Inhomogeneous Nuclear Matter in Strong Magnetic Field

Toshiki MARUYAMA (JAEA) Cheng-Jun XIA (Ningbo IT, Zhejiang Univ) Nobutoshi YASUTAKE (Chiba IT) Hajime Sotani (NAOJ) Toshitaka TATSUMI (Kyoto Univ)

Possible QCD phase diagram

Density ⇒

Possible QCD phase diagram

Density ⇒

The area of mixed phase in rho-T plane is considerably large.

 \rightarrow to know the structure of neutron stars, need to know

The EOS of mixed phase

Maxwell construction applies only to the most simple cases with a single chemical component.

Nuclear matter in compact stars:

- chemically composite \rightarrow Maxwell const. not satisfy Gibbs cond.
- charged phases \rightarrow balance between Coulomb & surface tension \rightarrow geometrical structure (pasta)
	- \rightarrow different from bulk Gibbs calculation
- Possibility of strong magnetic field

Our goal: inhomogeneous matter

- from low-density nuclear matter to high-density quark matter
- fully 3-dimensional structure
- with and without strong magnetic field

Low-density nuclear matter (Supernova & Neutron star crust)

RMF + Thomas-Fermi model

Nucleons interact with each other via coupling with σ , ω , ρ mesons. Simple but realistic enough.

Saturation property of symmetric nuclear matter : minimum energy $E/A \approx -16$ MeV at $\rho_B \approx 0.16$ fm⁻³.

Details of the model

 $11'$ $\begin{bmatrix} \sqrt{P} & +m_i(r) & -\sqrt{P_{Fi}(r)} & +m_i(r) \end{bmatrix}$ $(1 + \exp[(p - (\mu_e - V_C(r)))/T])$ $2 \pm m^2 (n)^2$ $\sqrt{n} (n)^2 + m^2 (n)^2$ $\left\{ f_{i=n,\, p}(\boldsymbol{r};\boldsymbol{p},\mu_i)=\right\vert 1+\exp\right\vert \left\vert \sqrt{p^2+m_i^+(\boldsymbol{r})^2}-\sqrt{p_{Fi}^-(\boldsymbol{r})^2+m_i^-(\boldsymbol{r})^2}\right\vert /T\mid \mid \mid \cdot \rangle,$ 1 3 $_{a,e,\nu}$ (**r**) = 2 $\int_0^{\infty} \frac{e^{i\omega t}P}{(2\pi)^3} f_i(r; p, \mu_i),$ $f_e(r; p, \mu_e) = (1 + \exp[(p - (\mu_e - V_C(r)))/T])$, For Fermions, we employ Thomas-Fermi approx. with finit e *T* $\sum_{i=p,n,e,\nu}^{n}(\bm{r})=2\int_{0}^{\infty}\frac{P}{(2\pi)^{3}}f_{i}(\bm{r};\bm{p},\mu_{i})$ d^3p $\rho_{i=p,n,e,V}(\boldsymbol{r})=2\mathbf{I}$ $\frac{1}{\sqrt{2\pi}}\int_i(\boldsymbol{r};\boldsymbol{p},\mu_i)$ π $\mu_n = \sqrt{p_{Fn}(r)^2 + m_N^*(r)^2}$ = − ∞ $= p, n, e, v(r) = 2 \int_0^{\pi} \frac{a^2 p}{(2\pi)^3} f_i(r; \bm{p})$ $=\left(1+\exp\left[\left(\sqrt{p^2+m_i^*(\mathbf{r})^2}-\sqrt{p_{Fi}(\mathbf{r})^2+m_i^*(\mathbf{r})^2}\right)/T\right]\right)$ $(r; p, \mu_e) = (1 + \exp[(p - (\mu_e - V_C(r)))/T]$ \bf{r} ; \bf{p} , μ _i) = | 1+exp|| $\sqrt{p^2 + m_i(r)^2} - \sqrt{p_{Fi}(r)^2 + m_i(r)}$ $\mu_n = \sqrt{p_{Fn}(r)^2 + m_N^2(r)^2} + g_{\omega N} \omega_0(r) - g_{\rho N} R_0(r), \qquad \mu_n = \mu_p + \mu_e,$ 2 $m^*(2)$ $\mu_p = \sqrt{p_{Fp}(\mathbf{r})^2 + m_N(\mathbf{r})^2 + g_{\omega N} a_0(\mathbf{r}) + g_{\rho N} R_0(\mathbf{r}) - V_C(\mathbf{r})},$ $\int d^3r \left[\rho_p(\mathbf{r}) + \rho_n(\mathbf{r}) \right] = \text{const}, \qquad \int d^3r \rho_p(\mathbf{r}) = \int d^3r \rho_e(\mathbf{r}),$ $^{2}\sigma(r) + m_{\sigma}^{2}\sigma(r) = g_{\sigma N}(\rho_{n}^{(s)}(r) + \rho_{n}^{(s)}(r)) - \frac{dU}{dr}(r),$ $2a(n+m)^2$ $-\nabla^2 \omega_0(\mathbf{r}) + m_\omega^2 \omega_0(\mathbf{r}) = g_{\omega N}(\rho_p(\mathbf{r}) + \rho_n(\mathbf{r})),$ $2 p (r) + m^2$ $-\nabla^2 R_0(\mathbf{r}) + m_\rho^2 R_0(\mathbf{r}) = g_{\rho N}(\rho_p(\mathbf{r}) - \rho_n(\mathbf{r})),$ $^{2}V_{\alpha}(\mathbf{r}) = 4\pi a^{2}$ $\nabla^2 V_C(\mathbf{r}) = 4\pi e^2 \rho_{\rm ch}(\mathbf{r}),$ From $\partial_{\mu} \left[\partial L / \partial (\partial_{\mu} \phi) \right] - \partial L / \partial \phi = 0, \$ $(\phi = \sigma, \omega_{\mu}, R_{\mu}, V_{\mu}, \Psi),$ $N \vee P_n$ \vee \vee \vee \vee \vee \vee \vee *dU* $m_{\sigma}^2 \sigma(\mathbf{r}) = g_{\sigma N}(\rho_n^{(s)}(\mathbf{r}) + \rho_p^{(s)}(\mathbf{r})) - \frac{a}{d}$ $\sigma(\mathbf{r}) + m_{\sigma}^{\perp} \sigma(\mathbf{r}) = g_{\sigma N}(\rho_n^{\infty}(\mathbf{r}) + \rho_p^{\infty}(\mathbf{r})) - \frac{1}{d\sigma}$ $-\nabla^2 \sigma(r) + m^2 \sigma(r) = g_{\sigma N}(\rho_n^{(s)}(r) + \rho_n^{(s)}(r)) - \frac{dv}{dr}$ * $a = 3 \cdot 10^{11} \Omega = 3 \cdot 10^{11} \frac{r}{r}h = e^{\frac{1}{1} + \tau_3}$ $L_M = \frac{1}{2} (\partial_\mu \sigma)^2 - \frac{1}{2} m_\sigma^2 \sigma^2 - U(\sigma) - \frac{1}{4} \omega_{\mu\nu} \omega^{\mu\nu} + \frac{1}{2} m_\omega^2 \omega_\mu \omega^\mu - \frac{1}{4} \frac{\Gamma}{R_{\mu\nu}} \frac{\Gamma}{R^{\mu\nu}} + \frac{1}{2} m_\rho^2 R_\mu R^\mu,$ * $L = L_N + L_M + L_e,$ $L_N = \overline{\Psi} \left[i \gamma^\mu \partial_\mu - m_N^* - g_{\omega N} \gamma^\mu \omega_\mu - g_{\rho N} \gamma^\mu \tau b_\mu - e^{\frac{1}{2} i \omega^2} \gamma^\mu V \right]$ RMF Lagrangi n a $L_e = -\frac{1}{4} V_{\mu\nu} V^{\mu\nu} + \overline{\Psi}_e \left[i\gamma^\mu \partial_\mu - m_e + e\gamma^\mu V_\mu \right] \Psi_e, \qquad (F_{\mu\nu} \equiv \partial_\mu F_\nu - \partial_\nu F_\mu)$ $m_N^* = m_N - g_{\sigma N} \sigma$, $U(\sigma) = \frac{1}{3} b m_N (g_{\sigma N} \sigma)^3 + \frac{1}{4} c (g_{\sigma N} \sigma)^4$ μ \cdots ^N \sim ω _N ω _D \cdots _p \cdots _p \cdots _p \cdots \cdots \cdots $=\frac{1}{2}(\partial_{\mu}\sigma)^{2}-\frac{1}{2}m_{\sigma}^{2}\sigma^{2}-U(\sigma)-\frac{1}{4}\omega_{\mu\nu}\omega^{\mu\nu}+\frac{1}{2}m_{\omega}^{2}\omega_{\mu}\omega^{\mu}-\frac{1}{4}R_{\mu\nu}R^{\mu\nu}+\frac{1}{2}m_{\rho}^{2}R_{\mu\nu}$ $=-\frac{1}{4}V_{\mu\nu}V^{\mu\nu}+\overline{\Psi}_e\left[i\gamma^{\mu}\partial_{\mu}-m_e+e\gamma^{\mu}V_{\mu}\right]\Psi_e, \qquad (F_{\mu\nu}\equiv\partial_{\mu}F_{\nu}-\partial_{\nu}F_{\mu})$ $\int \int u^{\mu} \partial_{\mu} - m_N^* - g_{\rho N} \gamma^{\mu} \omega_{\mu} - g_{\rho N} \gamma^{\mu} \overline{t}_{\rho \mu}^{\dagger} - e^{\frac{1 + \tau_3}{2}} \gamma^{\mu}$ $=\overline{\Psi}\left[i\gamma^{\mu}\partial_{\mu}-m_{N}^{*}-g_{\omega N}\gamma^{\mu}\omega_{\mu}-g_{\rho N}\gamma^{\mu}\frac{r}{\tau} \frac{r}{b_{\mu}}-e\frac{1+\tau_{3}}{2}\gamma^{\mu}V_{\mu}\right]\Psi$ $\frac{r}{2}$ r_{rr} 1 $\frac{r}{2}$ r Nucleons interact with each other via coupling with σ , ω , ρ mesons. Simple but feasible!

V V V

1

−

Result of fully 3D calculation

[**Phys.Lett. B713 (2012) 284**]

EOS (full 3D) is different from that of uniform matter. The result is similar to that of the conventional studies with Wigner-Seitz approx.

Novelty:

fcc lattice of droplets can be the ground state at some density. \leftarrow Not the Coulomb interaction among "point particles" but the change of the droplet size is relevant.

4. low-density nuclear matter with magnetic field (Neutron star crust)

RMF + Thomas-Fermi Model with Magnetic Field

De Lima, et al, PRC88, 035804, C.J. Xia et al, in preparation Thomas-Fermi in parallel direction and Landau level in perpendicular direction for charged particle

We have added anomalous magnetic moments of *p* and *n*.

$$
L = \sum_{i} \Psi_{i} [i\gamma^{\mu} \partial_{\mu} - m_{i} - g_{\sigma i} \sigma - g_{\omega i} \gamma^{\mu} \omega_{\mu} - g_{\rho i} \gamma^{\mu} \tau \cdot \rho_{\mu} - q_{i} \gamma^{\mu} A_{\mu}] \Psi_{i}
$$

+ $\frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma - \frac{1}{2} m_{\sigma} \sigma^{2} - U(\sigma) - \frac{1}{4} \omega_{\mu \nu} \omega^{\mu \nu} + \frac{1}{2} m_{\omega}^{2} \omega_{\mu} \omega^{\mu} - \frac{1}{4} \rho_{\mu \nu} \rho^{\mu \nu}$
+ $\frac{1}{2} m_{\rho}^{2} \rho_{\mu} \rho^{\mu} - \frac{1}{4} A_{\mu \nu} A^{\mu \nu} + L_{AMM}$

$$
L_{AMM} \equiv -\frac{1}{2} \sum_{i} \overline{\Psi_{i}} \mu_{N} \kappa_{i} \frac{i}{2} [\gamma^{\mu}, \gamma^{\nu}] A_{\mu\nu} \Psi_{i}
$$

$$
\kappa_{n} = 1.91, \qquad \kappa_{p} = 1.79
$$

For charged particles, momenta are quantized as

$$
p_{\perp}^2 = 2n|q|B, \qquad n = l + \frac{1}{2} - \frac{s}{2}\frac{q}{|q|}
$$

Single particle energy

$$
\varepsilon_{i} = g_{\omega_{i}}\omega_{0} + g_{\rho_{i}}R_{0} + q_{i}A_{0} + \sqrt{p_{\parallel}^{2} + m_{i}^{*2}}
$$

Change of the integral by inclusion of *B* is

$$
2\int \frac{d^3p}{(2\pi)^3} \to \frac{|q_i|B}{2\pi^2} \sum_{s=\pm 1} \sum_{l}^{n \le n_i^{\max}} \int_0^{\nu_i} dp_{\parallel}
$$

$$
n_i^{\max} \equiv int \left[\frac{\left(E_i^f + s \mu_N \kappa_i B \right)^2 - m_i^{*2}}{2|q_i|B} \right]
$$

$$
v_i(n,s) \equiv \sqrt{\left(E_i^f\right)^2 - \bar{m}_i(n,s)^2}, \ \ \bar{m}_i = \sqrt{{m_i^*}^2 + 2n|q_i|B} - s\mu_N \kappa_i B
$$

Uniform matter

Magnetization against *B*

Proton fraction **Binding energy**

Behavior similar to inhomogeneous nuclear matter

Proton fraction

Energy per baryon

3D calculation at *ρ* = 0.01 fm⁻³, *Y_p*= 0.5, and *B*₀ = 10¹⁷ G

QCS2019

3D calculation at *ρ* = 0.016 fm⁻³, *Y_p*= 0.5, and *B*₀ = 10¹⁷ G

Summary

Maxwell construction applies only to the most simple cases with a single chemical component.

Nuclear matter in compact stars:

- chemically composite \rightarrow Maxwell const. not satisfy Gibbs cond.
- charged phases \rightarrow balance between Coulomb & surface tension \rightarrow geometrical structure (pasta) \rightarrow different from bulk Gibbs calculation
- Possibility of strong magnetic field

Our goal: inhomogeneous matter

- from low-density nuclear matter to high-density quark matter
- fully 3-dimensional structure
- with and without strong magnetic field

QCS2019 21

Wigner-Seitz approx is often used. But we have performed 3D calc.

To **equilibrate** $\mu_i(r)$ in r and **among species** i $\mathsf{remove}\,r$ – dependence $\mu_i(r) = \mu_i$ | satisfy chemical balances $\mu_n = \mu_p + \mu_e$ #

 Divide whole space into equivalent and neutral cubic cells with **periodic boundary conditions**

Distribute fermions (p, n, e) randomly but $\int d^3 r \rho_i(r) =$ given

Solve field equations for $\sigma(r)$, $\omega_0(r)$, $\rho_0(r)$, $V_{\text{Coul}}(r)$

Calculate local chemical potentials of fermions $\mu_i(r)$

$$
\mu_i(r) = V_i(r) + \sqrt{m_i^2 + p_{F_i}(r)^2}
$$

Adjust densities $\rho_i(r)$ as $\mu_i(r_1) > \mu_i(r_2) \rightarrow \rho_i(r_1) \cdot \rho_i(r_2)$ $\mu_n(r) > \mu_p(r) + \mu_e \rightarrow \rho_n(r) \downarrow$, $\rho_p(r) \uparrow$ beta equil.

repeat until ⋕

Uniform electron, $T = 0$

$$
\rho_e = 2 \frac{4\pi (p_{Fe}/2\pi h)^3}{3} = \frac{p_{Fe}^3}{3\pi^2 h^3} = \frac{\mu_e^3}{3\pi^2 h^3}
$$

$$
\mu_e = p_{Fe} = (3\pi^2 \rho_e)^{1/3} h \quad \text{chemical potential}
$$

$$
\mathcal{E}_e = \int_0^{p_F} \frac{d^3 p}{(2\pi)^3} p = \frac{p_{Fe}^4}{4\pi^2} = \frac{(3\pi^2 \rho_e)^{4/3}}{4\pi^2} \quad \text{energy density}
$$

Uniform nucleon, $T = 0$

$$
\rho_N = 2 \frac{4\pi (p_{FN}/2\pi h)^3}{3} = \frac{p_{FN}^3}{3\pi^2 h^3} \qquad (N = p, n)
$$

\n
$$
\mu_N = \sqrt{p_{FN}^2 + m_N^2} + U_N = \sqrt{(3\pi^2 h^3 \rho_N)^{2/3} + m_N^2} + U_N
$$
chemical potential
\n
$$
\mathcal{E}_N = 2 \int_0^{p_F} \frac{d^3 p}{(2\pi h)^3} \left[\sqrt{p^2 + m_N^2} + U_N \right]
$$
 energy density
\n
$$
\approx 2 \int_0^{p_F} \frac{d^3 p}{(2\pi h)^3} \left[m_N + \frac{p^2}{2m_N} + U_N \right]
$$
 non-relativistic approx
\n
$$
= (m_N + U_N) \rho_N + \frac{(3\pi^2 \rho_N)^{5/3} h^2}{10\pi^2 m_N} \approx (m_N + U_N (Y_p)) \rho_N
$$

emical otential $\varepsilon_p + \varepsilon_n$ has minimum at $Y_p = 0.5$. But $\varepsilon = \varepsilon_p + \varepsilon_n + \varepsilon_e$ has minimum at $0 < Y_p < 0.5$. \rightarrow neutron-rich. If symmetry energy is larger, Y_p is closer to 0.5.

Uniform electron, $T = 0$

$$
\rho_e = 2 \frac{4\pi (p_{Fe}/2\pi h)^3}{3} = \frac{p_{Fe}^3}{3\pi^2 h^3} = \frac{\mu_e^3}{3\pi^2 h^3}
$$

$$
\mu_e = p_{Fe} = (3\pi^2 \rho_e)^{1/3} h \quad \text{chemical potential}
$$

$$
\mathcal{E}_e = \int_0^{p_F} \frac{d^3 p}{(2\pi)^3} p = \frac{p_{Fe}^4}{4\pi^2} = \frac{(3\pi^2 \rho_e)^{4/3}}{4\pi^2} \quad \text{energy density}
$$

Uniform nucleon, $T = 0$

$$
\rho_N = 2 \frac{4\pi (p_{FN}/2\pi h)^3}{3} = \frac{p_{FN}^3}{3\pi^2 h^3} \qquad (N = p, n)
$$

\n
$$
\mu_N = \sqrt{p_{FN}^2 + m_N^2} + U_N = \sqrt{(3\pi^2 h^3 \rho_N)^{2/3} + m_N^2} + U_N
$$
chemical potential
\n
$$
\mathcal{E}_N = 2 \int_0^{p_F} \frac{d^3 p}{(2\pi h)^3} \left[\sqrt{p^2 + m_N^2} + U_N \right]
$$
 energy density
\n
$$
\approx 2 \int_0^{p_F} \frac{d^3 p}{(2\pi h)^3} \left[m_N + \frac{p^2}{2m_N} + U_N \right]
$$
 non-relativistic approx

$$
= (m_N + U_N)\rho_N + \frac{\left(3\pi^2\rho_N\right)^{5/3}h^2}{10\pi^2m_N} \approx (m_N + U_N(Y_p))\rho_N
$$

$$
\approx m_N\rho_N.
$$

Due to the linear dependence on the density,

 ε_N increases more rapidly than ε_ρ .

$$
\varepsilon = \varepsilon_p + \varepsilon_n + \varepsilon_e
$$

$$
\approx m_N \rho_B + C \rho_e^{4/3}
$$

At low densities, nucleons are stiffer than electron.

 \rightarrow With increase of density, proton fraction increases.

chemical

potential

0. basic properties of nuclear matter

Symmetric nuclear matter

Example by a RMF model: Minimum energy at density $\rho = \rho_0$ with proton fraction $Y_p = 0.5$

Stiffness (incompressibility)

$$
K = p_F^2 \frac{d^2 \varepsilon}{dp_F^2} = 9\rho^2 \frac{d^2 \varepsilon}{d\rho^2} = 9 \frac{dP}{d\rho}
$$

is important but not fixed yet.

Beta-equilibrium nuclear matter

Realistic macroscopic matter is neutral & beta-eq.

 $n \leftrightarrow p + e^- + \overline{v}$ In the case of simple *npe* matter, $\rho_p = \rho_e$ (荷電中性) $\mu_n = \mu_p + \mu_e$ (ベータ平衡: $n \leftrightarrow p + e + v$) $\mu_v \approx 0$ $\mu_{n,p} = \sqrt{p_{F(n,p)}^2 + m^2 + U_{n,p}} = \sqrt{(3\pi^3 \rho_{n,p})^{2/3} + m^2 + U_{n,p}}$ $\mu_e = (3\pi^3 \rho_e)^{1/3}$

No "saturation" due to electrons which are necessary for the charge neutrality.

e[−] energy density $\frac{1}{2} \varepsilon_e = (9\pi \rho_e^2 / 8)^{2/3}$

proton fraction of beta-eq. matter is small and monotonically increasing function of density if matter is uniform.

QCS2019

26

2. high-density nuclear matter (Neutron star core)

Kaon condensation

[Phys. Rev. C **73**, 035802]

From a Lagrangian with chiral symmetry

K single particle energy (model-independent form)

$$
\varepsilon_{\pm}(\mathbf{p}) = \sqrt{p^2 + m_K^{*2} + ((\rho_n + 2\rho_p)/4f^2)^2} \pm (\rho_n + 2\rho_p)/4f^2,
$$
\n
$$
m_K^{*2} = m_K^2 - \sum_{KN} (\rho_n + 2\rho_p)/4f^2,
$$
\n
$$
\mu_K = \varepsilon_{-}(p = 0) = \mu_n - \mu_p = \mu_e
$$
\n(Threshold condition of condensation)\n
$$
\sum_{\substack{\infty \text{ odd} \\ \infty \\ \infty \\ \infty \\ \infty}}^{300}
$$
\n
$$
\varepsilon_{-}(p = 0)
$$

200

150

100

 $_{1.0}^{50}$

 1.5

 $\mu_e = \mu_K$

 2.0

 2.5

 ρ/ρ_0

 3.0

 3.5

4.0

3. high-density hadron-quark mixed phase (NS core)

Quark-hadron mixed phase

$$
\mu_{u} + \mu_{e} = \mu_{d} = \mu_{s}, \quad \mu_{n} = \mu_{u} + 2\mu_{d}, \quad \mu_{p} + \mu_{e} = \mu_{n} = \mu_{\lambda} = \mu_{z} - \mu_{e}
$$
\n
$$
\mu_{i} = \frac{\partial \varepsilon(\mathbf{r})}{\partial \rho_{i}(\mathbf{r})} \quad (i = u, d, s, p, n, \Lambda, \Sigma^{-}, e)
$$
\n
$$
\varepsilon(\mathbf{r}) \equiv \varepsilon_{B}(\mathbf{r}) + \varepsilon_{e}(\mathbf{r}) + (\nabla V_{C}(\mathbf{r}))^{2} / 8\pi e^{2}
$$
\n
$$
\varepsilon_{B}(\mathbf{r}) = \begin{cases} \varepsilon_{H}(\mathbf{r}) \quad (\text{hadron phase} : \text{BHF}) \\ \varepsilon_{Q}(\mathbf{r}) \quad (\text{quark phase} : \text{MIT bag}) \end{cases}
$$
\n
$$
\varepsilon_{e}(\mathbf{r}) = \frac{1}{\rho_{B}V} \int_{V} d^{3}r \varepsilon(\mathbf{r}) + \tau_{S} \begin{bmatrix} \rho_{B} = \text{average baryon density} \\ S = Q - H \text{ boundary area} \\ V = \text{cell volume} \end{bmatrix}
$$
\n
$$
\int_{V} d^{3}r \left[\rho_{p}(\mathbf{r}) - \rho_{\Sigma}(\mathbf{r}) + \frac{2}{3} \rho_{u}(\mathbf{r}) - \frac{1}{3} \rho_{d}(\mathbf{r}) - \frac{1}{3} \rho_{s}(\mathbf{r}) - \rho_{e}(\mathbf{r}) \right] = 0 \quad (\text{total charge})
$$
\n
$$
\frac{1}{V} \int_{V} d^{3}r \left[\rho_{p}(\mathbf{r}) + \rho_{n}(\mathbf{r}) + \rho_{n}(\mathbf{r}) + \rho_{\Sigma}(\mathbf{r}) + \frac{1}{3} \rho_{u}(\mathbf{r}) + \frac{1}{3} \rho_{d}(\mathbf{r}) + \frac{1}{3} \rho_{s}(\mathbf{r}) \right] = \rho_{B} \quad (\text{given)}
$$

EOS of matter

Full calculation is between the Maxwell construction (local charge neutral) and the bulk Gibbs calculation (neglects the surface and Coulomb).

Surface tension stronger \rightarrow closer to the Maxwell.

 \rightarrow N.Yasutake's talk

Structure of compact stars

EOM for fields (RMF model) | Kaon field $K(r)$ added.

$$
\nabla^{2} \sigma = m_{\sigma}^{2} \sigma + \frac{dU}{d\sigma} - g_{\sigma N} (\rho_{n}^{s} + \rho_{p}^{s}) - 4 g_{\sigma K} m_{K} f_{K}^{2} K^{2},
$$
\n
$$
\nabla^{2} \omega_{0} = m_{\omega}^{2} \omega_{0} - g_{\omega N} (\rho_{n} + \rho_{p}) - 2 g_{\omega K} m_{K} f_{K}^{2} K^{2} (\mu_{K} - V_{\text{Coul}} + g_{\omega K} \omega_{0} + g_{\rho K} R_{0}),
$$
\n
$$
\nabla^{2} R_{0} = m_{\rho}^{2} R_{0} - g_{\rho N} (\rho_{n} - \rho_{p}) - 2 g_{\rho K} m_{K} f_{K}^{2} K^{2} (\mu_{K} - V_{\text{Coul}} + g_{\omega K} \omega_{0} + g_{\rho K} R_{0}),
$$
\n
$$
\nabla^{2} K = \left[m_{K}^{*2} - (\mu_{K} - V_{\text{Coul}} + g_{\omega K} \omega_{0} + g_{\rho K} R_{0})^{2} \right] K,
$$
\n
$$
\nabla^{2} V_{\text{Coul}} = 4 \pi e^{2} \rho_{\text{ch}}, \qquad \rho_{\text{ch}} = \rho_{p} - \rho_{e} - \rho_{K},
$$
\n
$$
\rho_{K} = 2(\mu_{K} - V_{\text{Coul}} + g_{\omega K} \omega_{0} + g_{\rho K} R_{0}) K^{2},
$$
\n
$$
\mu_{e} = (3 \pi \rho_{e})^{1/3} + V_{\text{Coul}},
$$
\n
$$
\mu_{n} = \sqrt{k_{F,n}^{2} + m_{N}^{*2}} + g_{\omega N} \omega_{0} - g_{\rho N} R_{0},
$$
\n
$$
\mu_{p} = \sqrt{k_{F,p}^{2} + m_{N}^{*2}} + g_{\omega N} \omega_{0} + g_{\rho N} R_{0} - V_{\text{Coul}},
$$

Kaonic pasta structure

Without kaon, with the present parameter set, first appears Λ and then Xi^- in the case of uniform.

By the appearance of Kaon,

 Ξ^- disappears and Λ decreases.

Density profile in a WS cell with hyperons and kaons.

Segregation of kaons and hyperons, and attractive behavior between protons are seen.