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Superfluidity and superconductivity in neutron stars

Internal temperature Ellfu]e?ET.os;Ilere: Outer crust: ions, electrons

Inner crust: ion lattice, soaked
in superfluid neutrons (SFn)

Outer core liquid: e~, -, Sk,
perconductlng protons
Inner core: unknown
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Newborn neutron star ~ 10* K

After a few decades ~ 10% K

~2X nuclear density
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“neutron drip”

Expected transition temperature

for neutrons and protons to became

superfluid and superconducting
~10°K

Fig source: heasarc.gsfc.nasa.gov/
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Could we probe the existence of nucleon superfluid
from neutron star dynamics?
(eg, f-mode and tidal deformability)



What we need in order to model superfluid neutron
stars....at least from a hydrodynamics perspective?
(dirty nuclear physics ignored....Sorry!)

~ Superfluid neutrons
coupled through
entrainment effect

Superconducting protbns \:Electrons, nuclei...
Charged particles locked together

Minimal model: Two inter-penetrating fluids coupled through
gravity and possibly entrainment effect 4



In general relativity, the hydrodynamics equations follows from
V. T7=0
But it is not enough when there are 2 or more fluids!

We need (at least) two independent number density currents:

n"  for superfluid neutrons

p°  for “protons”

(protons, electrons etc)

We can form 3 scalars out of them:

a

— o 2__ o 2 _
n‘=—n,n" , p’=—p,p* , X =—p,n



General Relativistic Two-Fluid Formalism

* Brandon Carter and his collaborators have developed a
variational formalism to study the hydrodynamics of relativistic
superfluids:

The central quantity: Master function A (n®, p°, x°)

(Take A=-— energy density )

2__ a 2 __ o 2= “
=-n,n , p=—p,p , XE—p,n
/ \
n= neutr_on number p = proton number
density density

The master function contains all information about the local
thermodynamic state of the fluid.
It is the two-fluid analog of the equation of state.



A general variation of the master function:
(that spacetime metric fixed)

A<n23p2’xz) " 6A:Ma6na+Xa6pa

Chemical potential vectors:

S

magnitude = neutron
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AN

magnitude = “proton”

chemical potential chemical potential
5—6—/\2 , BE—Z(’B—A2 , =—2 81\2
0 X on op

The chemical potential vectors are the momentum canonically
conjugate to the corresponding number density currents.

Note that they do not parallel to the corresponding currents when
A # 0 (this is the entrainment effect) 7



One-fluid vs Two-fluid
G,=8nT

/\
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T*=(p+P)u“u"+Pg""
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* First general relativistic two-fluid model for (Toy) superfluid
neutron stars and oscillation-mode calculation was studied
In 1999.

Two-fluid analog of polytropic model:
1.5 r | v | ! | ' |

E—mnn—(5nnB—mpp—(5ppB

(serves as EOS input)
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Comer, Langlois, LML (1999) r/R 9



* Two different f-modes in superfluid neutron stars

Ordinary f-mode (f ) Superfluid f-mode (f)
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* The tidal deformability of superfluid neutron stars based on
the GR two-fluid formalism has recently been studied by

Char and Datta (2018).

TABLE III. Comparison of Love numbers calculated using

both one fluid and two fluid approach for GMI1 parameter set.

Mass AAg /A7

(Nl@} k]z—ﬂuid k%—ﬂuid A!’"—ﬂuid AET—ﬂuid %)
Using two-fluid approach L0 0.033  0.1874 58995 6141 4.09

1.1 0.1273  0.1731 35779  3755.1 4.95
can Change the Love n.umber 1.2 0.1207  0.1597  2206.3 23429 6.19
by up to 10% for massive starsis 01136 01468 13996  1495.4 6.34

1.4 0.106 (0.1343 903.9 971 742

1.5 0.0982  0.1223 591.3 639.3 8.11

1.6 0.0902  0.1107 390.2 4247 8.84

1.7 0.0822  0.0995 258.9 282.9 9.26

1.8 0.0742  0.0887 171.8 189 10.01

1.9 0.0661  0.0784 113.4 125.9 11.02

2.0 0.058 0.0681 73.9 82.3 11.36

Table taken from Char and Datta (2018)
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Why f-mode and tidal deformability?
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Ordinary fluid neutron stars: f-mode-Love universal relations
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“Universal” relation in binary neutron star simulations
Bernuzzi, Dietrich, and Nagar (2015)
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Does the f-mode-Love universal relation still hold
for superfluid (two-fluid) neutron stars?

Wait....we have two different f-modes

fo = Ordinary f-mode (co-moving motion)
fs = Superfluid f-mode (counter-moving motion)
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* Our recent work:
We study the f-mode oscillations and tidal deformability
based on a toy model master function (EOS)

=—m,n—o, ”B_mpp_gp p (data based on 6 different
sets of “EOS” parameters)
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* Entrainment effect can break the universality

fs-mode universal
relation (no entrainment)
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Densities (fm )
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What’s next?

* Try more realistic EOS and entrainment models...
* Try more realistic multi-layer structure....

“Realistic” structure of a
superfluid neutron star
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Summary

* We have extended the study of f-mode-Love universal
relation to superfluid neutron stars
(....so far only tested with simple two-fluid “polytropic” EOS)

 We found that the entramment effect
can break the fs-mode -
universal relation Y Superﬂwd fs-mode * 7zt
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