Ying-Jer Kao Department of Physics National Taiwan University

vector

$$A = \begin{bmatrix} A_1 \\ A_2 \\ A_3 \\ \vdots \\ A_N \end{bmatrix} \qquad B = \begin{bmatrix} B_{11} & \cdots & B_{1n} \\ \vdots & \ddots & \vdots \\ B_{m1} & \cdots & B_{mn} \end{bmatrix}$$

vector matrix

$$A = \begin{bmatrix} A_1 \\ A_2 \\ A_3 \\ \vdots \\ A_N \end{bmatrix} \quad B = \begin{bmatrix} B_{11} & \cdots & B_{1n} \\ \vdots & \ddots & \vdots \\ B_{m1} & \cdots & B_{mn} \end{bmatrix}$$

vector matrix rank-3 tensor

$$A = \begin{bmatrix} A_1 \\ A_2 \\ A_3 \\ \vdots \\ A_N \end{bmatrix} \quad B = \begin{bmatrix} B_{11} & \cdots & B_{1n} \\ \vdots & \ddots & \vdots \\ B_{m1} & \cdots & B_{mn} \end{bmatrix}$$

vector matrix rank-3 tensor rank-*n* tensor $C_{lphaeta\gamma}$ $B_{\alpha\beta}$ $T_{\alpha_1\alpha_2\alpha_3...\alpha_n}$ A_{α}

product of tensors (matrices)

- Internal lines are summed over
- External lines are external indices

- Internal lines are summed over
- External lines are external indices

- Internal lines are summed over
- External lines are external indices

- Internal lines are summed over
- External lines are external indices

 $T_{ijk} = \sum A_{\alpha i} B_{\alpha \beta j} C_{\beta k}$

 $\alpha\beta$

External lines are external indices

•

Wavefunction
$$|\Psi\rangle = \sum_{n_1n_2n_3} \Psi_{n_1n_2n_3} \left| n_1n_2n_3 \right\rangle$$

$$|n\rangle = \{ |\uparrow\rangle, |\downarrow\rangle \}$$
$$|n\rangle = \{ |0\rangle, |1\rangle, |2\rangle, \dots \}$$

physical index

Operator

physical index

Expectation value

$$\langle \Phi | \hat{O} | \Psi \rangle = \sum_{n,n'} \Phi^{n_1' n_2' n_3'} O^{n_1 n_2 n_3}_{n_1' n_2' n_3'} \Psi_{n_1 n_2 n_3}$$

Entanglement

- Consider two parts of a system represented by A_{n_1} and A_{n_2}
 - If the two parts are not entangled: $\psi_{n_1n_2} = A_{n_1}A_{n_2}$

• If they are entangled:
$$\psi_{n_1n_2} = \sum_i A_{n_1}^i A_{n_2}^i$$

• If the number of the terms in the sum is small, the two parts have low entanglement

- If we keep only χ virtual bond dimensions , we have an approximate wave function in MPS
- Size of Hilbert space: $d^L \rightarrow \chi^2 dL$

$$|\psi\rangle = \sum_{\{s\}} \operatorname{tr} \left[A^{s_1} A^{s_2} \dots A^{s_N} \right] \left| s_1 s_2 \dots s_N \right\rangle \qquad A^+ = \begin{bmatrix} 0 & \sqrt{\frac{2}{3}} \\ 0 & 0 \end{bmatrix}, A^0 = \begin{bmatrix} -\frac{1}{\sqrt{3}} & 0 \\ 0 & -\frac{1}{\sqrt{3}} \end{bmatrix}, A^- = \begin{bmatrix} 0 & 0 \\ -\sqrt{\frac{2}{3}} & 0 \end{bmatrix}$$

Gauge Choice

• MPS representation is not unique

Entanglement

• A generic quantum state has a d^L dimensional Hilbert space $|i_1\rangle |i_2\rangle \dots |i_l\rangle, i_n = 1 \dots d$ $|\psi\rangle$

$$\psi \rangle = \sum_{j_1, j_2, \dots, j_L} \psi_{j_1, j_2, \dots, j_L} |J_1\rangle |J_2\rangle \dots |J_L\rangle, J_n = 1 \dots d$$

Decompose a state into a superposition of product states (Schmidt decomposition)

$$|\psi\rangle = \sum_{i,j} C_{i,j} |i\rangle_A \otimes |j\rangle_B = \sum_{\alpha} \lambda_{\alpha} |\alpha\rangle_A \otimes |\alpha\rangle_B$$

• Entanglement entropy $S = -\operatorname{tr} \rho_A \ln \rho_A = -\sum \lambda_{\alpha}^2 \log \lambda_{\alpha}^2$

Schmidt Decomposition

Schmidt Decomposition = Singular Value Decomposition

• Coefficient in a many-body wave function $\psi_{j_1, j_2, \dots, j_L}$ is a rank-*L* tensor

Successive Schmidt decompositions generate an MPS

• Coefficient in a many-body wave function $\psi_{j_1,j_2,...,j_L}$ is a rank-*L* tensor

Successive Schmidt decompositions generate an MPS

$$|\psi\rangle = \sum_{j_1, j_2}^{d} \sum_{\alpha=1}^{d} \sum_{\beta=1}^{d^2} A_{\alpha}^{[1]j_1} \Lambda_{\alpha}^{[1]} A_{\alpha\beta}^{[2]j_2} \Lambda_{\beta}^{[2]} \left| j_1 \right\rangle \left| j_2 \right\rangle |\beta\rangle_{[3,...L]}$$

• Coefficient in a many-body wave function $\psi_{j_1, j_2, ..., j_L}$ is a rank-*L* tensor

Successive Schmidt decompositions generate an MPS

$$|\psi\rangle = \sum_{j_1, j_2, \dots, j_L}^d \sum_{\alpha_1, \alpha_2, \dots, \alpha_L} A_{\alpha_1}^{[1], j_1} \Lambda_{\alpha_1}^{[1]} A_{\alpha_1 \alpha_2}^{[2], j_2} \Lambda_{\alpha_2}^{[2]} \cdots \Lambda_{\alpha_L}^{[L]} A_{\alpha_L}^{[L], j_L} \left| j_1 \right\rangle \left| j_2 \right\rangle \cdots \left| j_L \right\rangle$$

Canonical Forms

Absorb singular values into tensors

Left Canonical Form

all tensors contract to identity matrix from left

Canonical Forms

Absorb singular values into tensors

Right Canonical Form

Canonical Forms

Absorb singular values into tensors

Mixed Canonical Form (DMRG)

Expectation value

 $\langle \psi \, | \, O \, | \, \psi \rangle =$

Left canonical

Right canonical

Expectation value

 $\langle \psi \, | \, O \, | \, \psi \rangle =$

Expectation value

 $\langle \psi | O | \psi \rangle =$

Expectation value

 $\langle \psi \, | \, O \, | \, \psi \rangle =$

Correlator

 $\langle \psi | O_i P_j | \psi \rangle =$

Left canonical

Right canonical

Correlator

 $\langle \psi | O_i P_j | \psi \rangle =$

Correlator

Correlator

Matrix Product Operators

Operator can also be represented as a matrix product form

• MPO representation of
$$\hat{O} = \sum_{i} \left(\hat{A}_{i} \hat{B}_{i+1} + \hat{B}_{i} \hat{A}_{i+1} \right)$$

$$\begin{aligned} &= \hat{A} \otimes \hat{B} \otimes I \otimes \cdots \otimes I \\ &+ I \otimes \hat{A} \otimes \hat{B} \otimes I \otimes \cdots \otimes I + \cdots \\ &+ \hat{B} \otimes \hat{A} \otimes I \otimes \cdots \otimes I \\ &+ I \otimes \hat{B} \otimes \hat{A} \otimes I \otimes \cdots \otimes I + \cdots \end{aligned}$$

• MPO representation of $\hat{O} = \sum_{i} \left(\hat{A}_{i} \hat{B}_{i+1} + \hat{B}_{i} \hat{A}_{i+1} \right)$

 $M^{[i]}$

 $M^{[i+1]}$

R A B F $M = \begin{pmatrix} I & 0 & 0 & 0 \\ \hat{A} & 0 & 0 & 0 \\ \hat{B} & 0 & 0 & 0 \\ 0 & \hat{B} & \hat{A} & I \end{pmatrix} \stackrel{R}{B}_{F}$

$$H = \sum_{i} \mathbf{S}_{i} \cdot \mathbf{S}_{i+1}$$

• Bond dimension of the MPO?

 σ_1

 σ_{N}

MPO acting on MPS

• What is χ' ?

MPO acting on MPS

• What is χ' ?

MPO acting on MPS

• Need to truncate back to bond dimension χ

Compression

• Transform into canonical form and truncate the singular matrix

Variational Method

• Find a bond dimension χ MPS such that the overlap between two MPS's is maximal.

Variational Method

$$\min_{\Phi} \langle \Psi - \Phi | \Psi - \Phi \rangle = \min_{\Phi} [-2\langle \Phi | \Psi \rangle + \langle \Phi | \Phi \rangle], \quad \langle \Psi | \Psi \rangle = 1$$

• Find a bond dimension χ MPS $|\Phi\rangle$ such that the distance between $|\Phi\rangle$ and $|\Psi\rangle$ is minimal.

Optimization

Linear Equations

• Treat tensor as a vector

$$-2 - = A_2[\sigma]_{\alpha\beta} = V_n^{\sigma}, \quad n = [\alpha\beta]$$

Linear Equations

• Treat tensor as a vector

$$-2 - = A_2[\sigma]_{\alpha\beta} = V_n^{\sigma}, \quad n = [\alpha\beta]$$

$$\min_{V} \left(V^{\dagger} M V - B V \right) \Rightarrow M = B V$$

$$V_m^{\sigma'*} M_{mn}^{\sigma'\sigma} V_n^{\sigma'}$$

Similar operations in full updates in TNS

Solve M = BV for A_3

$$\min_{\psi} \left(\langle \psi | H | \psi \rangle - \lambda (\langle \psi | \psi \rangle - 1) \right)$$

 $\langle \psi | H | \psi \rangle$

 $\langle \psi | \psi \rangle$

$$\min\left(\langle \psi | H | \psi \rangle - \lambda(\langle \psi | \psi \rangle - 1)\right)$$

 $\langle \psi | H | \psi \rangle$

$$\min\left(\langle \psi | H | \psi \rangle - \lambda(\langle \psi | \psi \rangle - 1)\right)$$

 $\langle \psi | \psi \rangle$

• Treat tensor as a vector

$$-2 - = A_2[\sigma]_{\alpha\beta} = V_n^{\sigma}, \quad n = [\alpha\beta]$$

$$\min_{\psi} \left(\langle \psi | H | \psi \rangle - \lambda (\langle \psi | \psi \rangle - 1) \right) \Rightarrow \frac{\partial}{\partial A} \left(\langle \psi | H | \psi \rangle - \lambda (\langle \psi | \psi \rangle) \right) = 0$$

Mixed Canonical Form: N = I

- Updating A becomes a generalized eigenvalue problem
- Find the ground state of H_{eff}

Connection between DMRG and MPS

Connection between DMRG and MPS

MPS tensors = sequence of change of basis

Time Evolution

• Real time evolution

$$|\psi(t)\rangle = e^{-iHt}|\psi_0\rangle$$

Imaginary time evolution

$$|\psi_g\rangle = \lim_{\tau \to \infty} \frac{e^{-H\tau} |\psi\rangle}{|e^{-H\tau} |\psi\rangle|}$$

General Time Evolution

• Consider a Hamiltonian of the form (short range)

$$H = \sum_{j} h^{[j,j+1]}$$

• Decompose the Hamiltonian into H = F + G

$$F = \sum_{\substack{j \in \text{ even} \\ j \in \text{ odd}}} F^{[j]} = \sum_{\substack{j \in \text{ even} \\ j \in \text{ odd}}} h^{[j,j+1]}$$

• $[F^{[r]}, F^{[r']}] = [G^{[r]}, G^{[r']}] = 0$, but $[F, G] \neq 0$

Trotter-Suzuki approximation

$$e^{-i(F+G)\delta t} = e^{-iF\delta t}e^{-iG\delta t} + O(\delta t^2)$$

• Time evolution operators

$$U_F = \prod_{r \in \text{ even}} e^{-iF^{[r]}\delta t}, \quad U_G = \prod_{r \in \text{ odd}} e^{-iG^{[r]}\delta t}$$

Tensor Contraction

Truncation

Truncation

Infinite TEBD

- Assume translational invariant wave function, and $N \rightarrow \infty$.
- Partially breaks the translational invariance to perform time evolution
- Two-site unit cell

Infinite TEBD

Repeat

 $i\frac{d}{dt}|\psi(A(t))\rangle = \hat{H}|\psi(A(t))\rangle$

Projected Schrödinger Equation

Quantum numbers

- Given global symmetry group, local site basis can be labeled by irreducible representations of group – quantum numbers
- U(1): site basis labelled by integer *n* (particle number) $|n\rangle$, n = 0, 1, ...
- SU(2): site basis labelled by *j*, *m* (spin) $|j,m\rangle$

Total state associated with good quantum numbers

$$|\Psi\rangle = |\Psi(n, j, m...)\rangle$$

Symmetry in MPS

- Bond indices can be labelled by same symmetry labels as physical sites
- U(1) symmetry

Perform computation in different *q* sectors