of the system
e it is still possible to simulate large systems if ¢ is small



entanglement in one dimension '

» gapless/critical system H=J) S;-S,

Sp(x) = 5(14—1) n(z/]+ -
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entanglement in two dimensions




entanglement in two dimensions
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entanglement in two dimensions
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entanglement in two dimensions ’

== (It -1ID)

Here, the entanglement depends on the boundary: the “Area Law”



the area law: a special property of groundstates

 or the “boundary rule-of-thumb” Sp=al+---

< 5 iy
LI 1L LI | -coefficient is non-universal
TTT T 117

————— -

P

» groundstate wavefunctions of local many-body
Hamiltonians

 heuristically related to short-range correlations. .. rus rev. et 100, 070502 2008

e generally speaking, excited states exhibit a \éolumgeQIaw
~a



entanglement at finite-temperatures '

The entanglement entropy at finite-T picks up a “volume” law
due to thermal mixing
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additive corrections to the area law (T=0)

gapped systems in two dimensions can have subleading
terms in the entanglement entropy

S, =al +---

Sp = al — In(2) v

For example, a spin liquid |
(fluctuating loop gas) can have a
topological entanglement

entropy




The groundstate of a (Z2) spin liquid can be thought of as a

fluctuating “loop gas”
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The groundstate of a (Z2) spin liquid can be thought of as a
fluctuating “loop gas”

This loop structure imposes constraints that subtract from the
entanglement entropy of a pure area law:

0O~ 21 On = abt =7

possible boundary configurations Y = IH(Q)



additive corrections to the area law (T=0)

gapless systems in two dimensions generally have
subleading shape-dependent terms in the entanglement
entropy

Sn =al +v(ly, L)




additive corrections to the area law (T=0)

Neel order, e.g. the groundstate of the 2D spin-1/2
Heisenberg model

H=JYS;-S,
(i)

S, = al +bln(f) + - -

The subleading term is a
consequence of Goldstone

modes - has a universal
coefficient

Kallin et. al. PRB 84, 165134 (2011)
Metlitski and Grover, arXiv:1112.5166




additive corrections to the area law (T=0)

Quantum critical systems, e.g. transverse-field Ising model

H=JY S;S:+hy S
(i) i

Spn=al+c,In(l) + -

A subleading logarithm
arises when one has
corners in the region - the
coefficient of this terms is
universal for that particular
universality class

Casini and Huerta Nucl. Phys. B 764 183 (2007)



“violations” of the area law In 2D

Multiplicative logarithmic corrections to the area law
occur In cases where one has a fermi surface in 2D

&ky

- k..

M.M. Wolf, Phys. Rev. Lett. 96, 010404 (2006).
Sn — C g ln (/é) —|— e o o D. Gioey, I. Klich, Phys. Rev. Lett. 96, 100503 (2006).

... Will this be the new “sign problem” for the 21st
century?



the challenge for DMRG |

mocesl:> m oc e’

* in general, the number of DMRG states that you need
to keep to represent a groundstate wavefunction is
exponential in the width

P—P—P——P9—9—9——0—




higher dimensions? Tensor Networks

* methods based on a “low-entanglement” ansatz in
the wavefunction

Matrix Product State
(MPS) Tree Tensor Network (TTN)

1D
Wilson (NRG) 1975
Fannes, Nachtergaele, Werner 1992 ID/ 2 D
—

White 1992 (DMRG) =
Oestlund, Rommer 1995
1D/2D

time evolution in 1D - 2003

£

Tensor Product State (TPS) or
Projected Entangled Pair State

(PEPS)

Nishino 2000
Verstraete, Cirac 2004

Multi-scale Entanglement
Renormalization Ansatz (MERA)




conclusion

DMRG is the established method for solving the
ground states of strongly interacting systems in 1D

It continues to revolutionize the way we think of
dealing with the strongly-interacting quantum many-
body problem numerically



