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Plan of the Talk

DMRG for two-dimensional (2D) systems
2D DMRG with ITensor

Applications of 2D DMRG

Advanced topics: quantum numbers, fermions

Tomorrow

Introduction to Machine Learning, Science Applications

Machine Learning with Tensor Networks



Brief Review of DMRG



DMRG is an algorithm for finding ground states
as MPS tensor networks:

H = Z(Sjsj— + 57 57) + AS;S3
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DMRG




Works by "sweeping" over pairs or tensors from one
side to the other
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Use this Hamiltonian in DMRG,
get correct results for 2D system, if converged
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General approach called 2D DMRG
with snaking path 4 :

X

Figure from: Motruk, Zaletel, Mong, Pollmann, arxiv:1512.03318



How well does this idea work?
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Note that bond dimension m of MPS related to
entanglement entropy of wavefunction




Note that bond dimension m of MPS related to
entanglement entropy of wavefunction
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If 2D ground state obeys boundary law (area law),
means S ~ N,
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Entanglement of MPS is bounded by log(m)
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DMRG for two-dimensional systems (cylinders)
requires extreme care
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Scalingis: N, e*Vv

Like exact diagonalization, but only exponential in one
direction (N,), linear in other direction

Only Ny ~ 8-12 usually reachable



However, 2D DMRG can be very effective

Advantages over other 2D methods:
* robust convergence for fixed bond-dimension
* no statistical error (as in QMCQC)
* treat any Hamiltonian (no sign problem)

® can measure most any observable, including
correlation functions and entanglement

"Only" limitation is poor scaling with N,



2D DMRG in ITensor
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Automatic tensor contractions

"Magnetic" indices "snap" together
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ITensor library DMRG interface:

int N = 100;
auto sites = SpinHalf(N);

auto ampo = AutoMPO(sites);
for(auto j : rangel(N-1))
{
ampo += 0-5,"S+“,j,"5_“,j+1;
ampo += 0.5,"S-",3,"S+",j+1;
ampo += "SZ",j,"SZ“,j+1;

}
auto H = toMPO(ampo);

auto state = InitState(sites);
for(auto j : rangel(N))
{
state.set(j, (j%2==1 ? "Up" : "Dn"));
I3
auto psi@ = MPS(state);

auto sweeps = Sweeps(5);

sweeps.maxdim() = 10,20,100;
sweeps.cutoff() = 1E-6;

auto [energy,psi]l = dmrg(H,psi@, sweeps);
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ITensor library DMRG interface:

int N = 100;
auto sites = (N);
auto ampo = (sites);
for(auto j : (N-1))

{

ampo += 0-5,"S+“,j,"5_“,j+1;
ampo += 0.5,"S-",3,"S+",j+1;

ampo += "sz",3,"Sz",j+1;
I
auto H = (ampo) ;
auto state = (sites);
for(auto j : (N))
{
state.set(j, (j%2==1 ? "Up" : "Dn"));
}
auto psi@ = (state);
auto sweeps = (5);
sweeps. () = 10,20,100;
sweeps. () = 1E-6;
auto [energy,psil (H,psi0, sweeps);




Have entire wavefunction afterward,
can do any measurements:

for(int j = 1; j <= N; ++j)
{

psi.position(j);
Real Szj = elt(psi(j)* op(sites,”Sz",j) * dag(prime(psi(j),"Site")));

printin("Sz_",j," = ",Sz3);
I

0.405242
—-0.202632
0.119827




2D DMRG with ITensor:

auto lattice = squarelLattice(Nx,Ny,{"YPeriodic",K true});

auto ampo = AutoMPO(sites);

for(auto b : lattice)
{
ampo += 0.5,"S+" b.s1,"S-",b.s2;
ampo += 0.5,"S-" 'b.s1,"S+" b.s2;
ampo += "Sz",b.s1,"Sz" ,b.s2;

3
auto H = MPO(ampo);

squarelattice function returns array (vector) of structs
labeling site pairs defining square lattice



ITensor coming to Julia Language julié

"itensor/all.h"
using namespace itensor;

int
main()
{
int N = 100;
auto sites = SpinOne(N);

auto ampo = AutoMPO(sites); Katie Hyatt

for(auto j : rangel(N-1))
{
ampo +: ®.5’“S+|I,j,|ls_“’j+1;
ampo += 0.5,"S-",3,"S+" j+1;
ampo +: IISZII’j’IISZII’j_l_‘I;
}

auto H = toMPO(ampo);

auto psi@ = randomMPS(sites);

auto sweeps = Sweeps(5H);
sweeps.maxdim() = 10,20,100,100,200;
sweeps.cutoff() = 1E-10;
println(sweeps);

auto [energy,psi] = dmrg(H,psi0@, sweeps, "Quiet");

return 0;

)




ITensor coming to Julia Language

using ITensors, Printf
let
= 100
sites = spinOneSites(N)

ampo = AutoMPO()
for j=1:N-1
add! (ampo, "Sz",3,"Sz", 3+1)
add! (ampo, 9.5, "S+" 3,"S=-",3+1)
add! (ampo,9.5,"S=-",3,"S+",3+1)
end
= toMPO(ampo,sites)

psi® = randomMPS(sites)

sweeps = Sweeps(5H)
maxdim! (sweeps, 10,20,100,100,200)
cutoff! (sweeps, 1E-10)

sweeps

energy, psi = dmrg(H,psi10, sweeps)
("Final energy = ',energy)
end

Katie Hyatt



Applications of 2D DMRG



2D guantum magnets
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Prototypical model is the Heisenberg model
H=Y 8;-8;
(i)

= (557 +5;75)+575;
(i)



Magnetization of square-lattice Heisenberg model
(using DMRG):

0.309 1 1 | 1 1 1 1 I 1 1 1 1 I 1 1 1 1 0.309
0.308 |- - —0.308
QMC o=1.9
bounds: { 0.307 — 0=1.925- 0.307
O e ~E—.—.—.— O
= i 1 =
0.306 |- = - —0.306
—17 ly=6
0305 - | 0—0 1,=7 - =2 —0.305
L | o0—0 ly:8
0-304 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 0.304
1.85 1.9 1.95 2.0 0.05 0.1
a=L./L, I/L,

With careful finite-size scaling,
2D DMRG competitive with quantum Monte Carlo

White, Chernyshev, PRL 99, 127004 (2007)



Magnetization of triangular-lattice Heisenberg model
(using DMRG):

| | | | | HLy=3
0.3F a L=6]|
oo L=9
0.25 =00
§D oo =6
0.2 -
0'15_. | ! | ! | ! =
1 1.5 2 2.5

Beyond ability of most other methods to treat

White, Chernyshev, PRL 99, 127004 (2007)



2D topological phases ("topological order")

\y\)y\) A \/\ z
o }%
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* phase transitions not due to conventional order

* intrinsically robust to perturbations
e 'anyon' quasiparticle excitations

* physical edge can have special properties



Quantum Hall systems: prototypical topological phase

Hamiltonian defined in the continuum

Approximate continuum by set of orbital functions
wrapping around a cylinder

Directly observe fractional-

/ s . /| charge quasiparticles
dp 0.0 < ]
—0.2} ‘\\ . ]

10 15 20 25 30 35
y/ KB

Zaletel, Mong, Pollmann, PRL 110, 236801 (2013)
See also: Zaletel, Mong, PRB 86, 245305 (2012)



2D strongly correlated electrons

@ 0O ® ® ®
O ® ® 0,0
U @ O ® O

e model systems (Hubbard, tJ) often studied

e qualitative understanding of high-Tc
superconductivity?

* possibility of seeing exotic Mott insulator physics
(spin liquids & topological order)



Spin liquid observed in
triangular lattice Hubbard model with DMRG:

/f
H=—t Z (:,l-Lacj(7 + H.c. + UZ”@'T”%
(ij)o ¢
B
Metal = ;3('3 NMI 1())(‘6 Spin-ordered ol
L
Gapless Gapped Gapped /

0.41 xXx Extrapolated

@0.3-
X
o 0.27

£ 0.11

7 [

(CCS
32
O . O E ‘.,,xv,'ofo'o'o'o’o QRS

Szasz, Motruk, Zaletel, Moore, arxiv:1808.00463 (2018)



Best Practices for 2D DMRG



Treat each transverse size N,
as its own system:

O
O
O

O—O—0O0—0O OO0 O

O—0O0O—0O0—C0O OO0 O

QO—0O0O—0O0—C0O OO0 O

O—O—0O0—0O OO0 OO0
O—0O—0O—0O O-0-0
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Prefer periodic boundary conditions in y,
open boundary conditions in x:

 y direction is small: periodic helps
e x direction is large: DMRG doesn't like fully periodic

Figure from: Motruk, Zaletel, Mong, Pollmann, arxiv:1512.03318



Take advantage of quantum numbers

Very useful example is ky momentum:

(a) W)

Figure from: Motruk, Zaletel, Mong, Pollmann, arxiv:1512.03318



Advanced DMRG Topics



Let's discuss two more technical aspects of DMRG:

e Abelian quantum number symmetry

e fermions



Key example of Abelian quantum number is
particle number conservation

Consider two-site boson wavefunction:

—

It is equivalent to a matrix (two-index tensor):

-O-



Consider case of 2 particles:
possible configurations are

All other configurations must have zero amplitude



Matrix form of 2-particle wavefunction:

0 1 2
o | 1502_
1 11
2 | a0

Don't have to store 0's once we know particle number

Those entries remain always zero



Now consider 2 electrons with spin (spin not conserved)

T o0

—

e e & &b

—

All other configurations must have zero amplitude



Matrix form of 2-electron wavefunction:

o | wo,ﬂ_
T bt Y1

) Yt YLy

| Y0

Non-zero elements & zero elements form blocks



Matrix form of 2-electron wavefunction:

0 1 2
o T I N
o ol %,u_
T bt Y1
| ) Yt YLy
2 [ Y0

Non-zero elements & zero elements form blocks

Blocks associated to quantum number of each index



Block structure holds for tensors,
and tensor networks

Helpful to put arrows on indices, corresponding to flux of
particles:
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Block structure holds for tensors,
and tensor networks

Helpful to put arrows on indices, corresponding to flux of
particles:



Gains from quantum numbers
& storing non-zero blocks only:

* treat important physical conservation laws
® save memory
* save computation time (less to contract / multiply)

e computational gains can be very large sometimes (10x)

Quantum numbers in ITensor:
just specify quantum numbers of physical indices, then
perform algorithms — blocks are tracked for youl!



Fermions are an important degree of freedom in
condensed matter physics (electrons)




Typical tensor network approach uses
second quantization

This means:
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Typical tensor network approach uses
second quantization

This means:

W) = )®19293%4 |51 595384) sj = 0,1

= s (@) (@) (&) (e]) " o

W_JW_/

can be
any tensor

No need to antisymmetrize (or symmetrize)
amplitude tensor represented by tensor network



When do the signs enter in?

When using operators:
* applying Hamiltonian
* computing observables
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When do the signs enter in?

When using operators:
* applying Hamiltonian
* computing observables

o [ (&) () ()@ () o)

N\

Sign of result will depend on value of
s1 index



Fermion minus signs & tensor networks
Programming approaches — 3 alternatives:
* map fermionic operators to non-local bosonic
operators (Jordan-Wigner transformation);

work only with these

* choose canonical, reference ordering of sites and

always permute basis states to this order

* anti-commuting tensor indices (newest approach)



Jordan-Wigner string approach to fermions

A

. . , | AooaTy
Consider fermionic operators: C; {¢;, Cj} = 0j;

Now define commuting

(bosonic) operators: b, b;, b;f] = 0
¢110000) = |0010) b!|0000) = |0010)

A

site | site i



Jordan-Wigner string approach to fermions

The b's are related to the ¢'s as follows:

So expressions like ¢ Ci42
become:



Jordan-Wigner string approach to fermions

Fortunately this works great for Hamiltonian MPOs!

Consider hopping term:

(CTCJ' —+ C;L-CZ') — (b,l-LFi+1Fi_|_2 e Fj—lbj -+ biFi+1Fi+2 e Fj_lb;r-)

1

Internally, MPOs encode terms like cjcj
a5 i1l Ij—1c

So just switch identity operators T
between c's into F operators: bi Fi—l—lFi—l—Q T Fj—lbj



Jordan-Wigner string approach to fermions

Putting F operators into Hamiltonian "just works" for
correct energy within DMRG

Local measurements also simple

Correlation functions do require explicitly putting F
(string) operators, but this is not hard to do

To treat fermions with spin, think of up and down fermions
as neighboring "sites" of spinless fermions



Summary

e DMRG a powerful approach for 2D systems
* Applications to magnetism & strongly correlated electrons

* Quantum numbers can be exploited to make tensor
networks block-sparse

* Fermions can be treated in DMRG with Jordan-Wigner
string operators



Matrix Product Operators



ldea of a matrix product operator (MPO):
chain of tensors like an MPS, but two sets of indices

(up and down; bra and ket) just like an operator

800

Very useful for algorithms involving MPS, such as
DMRG




To motivate MPO construction, consider
a two-site operator

1 1
Si-So =SS5 + §S1+S; - 55;5;
Write as dot product of operator-valued vectors
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To motivate MPO construction, consider
a two-site operator

1 1
Si-Sy =SS5+ §S1+S; - 55;5;

Write as dot product of operator-valued vectors

5o
Sy
— 2 1 1 —
Sl SQ [ Sl §Si|_ 551 ] S;_



More generally, will involve operator-valued matrices
Consider the Hamiltonian:

H = 8785 + S35;
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More generally, will involve operator-valued matrices
Consider the Hamiltonian:

H =SS+ S;S7 = S7SiI5 41,5352

Can write as

S3




More generally, will involve operator-valued matrices
Consider the Hamiltonian:

H = S7SZ + 8387 (= 878315+ 1,5557%)

Can write as

Is 0 0 I3 Is I3
Ss 0 O SZ — | S5 I3

I:o Sz Il:l 0 SZ I, 0 53 53



More generally, will involve operator-valued matrices
Consider the Hamiltonian:

H = S7SZ + 8387 (= 878315+ 1,5557%)

Can write as

I I3

%2 I3 | = 82551 + 1,55.5;
I:o Sz Il:l S5 53



Chaining the pattern will give Hamiltonian for
arbitrarily big system

Is, 0 0 Is 0
Ss 0 0[] SZ o
I:o Sz 11:| 0 Sz ||l o sz

O o] 6 o o
I3

S

Z

N



Why this pattern?



View as a "machine" or "automaton"
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Result:
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View as a "machine" or "automaton"

State 1

?

State 1 =P I; 0 0O
S 0 0O
0o S I

5

Result: I, I, S; S}



View as a "machine" or "automaton"

State 1

State 1 =P @ 0 O
S 0 0

0 S I

Result: I, I, 57 5] I



Familiar 1D Hamiltonians as MPOs

Transverse-field Heisenberg
Ising model model
1 1
o S;F
S 1L
H:ZJJzajJrl—haf szsj Sit1



MPOs can even capture "long range" interactions

H = E Nt oio;

1<



MPOs can even capture "long range" interactions

1

o5 Ml

o A2 I
Ao Aeor



