## Unified EOS and pasta phases for neutron stars

Hong Shen Nankai University, Tianjin, China 中虹 南開大学 天津 中国

#### Collaborators:

| Jinniu Hu   | Nankai University, Tianjin, China |
|-------------|-----------------------------------|
| Shishao Bao | Shanxi Normal University, China   |
| Xuhao Wu    | Nankai University, Tianjin, China |
| Fan Ji      | Nankai University, Tianjin, China |



PHYS.NANKAI UNIVERSITY

# Contents

- Introduction
- Unified EOS for neutron stars
- Nuclear pasta phases
- Hadron-quark pasta phases
- New EOS table for supernovae
- > Summary

## Introduction



binary neutron star merger

# **Classification of EOS**

EOS for supernovae

temperature (T):
 0 ~ 100 MeV
proton fraction (Yp):
 0 ~ 0.6
construction:
nonuniform + uniform

## EOS for neutron stars

temperature (T): T = 0 proton fraction (Yp): β equilibrium construction: crusts + core

# EOS for supernovae

## single nucleus approximation (SNA)

J. M. Lattimer and F. D. Swesty, Nucl. Phys. A 535, 331 (1991) liquid-drop model with Skyrme force

H. Shen, H. Toki, K. Oyamatsu, K. Sumiyoshi, Prog. Theor. Phys. 100, 1013 (1998)

H. Shen, H. Toki, K. Oyamatsu, K. Sumiyoshi, Astrophys. J. Suppl. 197, 20 (2011)

#### Thomas-Fermi with RMF (TM1)

H. Togashi, K. Nakazato, Y. Takehara, S. Yamamuro, H. Suzuki, M. Takano, NPA 961 (2017) 78

Thomas-Fermi with realistic nuclear forces

#### nuclear statistical equilibrium (NSE)

M. Hempel and J. Schaffner-Bielich, Nucl. Phys. A 837, 210 (2010)

A.S. Botvina, I.N. Mishustin, Nucl. Phys. A 843, 98 (2010)

S. Furusawa, K. Sumiyoshi, S. Yamada, H. Suzuki, Astrophys. J. 772, 95 (2013)

S. Typel, G. Ropke, T. Klahn, D. Blaschke, H. Wolter, Phys. Rev. C 81, 015803 (2010)

G. Shen, C. J. Horowitz, E. O'Connor, Phys. Rev. C 83, 065808 (2011)

:

# EOS for neutron stars T = 0, $\rho \sim 10^7 - 10^{15}$ g/cm<sup>3</sup>



works by Heiselberg, Maruyama, Tatsumi, Endo, Yasutake, Weber, ...

## EOS for neutron stars

#### unified EOS: crusts + core (consistent)

F. Douchin and P. Haensel, AA 380, 151 (2001) liquid-drop model with Skyrme force

F. Fantina, N. Chamel, J. M. Pearson, and S. Goriely, AA 559, A128 (2013)

B. K. Sharma, M. Centelles, X. Vinas, M. Baldo, G. F. Burgio, AA 584, A103 (2015)

#### Thomas-Fermi with nonrelativistic nuclear models

H. Shen, PRC 65, 035802 (2002)

T. Miyatsu, S. Yamamuro, K. Nakazato, ApJ 777, 4 (2013)

M. Fortin, C. Providencia, Ad. R. Raduta et al., PRC 94, 035804 (2016)

Thomas-Fermi with relativistic nuclear models

nonunified EOS: crusts + core (inconsistent)

**BBP EOS** NV EOS DH EOS + core EOS

# Models used for EOS



RMF (relativistic Mean Field)



RMF + Thomas-Fermi approximation

# **Thomas-Fermi** approximation



\* Wigner-Seitz approximation





$$E = E_{bulk} + E_{surface} + E_{Coulomb} + E_{Lattice} + E_{electron}$$



## RMF model

\* generated RMF models with different L by turning  $g_{o}$  and  $\Lambda_{v}$ 

$$\mathcal{L}_{\text{RMF}} = \bar{\psi} \left[ i \gamma_{\mu} \partial^{\mu} - (M + g_{\sigma} \sigma) - \left( g_{\omega} \omega^{\mu} + \frac{g_{\rho}}{2} \tau_{a} \rho^{a \mu} \right) \gamma_{\mu} \right] \psi$$

$$+ \frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma - \frac{1}{2} m_{\sigma}^{2} \sigma^{2} - \frac{1}{3} g_{2} \sigma^{3} - \frac{1}{4} g_{3} \sigma^{4}$$

$$- \frac{1}{4} W_{\mu\nu} W^{\mu\nu} + \frac{1}{2} m_{\omega}^{2} \omega_{\mu} \omega^{\mu} + \frac{1}{4} c_{3} (\omega_{\mu} \omega^{\mu})^{2}$$

$$- \frac{1}{4} R^{a}_{\mu\nu} R^{a \mu\nu} + \frac{1}{2} m_{\rho}^{2} \rho^{a}_{\mu} \rho^{a \mu} + \Lambda_{v} \left( g_{\omega}^{2} \omega_{\mu} \omega^{\mu} \right) \left( g_{\rho}^{2} \rho^{a}_{\mu} \rho^{a \mu} \right)$$

#### \* all models have the same isoscalar saturation properties

TABLE II. Parameters  $g_{\rho}$  and  $\Lambda_v$  generated from the TM1 model for different slope L at saturation density  $n_0$  with fixed symmetry energy  $E_{\text{sym}} = 28.05 \text{ MeV}$  at  $n_{\text{fix}} = 0.11 \text{ fm}^{-3}$ . The last two lines show the symmetry energy at saturation density,  $E_{\text{sym}}(n_0)$ , and the neutron-skin thickness of <sup>208</sup>Pb,  $\Delta r_{np}$ . The original TM1 model has L = 110.8 MeV.

| L (MeV)                  | 40.0    | 50.0    | 60.0    | 70.0    | 80.0    | 90.0   | 100.0  | 110.8  |
|--------------------------|---------|---------|---------|---------|---------|--------|--------|--------|
| g <sub>p</sub>           | 13.9714 | 12.2413 | 11.2610 | 10.6142 | 10.1484 | 9.7933 | 9.5114 | 9.2644 |
| $\Lambda_{\rm v}$        | 0.0429  | 0.0327  | 0.0248  | 0.0182  | 0.0128  | 0.0080 | 0.0039 | 0.0000 |
| $E_{\rm sym}(n_0)$ (MeV) | 31.38   | 32.39   | 33.29   | 34.11   | 34.86   | 35.56  | 36.22  | 36.89  |
| $\Delta r_{np}$ (fm)     | 0.1574  | 0.1886  | 0.2103  | 0.2268  | 0.2402  | 0.2514 | 0.2609 | 0.2699 |

S. S. Bao, J. N. Hu, Z. W. Zhang, H. Shen, Phys. Rev. C 90 (2014) 045802

## Symmetry energy effects

\* energy per particle W as function of n and  $\alpha = \frac{n_n - n_p}{n_n}$ n  $w = w_0 + \frac{K_0}{18n_0^2}(n - n_0)^2 + \left[S_0 + \frac{L}{3n_0}(n - n_0)\right]\alpha^2$ symmetry energy slope  $L = 3n_0 \left[ \frac{\partial E_{\text{sym}}(n_b)}{\partial n_b} \right]_{n_b = n_b}$ 80 TM1 60



Nuclear pasta phases

crust-core transition

\* spinodal instability (no surface and Coulomb) determined by the curvature of the free energy

\* **bulk calculation (no surface and Coulomb)** *phase equilibrium determined by the Gibbs conditions* 

\* coexisting phases (CP) (surface and Coulomb perturbatively) phase equilibrium determined by the Gibbs conditions

\* compressible liquid-drop (CLD) (minimization of free energy) phase equilibrium determined by minimization

\* Thomas-Fermi (TF) (realistic description)

# Methods for pasta phases



perturbatively Coulomb and surface energies se

self-consistently

## Symmetry energy $\leftrightarrow$ pasta phases, crust-core



## Phase diagram of inner crust (TF)

![](_page_14_Figure_1.jpeg)

S. S. Bao, H. Shen, Phys. Rev. C 91, 015807 (2015)

#### smaller L corresponds to more pasta phases smaller L corresponds to larger crust-core transition density

### Pasta phase properties

![](_page_15_Figure_1.jpeg)

### Distributions of neutrons and protons

![](_page_16_Figure_1.jpeg)

#### Crust-core transition

![](_page_17_Figure_1.jpeg)

## Neutron stars with unified EOS

![](_page_18_Figure_1.jpeg)

F. Ji, S. S. Bao, J. N. Hu, H. Shen, to appear in PRC

smaller L corresponds to smaller R

## symmetry energy and neutron stars

![](_page_19_Figure_1.jpeg)

M. Oertel, M. Hempel, T. Klähn, S. Typel, Rev. Mod. Phys. 89, 015007 (2017)

smaller L corresponds to smaller R

## Hadron-quark psata phases

![](_page_20_Figure_1.jpeg)

W. M. Spinella, F. Weber, G. A. Contrera, M. G. Orsaria, EPJA 52 (2016) 61

+

hadronic phase

quark phase

Brueckner-Hartree-Fock Relativistic mean-field chiral effective field : MIT bag model 2-flavor NJL model <u>3-flavor NJL model</u>

:

## Hadron-quark psata phases

## NJL model

$$\mathcal{L}_{\text{NJL}} = \bar{q} \left( i \gamma_{\mu} \partial^{\mu} - m^{0} \right) q$$
  
+  $G_{S} \sum_{a=0}^{8} \left[ \left( \bar{q} \lambda_{a} q \right)^{2} + \left( \bar{q} i \gamma_{5} \lambda_{a} q \right)^{2} \right]$   
-  $K \left\{ \det \left[ \bar{q} \left( 1 + \gamma_{5} \right) q \right] + \det \left[ \bar{q} \left( 1 - \gamma_{5} \right) q \right] \right\}$   
-  $\underline{G_{V}} \sum_{a=0}^{8} \left[ \left( \bar{q} \gamma^{\mu} \lambda_{a} q \right)^{2} + \left( \bar{q} \gamma^{\mu} \gamma_{5} \lambda_{a} q \right)^{2} \right],$ 

Gap equation

$$m_i^* = m_i^0 - 4G_S \langle \bar{q}_i q_i \rangle + 2K \langle \bar{q}_j q_j \rangle \langle \bar{q}_k q_k \rangle$$

Hadron-quark pasta phases

hadron-quark mixed phase

$$\varepsilon_{\rm MP} = u\varepsilon_{\rm QP} + (1-u)\varepsilon_{\rm HP} + \varepsilon_{\rm surf} + \varepsilon_{\rm Coul}$$

![](_page_22_Figure_3.jpeg)

## Hadron-quark pasta phases

\* Gibbs construction (no surface and Coulomb) surface tension:  $\sigma = 0 \rightarrow \varepsilon_{surf} = 2\varepsilon_{Coul} = 0$ 

$$P_{\rm HP} = P_{\rm QP}, \quad \mu_n = \mu_u + 2\mu_d, \quad \mu_e^{\rm HP} = \mu_e^{\rm QP}$$

\* Maxwell construction (no surface and Coulomb) surface tension: large  $\sigma \rightarrow$  local charge neutrality  $\rightarrow \varepsilon_{surf} = 2\varepsilon_{Coul} = 0$ 

$$P_{\rm HP} = P_{\rm QP}, \quad \mu_n = \mu_u + 2\mu_d, \quad \mu_e^{\rm HP} \neq \mu_e^{\rm QP}$$

- \* coexisting phases (CP) (surface and Coulomb perturbatively) phase equilibrium determined by the Gibbs conditions
- \* energy minimization (EM) (surface and Coulomb included in EM) phase equilibrium determined by energy minimization

Hadron-quark psata phases

![](_page_24_Figure_1.jpeg)

#### energy densities for pasta phases

X. H. Wu, H. Shen, Phys. Rev. C 99, 065802 (2019)

## Hadron-quark psata phases

![](_page_25_Figure_1.jpeg)

density ranges of pasta phases depend on  $\boldsymbol{\sigma}$ 

## EOS with quarks

![](_page_26_Figure_1.jpeg)

## New EOS table for supernovae

http://my.nankai.edu.cn/wlxy/sh\_en/list.htm

#### Homepage of EOS tables

| version | model               | main table   | table for T=0 | table for Yp=0 |
|---------|---------------------|--------------|---------------|----------------|
| EOS1    | TM1 (1998) n        | eos1.tab.gz  | eos1.t00.gz   | eos1.yp0.gz    |
| EOS2    | TM1 (2011) n        | eos2.tab.zip | eos2.t00.zip  | eos2.yp0.zip   |
| EOS3    | TM1 (2011) n+Lambda | eos3.tab.zip | eos3.t00.zip  | eos3.yp0.zip   |
| EOS4    | TM1e (2019) n       | eos4.tab.zip | eos4.t00.zip  | eos4.yp0.zip   |

#### EOS4

nuclear interaction: extended TM1 model (TM1e) with L=40 nonuniform matter: Thomas-Fermi approximation ranges and grids: the same as EOS2

## New EOS table for supernovae

![](_page_28_Figure_1.jpeg)

effects of symmetry energy on: binary neutron star merger ...

- Unified EOS is important for neutron stars
- Pasta phases in the inner crust depend on L
- Hadron-quark pasta phases may exist
- Neutron-star radius is sensitive to L
- New EOS table is available