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Tensor Network States

From MPS to MERA (See lecture on MERA by Glen Evenbly this afternoon) 
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B. Emergent geometry

In the framework of holography, there is a very sugges-
tive connection between entanglement, TNs, and quan-
tum gravity: it looks like the MERA is a lattice real-
ization of a space with some geometry, where curva-
ture is somehow linked to entanglement. The observation
implies that space-time geometry may emerge from the
underlying structure of entanglement in complex quan-
tum states. An instance that has been studied in some
detail is the possible relation between MERA and the
AdS/CFT or gauge / gravity duality [144]. This connec-
tion between TNs and quantum gravity was originally
noticed by Swingle [14], and later on investigated by sev-
eral authors [145–147, 151]. More specifically, for a scale-
invariant MERA, the tensors in the bulk can be under-
stood as a discretized AdS geometry, whereas the indices
at the boundary correspond to the local Hilbert spaces
obtained after a discretization of a CFT, see Fig. 5. The
connection can be made more formal by taking the con-
tinuum MERA [33] and evaluating the metric of the re-
sulting smooth space in the bulk, with the curvature of
the geometry being linked to the density of disentanglers
[146, 147]. As of today, the connection is very intriguing
and has motivated a lot of research, specially from the
string theory community. In particular, there have also
been claims that MERA does not actually correspond to
and AdS geometry, but rather to a de-Sitter (dS) geome-
try [148]. In a recent work, however, Milstead and Vidal
showed that MERA is in fact neither AdS nor dS, but
rather a lightcone geometry [149]. In any case, and even
if this connection is certainly suggestive and remarkable,
the role played by TNs in the quantization of gravity is
still unclear.

VI. ARTIFICIAL INTELLIGENCE

In this section we will comment on the recent obser-
vation that neural networks (such as those used in deep
learning) are in fact particular cases of TNs, as well as
on the use of MPS to improve some methods of artificial
intelligence. Additionally, we will also sketch the result
that syntactic relations in language have a TN structure
that is inherited by probabilistic language models.

A. Machine learning

Several promising connections between TNs and ma-
chine learning have been put forward recently. In
Ref. [15] it was shown that deep learning architectures
can actually be understood using the language of quan-
tum entanglement. To name a couple of examples, con-
volutional networks correspond to specific cases of TTNs,
and recurrent neural networks correspond to MPS. More
generically, the whole machinery of quantum information
and entanglement theory can be applied to understand

FIG. 5: The entanglement entropy of a block of length L for
a 1d MERA is upper bounded as SL  log� ⇥ @⌦L, with
@⌦L the boundary of region ⌦L in the TN (i.e., the number
of links crossed by the blue line) and � the bond dimension.
One quickly realizes that @⌦L = O(logL), and therefore one
has that SL = O(logL) for the 1d MERA. This calculation
matches the behavior from CFTs in (1+1)d, and corresponds,
precisely, to the lattice version of the Ryu-Takatanagi pre-
scription to compute the entanglement entropy in AdS/CFT
[150]. Entanglement is thus the area in holographic space of
the minimal surface separating the two regions. This is one
of the key observations that motivates the analogy between
MERA and AdS/CFT.

neural networks in new ways. One must however be
careful, since in general neural networks are characterized
by nonlinear functions, whereas TNs are linear and there-
fore obey the superposition principle. In Ref. [152] it was
also shown that there is an equivalence between restricted
Boltzmann machines (a simple type of neural network)
and TN states. In Ref. [153] Boltzmann machines were
also shown to be connected to some classes of TN states
in arbitrary dimensions. In addition to this, in Refs.[154–
157] it has been shown how MPS and TTNs can be used
for supervised and unsupervised learning tasks of classi-
fying images. Finally, in Ref. [158] it has been discussed
how quantum circuits based on MPS and TTNs could be
used to implement machine-learning tasks in near-term
quantum devices, and in Ref. [159] it has been explored
how probabilistic graphical models motivate the concept
of “generalized TN”, where information from a tensor
can be copied and reused in other parts of the network,
thus allowing for new types of variational wave-functions.

B. Language models

From the perspective of computational linguistics, it
has also been discovered recently that probabilistic lan-
guage models used for speech and text recognition have
actually a TN structure. This is a consequence of the
fact that Chomsky’s MERGE operation can be under-
stood as a physical coarse-graining of information [160].

scale

Entanglement Entropy ~ number of bonds cut

For 1D scale invariant MERA, S ∼ log L

isometry

unitary

=
U
†U

=
W
†W



Entanglement Scaling
4

MPS 2d PEPS TTN 1d MERA 1d bMERA

S(L) O(1) O(L) O(1) O(logL) O(L)

hOi exact approx. exact exact exact

⇠ < 1  1 < 1  1  1
Tensors any any any unit./isom. unit./isom.

Can. form obc, 1 no yes – –

TABLE I: Comparison of several properties for some of the
TNs discussed in the main text: entanglement entropy S(L)
of a block of length L (i.e., with L sites in 1d and L⇥L in 2d),
calculation of a local expectation value hOi, correlation length
⇠, constraints on tensors, and exact canonical form. MERA
and bMERA are built from unitary and isometric tensors, and
we therefore do not consider a canonical form for them. For
MPS, “obc” stands for “open boundary conditions”.

limit, therefore becoming an ansatz for low-energy func-
tionals of quantum field theories, as well as to opera-
tors on those functionals. For instance, one has continu-
ous MPS (cMPS) [32], continuous MERA (cMERA) [33]
and continuous PEPS (cPEPS) [34]. While cMPS and
cMERA have been used for a variety of applications al-
ready, cPEPS are still to be very much explored.

III. MAIN ALGORITHMS

Let us now sketch very briefly the main ideas behind
some of the most important numerical algorithms using
TNs. Our purpose here is to explain the basic idea be-
hind key families of numerical TN methods, leaving out
technical details about implementation. Readers inter-
ested in more information are addressed to the specific
papers explaining the details of each technique. Let us
also stress that numerical TN methods are also di�cult
to classify according to a unique criteria. Here we do it as
follows: we first introduce methods to obtain 1d states,
then methods to contract 2d TNs, then methods to ob-
tain 2d states, and finally mixed methods where TNs are
combined with other techniques.

A. Methods to obtain 1d states

(i) Density Matrix Renormalization Group (DMRG)

[4]: by far the most famous TN method. DMRG was
originally proposed as a renormalization procedure over
the ground-state wave-function of a 1d quantum lattice
system. In the modern formulation, it is a variational
optimization algorithm over the family of MPS [35]. In
particular, one sweeps back and forth over the di↵erent
tensors of an MPS, with tensor coe�cients treated as
variational parameters in order to minimize the expecta-
tion value of a given Hamiltonian. At every step, the op-
timization can be written as a quadratic problem for the

...	 ...	 ...	 ...	

...	 ...	

...	 ...	 ...	

...	 ...	

...	 ...	

...	 ...	

(a)	
(b)	

(c)	
(d)	

(e)	

(f)	
(g)	 (h)	

FIG. 2: Several tensor networks in diagrammatic notation.
(a) Matrix Product State (MPS). (b) Projected Entangled
Pair State (PEPS) for a square lattice. (c) Tree Tensor Net-
work (TTN). (d) Multiscale Entanglement Renormalization
Ansatz (MERA). (e) Branching MERA. (f) Matrix Prod-
uct Operator (MPO). (g) Projected Entangled Pair Opera-
tor (PEPO). (h) Matrix Product Density Operator (MPDO),
where tensors in the upper row are the hermitian conjugates
(with respect to up/down indices) of the tensors in the lower
row, so that the whole operator is hermitian and positive.

tensor parameters, which can be solved via standard lin-
ear algebra. The method also makes use of other tricks,
such as the canonical form for open boundary conditions
in order to improve stability and performance [35]. It
can also be adapted to translationally-invariant systems
in the thermodynamic limit, the so-called infinite-DMRG
(iDMRG) [36]. There are also extensions of the method
to deal with periodic boundary conditions [37] as well as
low-energy excitations [38, 39]. For open boundary con-
ditions and infinite-size systems the computational cost
is O(�3), with � the MPS bond dimension. For peri-
odic boundary conditions, if no further approximations
are introduced the computational cost is O(�5).

(ii) Time-Evolving Block Decimation (TEBD) [40]:

this method, introduced by Vidal in 2004, allows to com-



Algorithms

• Finding ground state wave function 


• Imaginary time evolution/ Simple update:  
consider only local environment (Fast, less accurate)


• Variational update/ Full update: 
consider the global environment (Slow, more accurate)

|ψg⟩



Algorithms

• Expectation value 


• Finite PEPS: boundary MPS


• Infinite PEPS: Corner Transfer Matrix, boundary MPS, 
channel method


• MERA: exact contraction
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Figure 34: (color online) The environment of a site corresponds to the contraction of the whole
tensor network except for the tensors at that site.

6.2.1 Finite systems

Consider the expectation value of a local one-site observable for a finite PEPS [16]. The TN
that needs to be contracted corresponds to the one in the diagram in Fig.(35.a) which can be
understood in terms of a 2d lattice of reduced tensors as in Fig.(35.b). As explained earlier, the
exact contraction of such a TN is a ]P-Hard problem, and therefore must be approximated.

Figure 35: (color online) (a) Expectation value of a 1-site observable for a 4 ⇥ 4 PEPS; (b)
Contraction of the 4⇥ 4 lattice of reduced tensors. We use thick lines to indicate “double” indices
ranging from 1 to D2.

The way to approximate this calculation is by reducing the original 2d problem to a series
of 1d problems that we can solve using MPS methods such as DMRG or TEBD. Let us do this
as follows: first, consider the upper-row boundary of the system (in this case we have a square
lattice). The tensors within this row can be understood as forming an MPS if the physical indices

34



MERA: expectation value



MERA: expectation value



MERA: expectation value



MERA: expectation value



Applications

• Quantum Frustrated Magnets 
(DMRG, iPEPS/iPESS)


• Topological order (DMRG, 
PESS)


• Disordered system (Tree TN, 
PEPS)


• Dynamics (Mostly tDMRG/
TDVP)


• Open systems (MPS, PEPS)


• Conformal Field Theory 
(sMERA, iDMRG)


• Classical Statistical 
Mechanics (PEPS)


• Boundary CFT (bMERA, 
DMRG+IBC)


• Holography (MERA, other)


• Quantum Field Theory (MPS, 
PEPS)


• Quantum-classical 
programming (MPS)


• Machine Learning (MPS, 
MERA-like)



Example: (1+1)D Thirring Model

M.-C. Bañuls, K. Cichy, Y.-J. Kao, C.-J. D. Lin, Y.-P. Lin, D. T.-L. Tan arXiv preprint arXiv:1908.04536
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FIG. 17: The central value of the parameter C for di↵erent combinations of the fermion mass m̃0a and coupling �(g).

FIG. 18: Non-thermal phase structure of the massive Thirring model from our numerical investigation. In addition to the data
points that can be identified to be in the gapped phase (blue stars) or at criticality (red circles), there are points (black squares)
where our simulations cannot determine which phase the theory is in. The grey area indicates the regime where we find these
“undetermined” point. The BKT phase transition must occur within this grey area.

above. It is obvious that the BKT transition occurs in this grey region, with the phase boundary described by a
function

�⇤(m̃0a) = �[g⇤(m̃0a)] , (46)

Δ
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Example: (1+1)D Thirring Model

M.-C. Bañuls, K. Cichy, H.-T. Hung, Y.-J. Kao, C.-J. D. Lin, unpublished.

Observing DQPT
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Example: Y-junction of TLL wires

• Y-junction of interacting 
quantum wires: Tomonaga-
Luttinger Liquid wires


• RG fixed point determined 
by the interaction in the 
wires and flux in the 
junction


• DMRG+Infinite BC

  
48

TLL Y-junc�on

J. Stat. Mech. (2006) P02008
g1 = g2 = g3

 Φ breaks �me-reversal symmetry

Oshikawa et al. J. Stat. Mech. (2006) P02008


Chung-Yo Luo, Yoshiki Fukusumi, Masaki Oshikawa,YJK and Pochung Chen, PRB 99, 121103(R)  (2019)



RG Fixed Points
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RG Mow diagrams

“Economic models” J.S
tat.M

ech.
(2006)

P
02008

Junctions of three quantum wires

N1

2

3

Figure 3. Pictorial representation of the N fixed point. It just corresponds to
three decoupled wires.

2.1. g < 1

When the interaction in the quantum wires is repulsive (g < 1), the hopping amplitude
Γ decreases along the RG flow. The stable fixed point corresponds to Γ = 0, namely
to completely decoupled wires, as pictorially illustrated in figure 3. We will call this
fixed point the N fixed point, where N stands for Neumann boundary condition. We
note that the value of the effective flux φ does not matter in the decoupled limit, so at
the N fixed point there is no breaking of time reversal. Moreover, even if the junction
is Z3 asymmetric, the system is generically renormalized into the N fixed point; the Z3

asymmetry turns out to be irrelevant. The leading irrelevant perturbation to the N fixed
point is the electron hopping between two wires, which has scaling dimension (1/g) > 1.

The conductance tensor at the N fixed point is obviously

Gjk = Ḡjk = 0. (2.8)

Of course there is no difference between the ‘bare’ conductance G and the ‘dressed’ (by
the reservoirs) conductance Ḡ at the N fixed point.

The corresponding flow diagram in the Γ– φ plane is shown in figure 4.

2.2. g = 1

For the non-interacting case g = 1, one can solve the original electron model as a single-
particle problem. The junction is then characterized by the 3 × 3 scattering matrix of
a single free electron. Thus there is a continuous manifold of RG fixed points. In other
words, electron hopping is exactly marginal.

Several special cases on the ‘free electron’ manifold are worth mentioning. Let us
consider the Z3 symmetric case first. The N fixed point, as introduced above for g < 1,
corresponds to a complete reflection for each wire and thus is a special point on the
RG fixed manifold. If we further impose the time reversal symmetry, we always have
GA = 0 while the maximal single-terminal conductance on the ‘free electron’ manifold is
GS = (8/9)(e2/h). The constraint on the maximum of GS in the time reversal symmetric
case is due to the unitarity of the single-electron scattering matrix as discussed in [5].
On the other hand, if the time reversal symmetry is broken by the flux φ, the maximal
single-terminal conductance GS = e2/h can be realized by a complete transmission of

doi:10.1088/1742-5468/2006/02/P02008 8
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Junctions of three quantum wires

+χ1

2

3

Figure 5. Pictorial representation of the chiral fixed point. The incoming
electrons from one wire are diverted to one of the other wires.

DA1

2

3

Figure 6. Pictorial representation of the asymmetric fixed point DA, in which
two of the wires (for example wires 1 and 2 in the figure) are perfectly connected
while the other (wire 3) is left decoupled. This fixed point is unstable for all
values of g with the exception of g = 1, 3, in which case DA may belong to the
continuous manifold of fixed points.

with the single-terminal conductance or symmetric component

GS = Gχ =
4g

3 + g2

e2

h
, (2.11)

and anti-symmetric component GA = ±g GS. We note that, in the limit g → 1, the chiral
χ± fixed points reduce to the complete transmission of a single electron from wire j to
wire j ± 1 discussed previously.

An intriguing aspect of the conductance (2.10) is that, when a voltage is applied to
one of the wires while the other two are kept at zero voltage (as illustrated in figure 8(a)),
the current is rather ‘sucked in’ from one of the wires with the zero voltage. However,
if we include the non-interacting leads in the system (as shown now in figure 8(b)), the
effective conductance tensor for χ± is given by the conductance tensor equation (2.9)
obtained for χ± at g = 1 (in which ḠA = ±ḠS with ḠS = e2/h). Namely, the ‘sucking’
effect disappears in the presence of non-interacting leads, while the asymmetry holds.

The RG flow diagram (shown in figure 9) implies that even a tiny flux φ brings the
junction to the completely asymmetric conductance in the low-energy limit. The leading

doi:10.1088/1742-5468/2006/02/P02008 10
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Γ

φ

N

π/2

−π/2

π

χ +

χ -

*

*

M

*

RG "fixed manifold" g=3

*

Figure 10. RG flow diagram for g = 3. For φ ̸= 0,π the system is renormalized
toward the RG fixed manifold, which includes χ± as special points. For the time-
reversal symmetric case φ = 0,π, the infrared fixed point is the non-trivial M
fixed point. It is unstable against the addition of flux φ.

2

3

1 Dp

Figure 11. Pictorial representation of the DP fixed point. The conductance is
enhanced by the Andreev reflection process. We only illustrate the process where
the electron pair exits through lead 3; but notice that, since the DP fixed point
is time-reversal symmetric, the pair has exactly the same amplitude for exiting
through lead 2.

It is convenient to start by defining a tight-binding version of our model. Let ψn,i

annihilate an electron on site n on wire i. Here n = 0, 1, 2, 3, . . . ,∞ and j = 1, 2 or 3.
The Hamiltonian is

H = H0 + HB + Hint, (3.1)

doi:10.1088/1742-5468/2006/02/P02008 14

Oshikawa et al. J. Stat. Mech. (2006) P02008



: M Fixed Point1 < g < 3

• Time-reversal symmetric 
unstable fixed point 

GM
αβ =

2gγ
2g + 3γ − 3gγ

e2

h
, γ =

4
9
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1 < g < 3 :   Chiral 5xed point

Time-reversal symmetry broken

Stable 5xed point

  
57

1 < g < 3 :   M 5xed point

Time-reversal symmetric

Unstable 5xed point



  

M %xed point fitting ✏ 
: M Fixed Point1 < g < 3

GM
αβ =

2gγ
2g + 3γ − 3gγ

e2

h
, γ =

4
9

≈
4
9

Chung-Yo Luo, Masaki Oshikawa,YJK and Pochung Chen, unpublished.



Example: Kagome AFM+ DM interaction

• Kagome AF Heisenberg model: Gapless spin liquid


• ,  in Herbertsmithite


• Infinite Projected-Entangled Symplex State (iPESS)


• , spin liquid physics reported in  
Herbertsmithite needs to be reaccessed

Dz ≈ 0.08J D⊥ ≈ 0.01J

Dc ≈ 0.012(2)J

x

y

z

Dz up

Dz down

A0 A0

A0 A0

A1 A1

A1 A1

A2 A2

A2 A2

S� S�

S� S�

Sr Sr

Sr Sr

H. J. Liao, et al., Phys. Rev. Lett. 118, 137202 (2017). 
C.-Y. Lee, B. Normand, YJK Phys. Rev. B 98, 224414 (2018)



Outlook: Learn from DL community

• Differentiable Programming

Hai-Jun Liao, Jin-Guo Liu, Lei Wang, and Tao Xiang Phys. Rev. X 9, 031041

Challenges for evaluation of gradient
Manually deriving gradients is combersome 

PHILIPPE CORBOZ PHYSICAL REVIEW B 94, 035133 (2016)

optimization problem. We present a practical scheme dealing
with this issue in Sec. III C.

B. Systematic summation of Hamiltonian terms
with the CTM method

The CTM method discussed in Sec. II B provides a
convenient way to compute the norm (and local expectation
values) by using the environment tensors, as shown in Fig. 1(c).
The expectation value ⟨!|Ĥ |!⟩, which is an infinite sum, can
be computed in a similar way by introducing a new type of
environment tensors which we call H-environment tensors,
shown in dark blue in Fig. 3.

Each H-environment tensor consists of a sum of Hamil-
tonian contributions. For example, the corner tensor C̃1
contains all contributions from Hamiltonian terms acting on
the infinite upper left part of the system (see bottom panel in
Fig. 3). Similarly, T̃4 contains all Hamiltonian terms acting
on the corresponding infinite half row. We further introduce
horizontal and vertical corner tensors, denoted by C̃h1 and
C̃v1, respectively, for the upper left corner. These tensors
take into account Hamiltonian terms which connect sites
located in the corner C1 and edges T1 or T4, respectively
(see bottom of Fig. 3). Similar tensors are also defined for
the other corners. Finally, we also have to sum up the local
Hamiltonian terms connecting the center site with its four
nearest neighbors (located on the four edge tensors). With this,
the sum represented in Fig. 3 takes into account all Hamiltonian
terms.

The H-environment tensors can be computed in a systematic
way within the regular CTM method, as shown in Fig. 4
for a left move. Importantly, the H-environment tensors are
renormalized in the same way as the norm-environment
tensors, i.e., using the same projectors P and P̃ . In this way
the indices of the H-environment tensors match the ones from
the norm-environment tensors, and thus, different diagrams,
as shown in Fig. 4, can simply be added [41].

Note that the ˜T T tensors, which include Hamiltonian
contributions between two edge tensors, do not appear in
the expectation value of the Hamiltonian shown in Fig. 3.
However, it is crucial to keep track of these tensors since they
add contributions to the C̃h and C̃v tensors, as, for example,
shown in the second row in Fig. 3, where the contributions in
the ˜T T1 tensor are added to the C̃ ′

h1 tensor.
We end this section with three additional remarks: (1) It is

convenient to store also the edge tensors where the physical
legs of the outermost site are kept open, e.g., T ′o

4 shown in
Fig. 4. These tensors can then be used to compute the local
Hamiltonian terms (connecting to the center site) shown in
Fig. 3. (2) The computation of the ˜T T edge terms has a
relatively large computational cost of O(χ3D6) compared to
the other terms. This is the same complexity [42] as for the
computation of the projectors P and P̃ . [21] One way to reduce
the complexity of the ˜T T term is to split it in the middle into
two parts using an SVD, keeping only a bond dimension of
O(χ ) between the two parts. (3) In some implementations of
the CTM algorithm one normalizes the environment tensors
in a certain way after each step (e.g., division by the largest
element of a tensor) in order to keep the numbers in the tensors
bounded. In this case one has to make sure for consistency that
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FIG. 3. Representation of the expectation value of the Hamilto-
nian, where the blue tensors contain sums of local Hamiltonian terms,
as illustrated in the bottom part of the figure. For example, the corner
tensor C̃1 contains all contributions of local Hamiltonian terms in the
upper left corner of the infinite system, whereas the edge tensor T̃4

contains all contributions from an infinite half row, as depicted in the
bottom part of the figure. The vertical corner tensor C̃v1 takes into
account all Hamiltonian terms located between the corner C1 and
the edge tensor T4 (see bottom image; a similar definition holds for
the horizontal corner tensors C̃h1). All the other dark blue tensors on
the other corners/edges are defined in a similar way. Finally, there
are four remaining Hamiltonian terms (light blue) between the center
site and its nearest neighbors. The cross on top of a tensor indicates
that the Hamiltonian term is connected to the corresponding physical
legs which are not shown in this top view.

the same normalization is used also for the H-environment
tensors (i.e., the same normalization factor has to be used,
e.g., for C1 and C̃1).

C. Practical schemes

With the CTM approach discussed in the previous sections
we can compute the H and the N matrices and solve the
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optimization problem. We present a practical scheme dealing
with this issue in Sec. III C.

B. Systematic summation of Hamiltonian terms
with the CTM method

The CTM method discussed in Sec. II B provides a
convenient way to compute the norm (and local expectation
values) by using the environment tensors, as shown in Fig. 1(c).
The expectation value ⟨!|Ĥ |!⟩, which is an infinite sum, can
be computed in a similar way by introducing a new type of
environment tensors which we call H-environment tensors,
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tonian contributions. For example, the corner tensor C̃1
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the infinite upper left part of the system (see bottom panel in
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Hamiltonian terms connecting the center site with its four
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terms.

The H-environment tensors can be computed in a systematic
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the indices of the H-environment tensors match the ones from
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as shown in Fig. 4, can simply be added [41].
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contributions between two edge tensors, do not appear in
the expectation value of the Hamiltonian shown in Fig. 3.
However, it is crucial to keep track of these tensors since they
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shown in the second row in Fig. 3, where the contributions in
the ˜T T1 tensor are added to the C̃ ′

h1 tensor.
We end this section with three additional remarks: (1) It is

convenient to store also the edge tensors where the physical
legs of the outermost site are kept open, e.g., T ′o

4 shown in
Fig. 4. These tensors can then be used to compute the local
Hamiltonian terms (connecting to the center site) shown in
Fig. 3. (2) The computation of the ˜T T edge terms has a
relatively large computational cost of O(χ3D6) compared to
the other terms. This is the same complexity [42] as for the
computation of the projectors P and P̃ . [21] One way to reduce
the complexity of the ˜T T term is to split it in the middle into
two parts using an SVD, keeping only a bond dimension of
O(χ ) between the two parts. (3) In some implementations of
the CTM algorithm one normalizes the environment tensors
in a certain way after each step (e.g., division by the largest
element of a tensor) in order to keep the numbers in the tensors
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nian, where the blue tensors contain sums of local Hamiltonian terms,
as illustrated in the bottom part of the figure. For example, the corner
tensor C̃1 contains all contributions of local Hamiltonian terms in the
upper left corner of the infinite system, whereas the edge tensor T̃4

contains all contributions from an infinite half row, as depicted in the
bottom part of the figure. The vertical corner tensor C̃v1 takes into
account all Hamiltonian terms located between the corner C1 and
the edge tensor T4 (see bottom image; a similar definition holds for
the horizontal corner tensors C̃h1). All the other dark blue tensors on
the other corners/edges are defined in a similar way. Finally, there
are four remaining Hamiltonian terms (light blue) between the center
site and its nearest neighbors. The cross on top of a tensor indicates
that the Hamiltonian term is connected to the corresponding physical
legs which are not shown in this top view.

the same normalization is used also for the H-environment
tensors (i.e., the same normalization factor has to be used,
e.g., for C1 and C̃1).

C. Practical schemes

With the CTM approach discussed in the previous sections
we can compute the H and the N matrices and solve the
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• Automatic differentiation! AutoGrad
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Outlook: Learn from DL community

Hai-Jun Liao, Jin-Guo Liu, Lei Wang, and Tao Xiang Phys. Rev. X 9, 031041

• Automatic differentiation in DL (Tensorflow, PyTorch, Flux/
Zygote)

Reverse versus forward mode
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• Efficient for graphs with large fan-in

• Backtrace the computation graph
• Needs to store intermediate results

Reverse versus forward mode

• Same order with the function evaluation 
• No storage overhead 
• Efficient for graph with large fan-out
• Less efficient for large fan-in
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Outlook: Bring TN computation to HPC

• Tensor network software


• ITensor (C++, Julia) Abelian symmetry/GPU


• mptoolkit (C++) non-Abelian symmetry/GPU  


• uni10 (C++/python) Abelian symmetry/GPU


• TensorKit.jl (Julia) non-Abelian symmetry


• mptensor (C++/python) non\-symmetric/HPC


• TensorNetwork (python+ Tensorflow) non-symmetric/Cloud computing 
(CPU+GPU+TPU?)


• Tor10 (python +PyTorch) symmetric/ML frame work (work in progress)


• TensorNetworkAD.jl (Julia) Tensor Network with AD

http://itensor.org/
https://people.smp.uq.edu.au/IanMcCulloch/mptoolkit/
http://uni10.gitlab.io
https://github.com/Jutho/TensorKit.jl
https://github.com/smorita/mptensor
https://github.com/google/TensorNetwork
https://github.com/kaihsin/Tor10
https://github.com/under-Peter/TensorNetworkAD.jl

