Formation of Double Compact Stars

Xiang-Dong Li School of Astronomy and Space Science Nanjing University, Nanjing, China

In collaboration with Yong Shao, Chen Wang & Kun Jia

Compact Stars

Double Compact Star binaries

Objects	Observational appearance
NS+NS	Binary radio pulsars, GW/short GRBs/kilo-novae
NS+WD	(Millisecond) radio pulsars, Ultra-compact X-ray binaries
WD+WD	CVn, Supernovae Ia (?)
BH+BH	GW
BH+WD	47 Tuc X9 (?)
BH+NS	Binary radio pulsars (?), GW (?)

Formation of Double Compact Stars

- Dynamical interaction
 - tidal capture and exchange encounter in galactic center and globular clusters
- Isolated evolution
 - binary evolution in the galactic disk

See Belczynski, Bulik, Tauris & Nelemans 2018 for a recent review

Initial-Final Mass Function of Non-rotating Stars of Solar Composition

Woosley & Heger 2002

Initial-Final Mass Function of Non-rotating Primordial Stars (Z=0)

Woosley & Heger 2002

Mass-transferring Binary Stars

- Most massive stars are born in binary systems
- Mass transfer influences
 - Stellar evolution
 - Orbital evolution
 - High-energy radiation

Progenitor Binaries vs. Double Compact Stars

significant mass and orbital angular momentum loss

Copyright © 2009 Pearson Prentice Hall, Inc.

Common Envelope (CE) Evolution

Ivanova et al. 2013

Population Synthesis of Binary Stars and Formation of Double Compact Stars

Uncertainties in the Formation Theory

- The initial-remnant mass relation
- The common envelope evolution
- Kicks to newborn BHs and NSs

1. Which Stars Make BHs and NSs?

The Red Supergiant Problem

 Absence of type IIp supernova progenitors with mass ~17-25 M_☉ (Smartt et al. 2009)

The Initial - Remnant Mass Relation

Sukhold et al. (2016, 2018)

2. What is the Condition for Stable Mass Transfer?

The Allowed Parameter Space for Stable Mass Transfer

Mode I

rotation-dependent mass accretion

Almost no mass accreted

Mode II

half mass accreted and half mass lost

Mode III

thermal equilibrium limited mass accretion

Conservative mass transfer

3. How to Correctly Estimate the Binding Energy of the Stellar Envelope

Wang, Jia, & Li 2016

4. What are the Kick Velocity Distributions of Newborn NSs & BHs

Core collapse supernovae

- □ Inert iron core (> M_{Ch}) collapse
- Relatively high kick velocity
- Electron capture supernovae
 - Electron captures onto ²⁴Mg removes electrons (pressure support)
 - Relatively low kick velocity
- BH kick velocities high or low?

Constraints from Galactic Populations of Compact Star Binaries

- Accreting WD binaries (Cataclysmic variables)
- Accreting NS/BH binaries (X-ray binaries)
- Non-accreting NS binaries (Binary pulsars)
- Non-accreting BH binaries (LB-1-like objects?)

Clues from Be/X-ray binaries

Why Be stars in X-ray binaries have spectral types earlier than B2 (Negueruela 1998), while isolated Be stars have a spectral distribution of A0-O9 (Slettebak 1982)?

Shao & Li 2014

Clues from BH LMXBs

Wang, Jia, & Li 2016

25

Clues from BH LMXBs

Wang, Jia, & Li 2016

Clues from Double NSs

Shao & Li 2018a

Merger rate and GW Detection Rate

	Merger rate in the	Detection rate by	
	Galaxy (Myr⁻¹)	aLIGO (Myr⁻¹)	
BH/BH	~1-10	~10-70	
NS/NS	~10-30	~0.1-1	
BH/NS	~0.3-2	~0.1-1	

Can BH/PSRs be detected by FAST?

Expected number of detectable BH/PSR binaries

$S \ (M_{\odot} \mathrm{yr}^{-1})$	$_{\rm (kms^{-1})}^{\sigma_{\rm k}}$	$R_{ m birth}$ (Myr ⁻¹)	N_T	N_{PM} *	N_{FAST} *
1	50	2.7	16	0.2	1.5
	150	1.3	8	0.1	0.9
	300	0.6	3	0.04	0.3
3	50	8.0	48	0.5	4.5
	150	4.0	24	0.3	2.7
	300	1.8	10	0.1	0.9
5	50	13.3	80	0.8	7.5
	150	6.7	40	0.5	4.5
	300	3.0	17	0.2	1.5

Conclusions

- Observation: to understand the formation of double compact stars requires multi-messenger information
- Theory: it is important to reproduce both the merger rate of double compact stars and the characteristics of the Galactic populations of CVs, XRBs, double NSs, etc.