Di-Higgs Searches from the experimental view

Geumbong Yu Seoul National University

Di-Higgs Day @ Konkuk University, 27 Jun 2019

Hot Issue

- Di-Higgs production is one of hot topics in Higgs physics group in consideration of SM or BSM
- Interesting final states from two Higgs bosons: bbbb/bbWW/bb $\tau\tau$ / bb $\gamma\gamma$ /bbZZ/WW $\gamma\gamma$ /WWWW
- Higgs self-coupling measurement predicted in the SM is challenging at LHC in 10 years : $\sigma_{ggF}(pp \rightarrow HH) = 33.5$ fb @ 13 TeV in NLO QCD
- Currently searches have been performed for both SM & BSM scenarios
 - LHC run2 (pp@ $\sqrt{s}=13$ TeV with $\int \mathscr{L} \sim 150$ fb⁻¹)
 - ▶ HighLuminosity LHC (2026~2035, *∫*ℒ~3 ab⁻¹)

Subdecays (CMS)

- HIG-16-002: Search for H(bb)H(bb) decays using the 2015 data sample
- HIG-16-011: Search for H(WW)H(bb) decays using the 2015 data sample
- HIG-16-012: Search for H(bb)H($\tau\tau$) decays from non-resonant production
- HIG-16-013: Search for H(bb)H($\tau\tau$) decays from resonant production
- HIG-16-024: Search for the non resonant HH process with Webb decays using 2015 data
- HIG-16-026: Search for non-resonant pair production of Higgs bosons in the bbbb final state with 13 TeV CMS data
- HIG-16-028: Search for H(bb)H($\tau\tau$) decays from non-resonant production (2016)
- **B2G**-16-008: Search for HH in the 4b final state
- **B2G-**16-026: Search for HH resonances in the 4b final state PLB

- HIG-16-029: Search for H(bb)H($\tau\tau$) decays from resonant production (2016)
- HIG-16-032: Search for H(bb)H($\gamma\gamma$) decays at 13 TeV
- HIG-17-002: HH(bb $\tau\tau$) with 2016 dataset PLB
- HIG-17-006: HH(bbWW) with 2016 dataset JHEP
- HIG-17-008: HH(bb $\gamma\gamma$) with 2016 dataset PLB HIG-17-009: HH(bbbb) resonant with 2016 dataset JHEP
- HIG-17-017: Non resonant HH in 4b JHEP
- HIG-17-030: Combination of HH analyses with 2016 dataset PRL
- HIG-17-032: Search for resonant double Higgs production with bbZZ decays in the bbll*vv* final state
- **B2G-17-019:** Search for resonant and non resonant production of HH to 4b in boosted topologies JHEP
- B2G-18-008: Search for HH in the qqbblnu final state JHEP

Quick Reminder

non-Resonant LO

 $\gamma\gamma\gamma$

(e) **~U**

Use various interpolation method to fill between samples

 $\kappa_{\lambda} = \lambda_{HHH} / \lambda_{SM}$ $\kappa_{t} = \gamma_{t} / \gamma_{SM}$

g H $f_{t,b}$ H $f_{t,b}$ H $f_{t,b}$ H $f_{t,b}$ H

B(HH→4b)=33.9%

Resonant HH bbbb JHEP 08 (2018) 152, arXiv: 1806.03548

1000 times smaller xsec than the single H production

300<m(X)<500 GeV: (N)MSSM

m(X)>500 GeV: spin-0 Radion and spin-2 KK-Graviton in warped extra dimensions

- 4 b-tagged jets : two di-jet pairs consistent with Higgs mass
- Looking in 260GeV–1.2TeV m(X) range
- m(X) resolution improved by kinematic constraint
 - B-tagged jet energy regression & m(H1)=m(H2) constraint
- QCD background estimation done by fit the data m(X) distribution

Resonant HH->bbbb (cont'd)

$m(X \rightarrow HH \rightarrow 4b)$ distribution

Resonant HH bbbb Boosted Phys. Lett. B 781 (2018) 244, arXiv:1710.04960

- Use fat-jet with R=0.8, p_T>300 GeV, $|\eta|$ <2.4
- Leading two jets are Higgs tagged (double b requirement in the jet) & $|\Delta\eta(j1,j2)| < 1.3$
- Results obtained by the fit on a reduced mass $(=m_{jj}-(m_{j1}-m_H)-(m_{j2}-m_H))$ distribution

Spin-O, Radion

Spin-2, KK-graviton

Selection: 4 jets with highest b-tag score & pT>30 & $|\eta|$ < 2.4

4 jets pairing with minimum ⊿m(H1,H2)

After careful checks on the data-driven background estimation, fit on a BDT output to find the signal

(H→)HH→4b JHEP 01 (2019) 040, arXiv:1808.01473

Search performed requiring one AK8 jet (boost) and two b-tagged jets (resolved)

Spin-O, Radion

-8% improved

55-

Spin-2, KK-graviton

11

18—7% improved

ANALYSIS STRATEGY IN A NUTSHELL

Signal features

- ▶ $h(b\overline{b})$ side: resonant in m_{jj}
- h(WW) side: E/T (not fully reconstructible)

Background situation

- \blacktriangleright leading irreducible background: $t\overline{t}$
- ▶ subleading background: DY (~ 10%)
- subsubleading: single top, VV, ttV, SMHiggs, etc.

JHEP 01 (2018) 054, arXiv:1708.04188

Overall strategy, for both resonant and nonresonant analyses

- 1. Select two leptons and two b-jets, below Z peak: $m_{ll} < m_Z 15$ GeV
- 2. Estimate all bkg but DY (in ee and $\mu\mu$) from MC (rely on good understanding of $t\bar{t}$)
- 3. Train MVA on kin. variables (without $\rm m_{jj}$) to discriminate signal and bkg
- 4. Final discriminant: m_{jj} vs MVA

$HH \rightarrow bbVV \rightarrow bbl \nu l \nu (cont'd)$

- **Event Selection**
 - > p_T -leading and OS lepton pair ($ee/e\mu/\mu\mu$)
 - $12 \text{ GeV} < m_{ll} < m_Z 15 \text{ GeV}$
 - Two jet pair with highest b-tag score sum & each jet satisfying $p_T>20$ GeV and $|\eta|<2.4$
- Main background tt rely on the tt MC
- Drell-Yan background suffer from low MC stat use data-driven method
 - DY+HF fraction among entire DY events obtained using BDT

HH-bbVV-bblulu (cont'd)

- Deep Neural Network discriminators based on Keras with TensorFlow
 - Inputs:m_{ll}, ΔR_{ll} , ΔR_{jj} , $\Delta \phi$ (ll,jj), p_T^{ll} , p_T^{jj} ,min(ΔR_{jl}) and transverse mass (ll,MET)
 - Parameterized network used for resonant and non resonant case separately
 - Resonant case: mass of resonance (260–900 GeV), SF vs. OF

14

Nonresonant case: κ_{λ} , κ_{t} , and SF vs. OF

$\rightarrow bbVV \rightarrow bbl \nu : BDT input m_{jj}$

200

150

• Data

Uncertainty

$X \rightarrow HH \rightarrow bbWW^*(\rightarrow bbqql_): Boost$

Submitted to JHEP, arXiv:1904.04193

- Search for X with m(X)=0.8-3.5 TeV
- **Events selection:**
 - > $H_T>400$ GeV, only one e/μ
 - A single bb jet with high p_T and a single qq jet with a nearby e/μ
 - ▶ Veto events with ⊿R(AK4jet(R=0.4),bb jet)>1.2 to reject tt background
- Events categorized by the lepton flavor, number of b-tag subjetness in the bb jet, and qq jet substructure to increase signal purity and background estimation
- 2D maximum likelihood fit on m(bb) & m(HH)

180 200

m_{bb} [GeV]

1000

1500

2000

2500

3000

40 60 80 100 120 140 160 180 200

1500 2000 2500 3000 3500 4000 m_{HH} [GeV]

3500 4000

 $m_{\rm HH}\,[{
m GeV}]$

1000

40 60 80 100 120 140 160 m_{bb} [GeV]

$X \rightarrow HH \rightarrow bbWW^{*}(\rightarrow bbqql_{v}):$ Limits

HH $\rightarrow bb\tau\tau(\tau_e\tau_h/\tau_\mu\tau_h/\tau_h\tau_h)$ Phys. Lett. B 778 (2018) 101, arXiv:1707.02909

- Select events:
 - ▷ OS τ pair: $\Delta R(\tau, \tau)$ >0.1 and m($\tau \tau$) reconstructed using SecondaryVertex fit algorithm
 - Two jets with highest b-tag score
 - Categorization: resolved 1/2 b-tag, and boosted
 - Mass window cuts for m(bb) and m($\tau\tau$) within 45 and 35 GeV, respectively
- BDT discriminant $e/\mu + \tau_h$ vs. tt
- Limit extraction based on:
 - Resonant: Fitted HH mass
 - Nonresonant: MT2

$HH \rightarrow bb\tau\tau$: Limits

23

Model-independent limit on X

Limits on $\kappa_{\lambda} \& \kappa_{t}$

Use effective mass = $m(X) = m(jj\gamma\gamma) - m(jj) - m(\gamma\gamma) + 250$

NonResonant background fits

10

 10^{2}

0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

l cos θ.

180

m_{ii} [GeV]

160

120

140

100

Resonant: Data vs. expectation

HH >DDYY

CMS

its/(30.0

Grav. m_x = 300 GeV **t**tH(γγ)

Rad. m_v = 600 GeV VH(γγ)

ggH(yy)

gg → HH (x10⁴)

VBF HH $(x10^5)$

400

500

600

700

800

900

+ Data

80

CMS

CMS

 $pp \rightarrow HH \rightarrow b\overline{b}\gamma\gamma$

High-mass region

High-purity category

100

120

140

 $pp \rightarrow HH \rightarrow b\overline{b}\gamma\gamma$

High-mass region

High-purity category

Data

Data

GeV)

vents/(1

GeV)

Events/(5

25

20

10H

26

0

<u>-</u>20

-15

-5

-10

0

5

10

Spin-O, Radion

Combination of Higgs Boson Pair Production in pp @ 13 TeV CMS experiment

- Using 35.9 fb⁻¹ 2016 CMS data
- PRL 122 (2019) 121803, arXiv:1811.09689
- Subdecays: bbbb/bb $\tau\tau$ /bb $\gamma\gamma$ /bbVV (V=W or Z)
- Observed (expected) upper limit on the non resonant production xsec = 22.2 (12.8) $\times \sigma_{\text{SM}}$
- No evidence for narrow resonances in the mass range 250—3000 GeV

Combined CMS HH@13TeV Limits

Combination of h(125)h(125) ATLAS experiment

- Using 36.1 fb⁻¹ 2016 ATLAS data
- Submitted to PLB, arXiv:1906.02025
- Subdecays: bbbb/bbWW(lνqq)/bbττ/WWWW(llνν4q/lllννν2q/4l4ν)/bbγγ/
 WW(lνqq)γγ
- Results are presented for non-resonant and resonant Higgs boson pair production modes
- Combined observed limit @ 95% CL on the non-resonant HH xsec = $6.9 \times \sigma_{SM}$
- Limits set on the ratio (κ_{λ}) of the Higgs boson self-coupling to SM value: -5.0 < κ_{λ} < 12.0 @ 95% CL
- Limits set on the production of narrow scalar resonances in BSM

HH@Highluminosity-LHC

CMS-FTR-18-019: HH measurements at the HL-LHC (pp @ 14 TeV, 3 ab⁻¹)

Subdecays: bbbb/bbWW(llvv)/bb $\tau\tau$ /bb $\gamma\gamma$ /bbZZ(41)

Analyses developed using parametric simulation of upgraded detector response and optimized for 3 ab⁻¹

> Expected significance of SM HH signal with 2.6σ

HH@HL-LHC

Table 6: Upper limit at the 95% confidence level, significance, projected measurement at 68% confidence level of the Higgs boson self coupling λ_{HHH} for the five channels studied and their combination. Systematic and statistical uncertainties are considered.

Channel	Significance		95% CL limit on $\sigma_{\rm HH} / \sigma_{\rm HH}^{\rm SM}$	
	Stat. + syst.	Stat. only	Stat. + syst.	Stat. only
bbbb	0.95	1.2	2.1	1.6
bb au au	1.4	1.6	1.4	1.3
bbWW($\ell \nu \ell \nu$)	0.56	0.59	3.5	3.3
$bb\gamma\gamma$	1.8	1.8	1.1	1.1
$bbZZ(\ell\ell\ell\ell)$	0.37	0.37	6.6	6.5
Combination	2.6	2.8	0.77	0.71

HH@HL-LHC

Summary

- The SM HH production is expected to have a cross section \sim 31 fb at 13 TeV and 40 fb at 14 TeV
 - Negative result of the SM HH measurement using 2016 dataset (~36 fb-1)
 - before High Luminosity LHC operation
 - Expect to confirm it at the end of HL-LHC with $> 2\sigma$
- It is interesting because the HH production search would be a hint for BSM
 - Many searches have been performed not only for the HH production but also for any BSM di-Higgs signals such as H+H-/aa/....
- Stay tuned for the LHC run2 results (~150 fb⁻¹) and next

Resonant HH bbbb Boosted Phys. Lett. B 781 (2018) 244, arXiv:1710.04960

- Use fat-jet with R=0.8, p_T >300 GeV, $|\eta|$ <2.4
- Leading two jets are Higgs tagged (double b requirement in the jet) & $|\Delta\eta(j_1,j_2)| < 1.3$
- Results obtained by the fit on a reduced mass $(=m_{jj}-(m_{j1}-m_H)-(m_{j2}-m_H))$ distribution

Non resonant limits from HH-4k

semi-resolved+fully merged

Resolved

HH $\rightarrow bbZZ \rightarrow bblvv$ CMS-PAS-HIG-17-032

HH→WW*γγ Eur. Phys. J. C (2018) 78:1007, arXiv:1807.08567

##