di-Higgs day

Di-Higgs bosons in the SM

Jeonghyeon Song (Konkuk University, Korea)

Konkuk University, 2019.6.27

References

PHYSICAL REVIEW D 87, 014007 (2013)

Unravelling an extended quark sector through multiple Higgs production?

S. Dawson, E. Furlan, and I. Lewis

Higgs boson pair production in new physics models at hadron, lepton, and photon colliders

Eri Asakawa,^{1,*} Daisuke Harada,^{2,3,†} Shinya Kanemura,^{4,‡} Yasuhiro Okada,^{2,3,§} and Koji Tsumura^{5,¶}

Higgs triple coupling

$$\lambda_{hhh}^{\rm SM} = -3m_h^2/v$$
 at the tree level

At the one-loop order, the effective hhh vertex function

$$\Gamma_{hhh}^{\rm SM}(\hat{s}, m_h^2, m_h^2) \simeq -\frac{3m_h^2}{v} \left\{ 1 - \frac{N_c m_t^4}{3\pi^2 v^2 m_h^2} \left[1 + \mathcal{O}\left(\frac{m_h^2}{m_t^2}, \frac{\hat{s}}{m_t^2}\right) \right] \right\}$$

The double Higgs boson production at the e+ecollider

The double Higgs boson production at the LHC

The amplitude for $g^{a,\mu}(p_1)g^{b,\nu}(p_2) \rightarrow H(p_3)H(p_4)$

$$A_{ab}^{\mu\nu} = \frac{\alpha_s}{8\pi\nu^2} \delta_{ab} [P_1^{\mu\nu}(p_1, p_2)F_1(s, t, u, m_t^2) + P_2^{\mu\nu}(p_1, p_2, p_3)F_2(s, t, u, m_t^2)],$$

$$P_{1}^{\mu\nu}(p_{1}, p_{2}) = g^{\mu\nu} - \frac{p_{1}^{\nu}p_{2}^{\mu}}{p_{1} \cdot p_{2}}, \quad \text{Projection op. for spin-0}$$

$$P_{2}^{\mu\nu}(p_{1}, p_{2}, p_{3}) = g^{\mu\nu} + \frac{2}{sp_{T}^{2}}(m_{H}^{2}p_{1}^{\nu}p_{2}^{\mu} - 2p_{1}.p_{3}p_{2}^{\mu}p_{3}^{\nu})$$

$$- 2p_{2}.p_{3}p_{1}^{\nu}p_{3}^{\mu} + sp_{3}^{\mu}p_{3}^{\nu});$$

Projection op. for spin-2

partonic cross section

$$\begin{aligned} \frac{d\hat{\sigma}(gg \to HH)}{dt} \\ &= \frac{\alpha_s^2}{2^{15}\pi^3 v^4} \frac{|F_1(s, t, u, m_t^2)|^2 + |F_2(s, t, u, m_t^2)|^2}{s^2}, \end{aligned}$$

In the SM, the top quark contribution is dominant.

LET (Low energy theorem) : *p*

$$m_t^2 \gg s$$

Projection for spin-0

$$F_{1}(s, t, u, m_{t}^{2}) \equiv F_{1}^{\text{tri}}(s, t, u, m_{t}^{2}) + F_{1}^{\text{box}}(s, t, u, m_{t}^{2}),$$

$$F_{1}^{\text{tri}}(s, t, u, m_{t}^{2}) = \frac{4m_{H}^{2}}{s - m_{H}^{2}}s\left\{1 + \frac{7}{120}\frac{s}{m_{t}^{2}} + \frac{1}{168}\frac{s^{2}}{m_{t}^{4}} + \mathcal{O}\left(\frac{s^{3}}{m_{t}^{6}}\right)\right\},$$

$$F_{1}^{\text{box}}(s, t, u, m_{t}^{2}) = -\frac{4}{3}s\left\{1 + \frac{7}{20}\frac{m_{H}^{2}}{m_{t}^{2}} + \frac{90m_{H}^{4} - 28m_{H}^{2}s + 12s^{2}}{840m_{t}^{4}} + \mathcal{O}\left(\frac{s^{3}}{m_{t}^{6}}\right)\right\};$$

LET (Low energy theorem) : 7

$$m_t^2 \gg s$$

Projection for spin-0

$$F_{1}(s, t, u, m_{t}^{2}) \equiv F_{1}^{\text{tri}}(s, t, u, m_{t}^{2}) + F_{1}^{\text{box}}(s, t, u, m_{t}^{2}),$$

$$F_{1}^{\text{tri}}(s, t, u, m_{t}^{2}) = \frac{4m_{H}^{2}}{s - m_{H}^{2}}s\left\{1 + \frac{7}{120}\frac{s}{m_{t}^{2}} + \frac{1}{168}\frac{s^{2}}{m_{t}^{4}} + \mathcal{O}\left(\frac{s^{3}}{m_{t}^{6}}\right)\right\},$$

$$F_{1}^{\text{box}}(s, t, u, m_{t}^{2}) = -\frac{4}{3}s\left\{1 + \frac{7}{20}\frac{m_{H}^{2}}{m_{t}^{2}} + \frac{90m_{H}^{4} - 28m_{H}^{2}s + 12s^{2} - 13p_{T}^{2}s}{840m_{t}^{4}} + \mathcal{O}\left(\frac{s^{3}}{m_{t}^{6}}\right)\right\};$$

Triangle diagram (Higgs triple coupling): No angular dependence

Box diagram (Higgs triple coupling): angular dependence in mt^(-4)

$$F_{1}^{\text{box}}(s, t, u, m_{t}^{2}) = -\frac{4}{3}s \left[\left(1 + \frac{7}{20} \frac{m_{H}^{2}}{m_{t}^{2}} + \frac{540m_{H}^{4} - 116m_{H}^{2}s + 59s^{2}}{5040m_{t}^{4}} \right) d_{0,0}^{0}(\theta) + \frac{13s^{2} - 52m_{H}^{2}s}{5040m_{t}^{4}} d_{0,0}^{2}(\theta) + \mathcal{O}\left(\frac{s^{3}}{m_{t}^{6}}\right) \right],$$

$$F_{2}^{\text{box}}(s, t, u, m_{t}^{2}) = -\frac{11}{45}s \frac{s - 4m_{H}^{2}}{\sqrt{6}m_{t}^{2}} \left[1 + \frac{62m_{H}^{2} - 5s}{154m_{t}^{2}} + \mathcal{O}\left(\frac{s^{2}}{m_{t}^{4}}\right) \right] d_{2,0}^{2}(\theta).$$

Wigner *d*-functions, d_{s_i,s_f}^j

j is the total angular

 s_i (s_f) is the initial (final) state spin:

$$F_2(s, t, u, m_t^2) = -\frac{11}{45} s \frac{p_T^2}{m_t^2} \left\{ 1 + \frac{62m_H^2 - 5s}{154m_t^2} + \mathcal{O}\left(\frac{s^2}{m_t^4}\right) \right\}.$$

Angular dependence

At leading order,

$$\begin{aligned} & \text{Box Triangle} \\ F_1(s, t, u, m_t^2)|_{\text{LET}} \rightarrow \left(-\frac{4}{3} + \frac{4m_H^2}{s - m_H^2}\right)s, \\ F_2(s, t, u, m_t^2)|_{\text{LET}} \rightarrow 0. \end{aligned}$$

LET is a poor approximation for di-Higgs

How to deviate the SM result for the gluon fusion?

1. New λ_{hhh}

2. New Scalar

3. New colored fermions

1. New λ_{hhh}

2. New Scalar

3. New colored fermions

- 1. New λ_{hhh}
- 2. New Scalar
- 3. New colored fermions

2HDM

Two Higgs doublets

 Φ_1 and Φ_2

In order to suppress FCNC at tree level, we impose Z2 symmetry

 $\Phi_1 \rightarrow \Phi_1$ and $\Phi_2 \rightarrow -\Phi_2$

Higgs potential

$$V = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - m_{12}^{2} (\Phi_{1}^{\dagger} \Phi_{2} + \text{H.c.})$$

$$+ \frac{1}{2} \lambda_{1} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{1}{2} \lambda_{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1})$$

$$+ \frac{1}{2} \lambda_{5} \left[(\Phi_{1}^{\dagger} \Phi_{2})^{2} + \text{H.c.} \right]$$
Softly broken Z2

$$\begin{array}{l} \mbox{Alignment limit}\\ H^{\rm SM} = s_{\beta-\alpha}h^0 + c_{\beta-\alpha}H^0 \end{array}$$
 For $h^0 = h_{125}$ $s_{\beta-\alpha} = 1$

$$\sin(\beta - \alpha) : g_{hW^+W^-}, \quad g_{hZZ}, \quad g_{ZAH}, \quad g_{W^\pm H^\mp H},$$
$$\cos(\beta - \alpha) : g_{HW^+W^-}, \quad g_{HZZ}, \quad g_{ZAh}, \quad g_{W^\pm H^\mp h}, \quad g_{Hhh}.$$

ZERO!

No resonance decay into hh!

2HDM

Unless $M \approx m_{H^{\pm}} \approx m_H \approx m_A$ $\Delta \lambda_{hhh}$ can be large!

peaks around $M_{hh} \sim 400$

1. interference effects $b/w \Delta$ and \Box

2. Enhanced λ_{hhh} decreases $\sigma(gg \to hh)$.

At leading order,

$$\begin{aligned} & \underset{F_1(s, t, u, m_t^2)}{\text{Box}} |_{\text{LET}} \rightarrow \left(-\frac{4}{3} + \frac{4m_H^2}{s - m_H^2} \right) s, \\ F_2(s, t, u, m_t^2) |_{\text{LET}} \rightarrow 0. \end{aligned}$$

At
$$\sqrt{s} = 400 \text{ GeV}, \ \frac{m_H^2}{s - m_H^2} \sim 0.1.$$

At e^+e^- collider

Not in the aligned 2HDM

1. New λ_{hhh}

2. New Scalar

3. New colored fermions

S.C. Park

New heavy quarks!

But we have to satisfy the single Higgs rate & EWPD

Mirror fermions

a generation of heavy mirror fermions

$$\psi_L^1 = \begin{pmatrix} \mathcal{T}_L^1 \\ \mathcal{B}_L^1 \end{pmatrix}, \mathcal{T}_R^1, \mathcal{B}_R^1; \qquad \psi_R^2 = \begin{pmatrix} \mathcal{T}_R^2 \\ \mathcal{B}_R^2 \end{pmatrix}, \mathcal{T}_L^2, \mathcal{B}_L^2.$$

with charges
$$\frac{2}{3}$$
 and $-\frac{1}{3}$

The couplings of the fermion mass eigenstates to the Higgs boson

$$-\mathcal{L}_{M}^{H} = \frac{c_{T_{1}T_{1}}}{2\upsilon} \bar{T}_{1L} T_{1R} H + \frac{c_{T_{2}T_{2}}}{2\upsilon} \bar{T}_{2L} T_{2R} H + \frac{c_{T_{1}T_{2}}}{2\upsilon} \bar{T}_{1L} T_{2R} H + \frac{c_{T_{2}T_{1}}}{2\upsilon} \bar{T}_{2L} T_{1R} H + \frac{c_{B_{1}B_{1}}}{2\upsilon} \bar{B}_{1L} B_{1R} H + \frac{c_{B_{2}B_{2}}}{2\upsilon} \bar{B}_{2L} B_{2R} H + \frac{c_{B_{1}B_{2}}}{2\upsilon} \bar{B}_{1L} B_{2R} H + \frac{c_{B_{2}B_{1}}}{2\upsilon} \bar{B}_{2L} B_{1R} H + \text{H.c.},$$

For single Higgs production through top quark and mirror fermion loops,

$$A_{gg \to H} = A_{gg \to H}^{\text{SM}} \left(1 + \frac{c_{T_1 T_1}}{2M_{T_1}} + \frac{c_{T_2 T_2}}{2M_{T_2}} + \frac{c_{B_1 B_1}}{2M_{B_1}} + \frac{c_{B_2 B_2}}{2M_{B_2}} \right)$$

For $gg \to hh$

$$F_{1}^{\text{box}} \equiv F_{1}^{\text{box},\text{SM}}(1 + \Delta_{\text{box}});$$

$$\Delta_{\text{box}} = \frac{c_{T_{1}T_{1}}^{2}}{4M_{T_{1}}^{2}} + \frac{c_{T_{2}T_{2}}^{2}}{4M_{T_{2}}^{2}} + \frac{c_{B_{1}B_{1}}^{2}}{4M_{B_{1}}^{2}} + \frac{c_{B_{2}B_{2}}^{2}}{4M_{B_{2}}^{2}} + \frac{c_{T_{1}T_{2}}c_{T_{2}T_{1}}}{2M_{T_{1}}M_{T_{2}}} + \frac{c_{B_{1}B_{2}}c_{B_{2}B_{1}}}{2M_{B_{1}}M_{B_{2}}}$$

Conclusions

- Di-Higgs process is elusive.
- In the SM, the signal rate is very small.
- It is very difficult to have large NP effects.