Enhancing Di-Higgs signal by new resonance

SEONG CHAN PARK (YONSEI)

Di-Higgs day Konkuk University, June 27, 2019

ATLAS, Phys. Rev. Lett. 114, 081802 (2015), *bbγγ*

- Koji Nakamura (KEK, ATLAS), Kenji Nishiwaki, Kin-ya Oda, <u>SCP</u>, Yasuhiro Yamamoto, 1701.06137 (EPJC 2017).
- Kayoung Ban, Won-Sang Cho, <u>SCP</u> in $bb\tau\tau$ (to appear soon)

THE 'SM' Higgs:

 $H(1,2)_{Y=1/2}$

$$H = \begin{pmatrix} \phi^+ \\ (h + v + i\phi^0)/\sqrt{2} \end{pmatrix}$$

THE 'SM' Higgs:

 $H(1,2)_{Y=1/2}$

$$V(H) = \lambda \left(H^{\dagger}H - \frac{v^2}{2} \right)^2 \qquad \text{V.E.V.} \\ \langle H \rangle = \frac{v}{\sqrt{2}}$$

$$= \lambda (H^{\dagger}H)^{2} - \lambda v^{2}H^{\dagger}H + \lambda v^{4}/4$$

quartic quadratic c.c.?
:tachyonic
==> unstable

$$V(H) = \lambda \left(H^{\dagger}H - \frac{v^2}{2} \right)^2$$

$$= \frac{\lambda}{4}h^4 + \lambda vh^3 + \lambda h^2 v^2 + \text{no c.c.}$$

$$= \frac{1}{2}m_h^2 \longrightarrow \lambda = \frac{m_h^2}{2v^2} \approx \frac{1}{8}$$

$$= \frac{\lambda_4}{4!}h^4 + \frac{\lambda_3}{3!}h^3 + \cdots$$

$$\lambda_3 \equiv 3!\lambda v = 3m_h^2/v$$

$$\lambda_4 \equiv 3!\lambda = 3m_h^2/v^2$$

Unitary gauge

$$H = \begin{pmatrix} 0\\ (h+v)/\sqrt{2} \end{pmatrix}$$

$$\lambda_{hhhh}^{SM} \equiv \lambda_4 = 6\lambda = 3m_h^2/v^2$$
$$\lambda_{hhh}^{SM} \equiv \lambda_3 = 6\lambda v = 3m_h^2/v$$

==> These 'self interactions' are **PREDICTIONS** of the **SM**

==> ,which never have got tested so far

These are our next goal! (the only problem remaining within the SM)

Dawson, Dittmaier, Spira hep-ph/9805244

Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Zirke [1608.04798]

Full top quark mass dependence in Higgs boson pair production at NLO

N $\left(\frac{1}{m_t^2}\right)$ 0

(a) 14 TeV, m_{hh}

(b) 14 TeV, $p_{T,h}$

Process	S(600/fb)	B(600/fb)	Reference					
$b\overline{b} au^+ au^-$	50	104	Dolan, Englert, Spannowsky [6] Ban, Cho, SCP					
$b\overline{b}W^+W^-$	12	8	Papaefstathiou, L.L. Yang, Zurita [7]					
$b\overline{b}\gamma\gamma$	9	11	Baglio, Djouadi, Gröber, Mühlleitner, Quevillon, Spira [8]					
	6	12.5	- Baur, Plehn, Rainwater [9]					
$b\overline{b}b\overline{b}$	48	2000	Behr, Bortoletto, Frost, Hartland, Issever, Rojo [10]					
	50	2500	– Ferreira da Lima, Papaefstathiou, Spannowsky [11]					

Table 1: Pheno studies of the di-Higgs process in several final states. We normalized all the studies to the cross section of Ref. [2] and assumed a b-tagging efficiency of 70 % with a 1% light jet rejection.

Nakamura-Nishiwaki-Oda-Park-Yasuhiro 17' H (doublet), S (signlet)

$$H^{0} = \frac{v + h\cos\theta + s\sin\theta}{\sqrt{2}},$$
$$S = f - h\sin\theta + s\cos\theta,$$

$$\Delta \mathcal{L} = -\frac{\mu_{\text{eff}} \sin \theta}{2} sh^2$$

fixed by model

$$\mu_{\text{eff}} = (\kappa f + \mu) \frac{\cos^3 \theta}{\sin \theta} + v \left(3\lambda_H - 2\kappa \right) \cos^2 \theta + \left[f \left(\lambda_S - 2\kappa \right) - 2\mu + \mu_S \right] \cos \theta \sin \theta + \kappa v \sin^2 \theta.$$

$$\begin{split} V &= V_S + V_H + V_{SH}, \\ V_S &= \frac{m_S^2}{2} S^2 + \frac{\mu_S}{3!} S^3 + \frac{\lambda_S}{4!} S^4, \\ V_H &= m_H^2 |H|^2 + \frac{\lambda_H}{2} |H|^4, \\ V_{SH} &= \mu S |H|^2 + \frac{\kappa}{2} S^2 |H|^2, \end{split}$$

$$\mu = 0 = \mu_S$$

$$\tan 2\theta = \frac{v\left(f\kappa + \mu\right)}{\frac{\lambda_S}{3!}f^2 - \frac{\lambda_H}{2}v^2 + \frac{\mu_S}{4}f - \frac{\mu}{4}\frac{v^2}{f}}.$$

$$\mu_{\text{eff}} \rightarrow v\left(\lambda_H + \frac{m_s^2 + m_h^2}{v^2}\right) = \frac{m_s^2 + 2m_h^2}{v}$$

New	color					CC			
		80							
					\backslash				
200			Ι	Dirac spin	lor	v	complex sca	alar	
and the second s	, h	field	T	В		ϕ_{3}	ϕ_{6}	ϕ_{8}	
	·•	$SU(3)_C$	3	3		3	6	8	
		Q	$\frac{2}{3}$	$-\frac{1}{3}$		$-\frac{1}{3}, -\frac{4}{3}$	$\frac{1}{3}, -\frac{2}{3}, \frac{4}{3}$	0, -1	

$$\mathscr{L}_{eff} = -\frac{1}{4g_s^2}G^a_{\mu\nu}G^{a\mu\nu}$$

Vectorlike, fundamental 3-rep. =>
$$b_g^t = \Delta b_g = \frac{1}{2} \times \frac{4}{3} = \frac{2}{3}$$

Loop level interactions

$$\mathcal{L}_{\text{eff}}^{hgg} = \frac{\alpha_s}{8\pi v} \left(b_g^{\text{top}} \cos \theta - \Delta b_g \eta \sin \theta \right) h \, G_{\mu\nu}^a G^{a\mu\nu},$$
$$\mathcal{L}_{\text{eff}}^{sgg} = \frac{\alpha_s}{8\pi v} \left(\Delta b_g \eta \cos \theta + b_g^{\text{top}} \sin \theta \right) s \, G_{\mu\nu}^a G^{a\mu\nu},$$
$$\mathcal{L}_{\text{eff}}^{h\gamma\gamma} = \frac{\alpha}{8\pi v} \left(b_{\gamma}^{\text{SM}} \cos \theta - \Delta b_{\gamma} \eta \sin \theta \right) h F_{\mu\nu} F^{\mu\nu},$$
$$\mathcal{L}_{\text{eff}}^{s\gamma\gamma} = \frac{\alpha}{8\pi v} \left(\Delta b_{\gamma} \eta \cos \theta + b_{\gamma}^{\text{SM}} \sin \theta \right) s F_{\mu\nu} F^{\mu\nu},$$

$$\begin{split} M_T &= m_T + y_T f \qquad M_{\phi}^2 = m_{\phi}^2 + \frac{\kappa_{\phi}}{2} \langle S \rangle^2 \\ \eta &= y_T N_T \frac{\nu}{M_T} \\ b_{\gamma}^{\text{SM}} &\simeq -6.5 \\ b_g &= -\frac{1}{2} \left(\Delta b_g \, \eta \cos \theta + b_g^{\text{top}} \sin \theta \right), \\ b_{\gamma} &= -\frac{1}{2} \left(\Delta b_{\gamma} \, \eta \cos \theta + b_{\gamma}^{\text{SM}} \sin \theta \right). \end{split}$$

$$\Gamma(s \to hh) = \frac{\mu_{\text{eff}}^2}{32\pi m_s} \sqrt{1 - 4x_h} \sin^2 \theta$$

$$\Gamma(s \to VV) = \frac{m_s^3}{32\pi v^2} \delta_V \sqrt{1 - 4x_V} (1 - 4x_V + 12x_V^2) \sin^2 \theta$$

$$\Gamma(s \to t\bar{t}) = \frac{N_C m_s m_t^2}{8\pi v^2} (1 - 4x_t)^{3/2} \sin^2 \theta$$
$$x_i = \frac{m_i^2}{m_s^2}, \, \delta_Z = 1, \delta_W = 2$$

$$\Gamma(s \to gg) = \left(\frac{\alpha_s b_g}{4\pi v}\right)^2 \frac{2m_s^3}{\pi}$$
$$\Gamma(s \to \gamma\gamma) = \left(\frac{\alpha b_\gamma}{4\pi v}\right)^2 \frac{m_s^3}{\pi}$$

	Dirac spinor			complex scalar				
field	T	B		ϕ_{3}	ϕ_{6}	ϕ_{8}		
$SU(3)_C$	3	3		3	6	8		
Q	$\frac{2}{3}$	$-\frac{1}{3}$		$-\frac{1}{3}, -\frac{4}{3}$	$\frac{1}{3}, -\frac{2}{3}, \frac{4}{3}$	0, -1		
Δb_g	$\frac{2}{3}$	$\frac{2}{3}$		$\frac{1}{6}$	$\frac{5}{6}$	1		
Δb_{γ}	$\frac{16}{9}$	$\frac{4}{9}$		$\frac{1}{9}, \frac{16}{9}$	$\frac{2}{9}, \frac{8}{9}, \frac{32}{9}$	$0, \frac{8}{3}$		
η		$y_F N_F rac{v}{M_F}$		$\kappa_{\phi} N_{\phi} \frac{fv}{M_{\phi}^2}$				

Figure 5: The 2σ -excluded regions from the signal strength of 125 GeV Higgs. The toppartner parameters are chosen as an illustration to present the contribution from each channel.

Figure 8: The 2σ -excluded regions from $s \to \gamma \gamma$ bound in the $\sin \theta$ vs η plane for various m_s with $\mu_{\text{eff}} = 1$ TeV and $\sqrt{3}m_s^2/v$. The color is changed in increments of 300 GeV. K-factor is set to be K = 1.6.

0.5

1.0

1.5

η

2.0

2.5

3.0

0.5

1.0

η

2.0

3.0

- Di-Higgs is enhanced e.g. by a new resonance
- but needs colored particles in the 'blob' so that "gg-s" is allowed
- depending on their properties, of course, the corresponding phenomenology can be modified
- We have considered colored Dirac fermions (T, B) and Scalars (3,6,8)-representations
- (sometimes, even '**anomaly**' can show up e.g. 2.4σ excess in $bb\gamma\gamma$ with $m_s = 300$ GeV...) I do not want to mention this.

ATLAS 1807.04873, *bbγγ*

