"Superfluid" neutron star dynamics: From oscillations to tidal deformation

Lap-Ming Lin

Department of Physics The Chinese University of Hong Kong

based on collaboration with Cheung-Hei Yeung

Quarks and Compact Stars 2019 26 – 28 Sep, 2019, Busan, Korea

Superfluidity and superconductivity in neutron stars

Internal temperature

Newborn neutron star ~ 10^{12} K

After a few decades $\sim 10^8$ K

Expected transition temperature for neutrons and protons to become superfluid and superconducting $\sim 10^9 \text{ K}$

Fig source: heasarc.gsfc.nasa.gov/

Could we probe the existence of nucleon superfluid from neutron star dynamics? (eg, f-mode and tidal deformability) What we need in order to model superfluid neutron stars....at least from a hydrodynamics perspective? (dirty nuclear physics ignored....Sorry!)

Minimal model: Two inter-penetrating fluids coupled through gravity and possibly entrainment effect

In general relativity, the hydrodynamics equations follows from

$$\nabla_{\alpha}T^{\alpha\beta}=0$$

But it is not enough when there are 2 or more fluids!

We need (at least) two independent number density currents:

- n^{μ} for superfluid neutrons
- p^{μ} for "protons" (protons, electrons etc)

We can form 3 scalars out of them:

$$n^2 = -n_\alpha n^\alpha$$
, $p^2 = -p_\alpha p^\alpha$, $x^2 = -p_\alpha n^\alpha$

General Relativistic Two-Fluid Formalism

 Brandon Carter and his collaborators have developed a variational formalism to study the hydrodynamics of relativistic superfluids:

The central quantity: Master function $\Lambda(n^2, p^2, x^2)$

(Take $\Lambda = -$ energy density)

The master function contains all information about the local thermodynamic state of the fluid. *It is the two-fluid analog of the equation of state.*

A general variation of the master function: (that spacetime metric fixed)

$$\Lambda(n^2, p^2, x^2) \longrightarrow \delta \Lambda = \mu_{\alpha} \delta n^{\alpha} + \chi_{\alpha} \delta p^{\alpha}$$

Chemical potential vectors:

$$\mu_{\alpha} = B n_{\alpha} + A p_{\alpha} , \quad \chi_{\alpha} = C p_{\alpha} + A n_{\alpha}$$

magnitude = neutron chemical potential magnitude = "proton" chemical potential

$$A \equiv -\frac{\partial \Lambda}{\partial x^2}$$
, $B \equiv -2\frac{\partial \Lambda}{\partial n^2}$, $C \equiv -2\frac{\partial \Lambda}{\partial p^2}$

The chemical potential vectors are the momentum canonically conjugate to the corresponding number density currents. Note that they do not parallel to the corresponding currents when $A \neq 0$ (this is the entrainment effect) ⁷

$$n^{\alpha} \nabla_{[\alpha} \mu_{\beta]} = 0$$
 , $p^{\alpha} \nabla_{[\alpha} \chi_{\beta]} = 0$

• First general relativistic two-fluid model for (Toy) superfluid neutron stars and oscillation-mode calculation was studied in 1999.

Two-fluid analog of polytropic model:

Two different f-modes in superfluid neutron stars

Ordinary f-mode (f)

Superfluid f-mode (f)

Lagrangian variations in number densities

The tidal deformability of superfluid neutron stars based on the GR two-fluid formalism has recently been studied by Char and Datta (2018).

	both one fluid and two fluid approach for GMT					parameter set.
	Mass (M _☉)	$k_2^{1-\text{fluid}}$	$k_2^{2-\text{fluid}}$	$\Lambda_T^{1 ext{-fluid}}$	$\Lambda_T^{2 ext{-fluid}}$	$\Delta \Lambda_T / \Lambda_T^{1-\mathrm{fluid}} \ (\%)$
Using two-fluid approach	1.0	0.133	0.1874	5899.5	6141	4.09
can change the Love number	1.1	0.1273	0.1731	3577.9	3755.1	4.95
	1.2	0.1207	0.1597	2206.3	2342.9	6.19
by up to 10% for massive stars	51.3	0.1136	0.1468	1399.6	1495.4	6.84
	1.4	0.106	0.1343	903.9	971	7.42
	1.5	0.0982	0.1223	591.3	639.3	8.11
	1.6	0.0902	0.1107	390.2	424.7	8.84
	1.7	0.0822	0.0995	258.9	282.9	9.26
	1.8	0.0742	0.0887	171.8	189	10.01
	1.9	0.0661	0.0784	113.4	125.9	11.02
	2.0	0.058	0.0681	73.9	82.3	11.36

TABLE III. Comparison of Love numbers calculated using both one fluid and two fluid approach for GM1 parameter set.

Table taken from Char and Datta (2018)

Why f-mode and tidal deformability?

Ordinary fluid neutron stars: f-mode-Love universal relations

[Chan, Sham, Leung, and LML (2014)] Subscript = spherical harmonic index l

13

"Universal" relation in binary neutron star simulations

Bernuzzi, Dietrich, and Nagar (2015)

Does the f-mode-Love universal relation still hold for superfluid (two-fluid) neutron stars?

Wait....we have two different f-modes

fo = Ordinary f-mode (co-moving motion)
fs = Superfluid f-mode (counter-moving motion)

• Our recent work:

We study the f-mode oscillations and tidal deformability based on a toy model master function (EOS)

• Entrainment effect can break the universality

What's next?

- Try more realistic EOS and entrainment models...
- Try more realistic multi-layer structure....

Summary

 We have extended the study of f-mode-Love universal relation to superfluid neutron stars (....so far only tested with simple two-fluid "polytropic" EOS)

