

Quarks and Compact Stars (QCS2019)

LVT151012 ~~~~~~

Constraining equation of state of

neutron star matter

- Achievements in GW170817 and Future prospects -

0

<u>Yuichiro Sekiguchi (Toho Univ. Japan)</u>

GW170817

GW151226

1 time observable (seconds)

LIGO/University of Oregon/Ben Farr

2

https://www.youtube.com/watch?v=vTeAFAGpfso&feature=share

Era of GW astronomy has come !

- The first direct GW detection GW150914 : dawn of GW astronomy
 - GW from BH-BH : 10 events in O2 and 22 candidates in O3 (started Apr, 2019)
- The first NS-NS event GW170817 opened the door to the multimessenger astronomy with GW
 - Provides a way to constrain EOS of NS matter (topic of my talk)
 - Expected event rate $110 \sim 3840 \text{ Gpc}^{-3} \text{yr}^{-1} \Rightarrow 0.1 \sim 10 \text{ yr}^{-1}$ for adv. LIGO
- 5 NS-NS candidates in O3 (S190425z, S190426c, S190510g, S190901ap, S190910h)
 - ▶ If all these are the real event \Rightarrow event rate : $\sim 10 \text{ yr}^{-1}$
 - But, only S190425z has small false alarm rate (FAR) ($\sim 10^{-5} yr^{-1}$, for other events FAR $\sim 0.2 1 yr^{-1}$: such a low S/N, fake event can happen once per year/5 years)
 - \Rightarrow event rate : $\sim 1 \text{ yr}^{-1}$
- Two **BH-NS** candidates :
 - S190814bv (FAR $\sim 10^{-5} yr^{-1}$), S190910d (FAR $\sim 10^{-1} yr^{-1}$)

Era of GW astronomy has come !

- GW event rate for NS-NS, BH-NS may be large as $> 1 \text{ yr}^{-1}$
- Event rate \propto volume \propto (sensitivity)³
- Twice better sensitivity results in 8 times larger rate : ~ 10 yr⁻¹
 - Detector update are ongoing and planned
- We are now stepping into the era of GW astronomy !
- In particular, physics of NS matter may be explored using GW from NS-NS/BH mergers
 - Indeed a constraint on EOS was obtained in GW170817

Gravitational waves from NS merger

Numerical relativity simulation modelling GW170817

Mass determination by the chirp signal

90% C.L

S/N = 33.0 (signal to noise ratio)

- Assumption/setup of data analysis:
 - NS is not rotating rapidly like BH
 - Using the EM counterpart SSS17a/AT2017gfo for the source localization
 - Using distance indicated by the red-shift of the host galaxy NGC 4993

• Chirp mass :
$$\frac{(m_1m_2)^{3/5}}{(m_1+m_2)^{1/5}} = 1.186^{+0.001}_{-0.001}M_{\odot}$$

- Total mass : $2.74M_{\odot}$ (1%)
- Mass ratio : $m_1/m_2 = 0.7 1.0$
 - ▶ Primary mass (m1): $1.46^{+0.12}_{-0.10}M_{\odot}$
 - ▶ Secondary (m2): 1.27^{+0.09}_{-0.09}M_☉
- Luminosity distance to the source $:40^{+10}_{-10}$ Mpc

LIGO-Virgo Collaboration GWTC-1 paper See also Abbott et al. PRL 119, 161101 (2017); arXiv:1805.11579

Tidal deformability

- Tidal Love number : λ
 - Response of quadrupole moment
 Q_{ij} to external tidal field E_{ij}

$$Q_{ij} = -\lambda E_{ij}$$

- Stiffer NS EOS
- ► ⇒ NS Gravity can be supported with less contraction
- ► ⇒ larger NS radius
- \Rightarrow larger λ
- → larger deviation from point particle
 GW waveform
- Tidal deformability (non-dim.): Λ

$$\lambda = \frac{C^5}{G} \Lambda R^5$$

Compactness parameter

 $C = \frac{GM}{c^2 R}$

Lackey et al. PRD 91, 043002(2015)

The first PRL paper : upper limit on $\widetilde{\Lambda}$

PRL 119, 161101 (2017)PHYSICAL REVIEW LETTERSweek ending
20 OCTOBER 2017

G

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

B. P. Abbott et al.*

(LIGO Scientific Collaboration and Virgo Collaboration)

(Received 26 September 2017; revised manuscript received 2 October 2017; published 16 October 2017)

$\widetilde{\Lambda} < 800 \implies \Lambda_{1.4} \lesssim 800$

- The analysis with <u>GW data only</u>, the other constraints such as
 - causality ($c_S < c$), $M_{\rm EOS,max} \gtrsim 2M_{\odot}$, nuclear experiments
 - the two NS should obey the same EOS
 - use of mass distribution of the observed binary pulsar as prior
- were <u>NOT</u> taken into account

 $\widetilde{\Lambda} = \frac{16}{13} \frac{(m_1 + 12m_2)m_1^4 \Lambda_1 + (m_2 + 12m_1)m_2^4 \Lambda_2}{(m_1 + m_2)^5}$

Impact of $\tilde{\Lambda} < 800$ on NS radius & EOS

- $\Lambda_{1.4} \lesssim 800$: in terms of NS radius $10 \lesssim R_{1.4M_{\odot}} \lesssim 13.5$ km for an EOS
 - connects to the NNLO pQCD (Kurkela et al. 2010) and chiral EFT (Hebeler et al. 2013)
 - causality $c_s < c$ and $M_{\rm EOS,max} \gtrsim 2 M_{\odot}$ constraints in the intermediate region

Impact of $\tilde{\Lambda} < 800$ on NS radius & EOS

• $\Lambda_{1.4} \lesssim 800$: in terms of NS radius $10 \lesssim R_{1.4M_{\odot}} \lesssim 13.5$ km for an EOS

Impact of $\tilde{\Lambda} < 800$: the other studies

Almost all studies assume some phenomenological EOS model as in Annala et al. (2018)

- Annala et al. (2018) : chiral EFT (up to 1.1ns) + pQCD
 - ► $120 \lesssim \Lambda_{1.4} \lesssim 800$, $10 \lesssim R_{1.4} \lesssim 13.6$ km
- <u>Tews et al. (2018)</u>: chiral EFT (up to 2ns !!)
 - ▶ $80 \leq \Lambda_{1.4} \leq 570$ (the upper limit from EOS model, not from GW data)
- Fattoyev et al. (2018) : using results of PREX (Pb Rudius EXperiment)
 - ► 400 $\leq \Lambda \leq 800$, $12 \leq R_{1.4} \leq 13.6$ km (lower limit from $R_{skin}^{208} \gtrsim 0.15$ fm)
 - suggest large symmetry energy \Rightarrow larger NS radius
- Malik et al. (2018): using nuclear data (symmetry energy, incompressibility)
 12 ≤ R_{1.4} ≤ 14 km
- only an earlier studies are listed, there are many other studies

Importance of the other constraints

• **<u>GW data analysis (not interpretation of \tilde{\Lambda} < 800)</u> using constraints of**

- causality ($c_S < c$)
- $M_{\rm EOS,max} \gtrsim 2M_{\odot}$
- nuclear experiments
- the two NS (Λ) should obey the same EOS
- use of mass distribution of the observed binary pulsar as prior in the Bayesian analysis

 $\tilde{\Lambda} \sim 100 - 700$ $R_{1.4} \sim 9 - 13$ km

Importance of GW template

- GW template used in the first PRL paper and De et al. was not good !
 - used <u>3.5PN (Post-Newtonian) point-particle waveform (TaylorF2)</u>
 - 3.5PN : relativistic correction up to $(v/c)^{2 \times 3.5} \sim G^{3.5}$
 - Tidal (non-point-particle) effects join at 5PN
 - at least 5PN *point-particle* waveform is necessary to extract $\widetilde{\Lambda}$ correctly
 - Otherwise A will be overestimated because tidal effects would be contaminated by PN point particle corrections
 - ► ⇒ importance of adopting higher-order PN waveforms or numericalrelativity (NR) (calibrated) templates

Update analysis with NR waveform

PHYSICAL REVIEW LETTERS 121, 161101 (2018)

Editors' Suggestion

GW170817: Measurements of Neutron Star Radii and Equation of State

B. P. Abbott et al.*

(The LIGO Scientific Collaboration and the Virgo Collaboration)

(Received 5 June 2018; revised manuscript received 25 July 2018; published 15 October 2018)

- waveform calibrated by numerical relativity simulations
- wider data range 30-2048 Hz \Rightarrow 23-2048 Hz (\approx 1500 cycle added)
- source localization from EM counterpart SSS17a/AT2017gfo
- the causality and maximum NS mass constraints are also considered

$\tilde{\Lambda} < 800 \implies \tilde{\Lambda} \approx 300^{+400}_{-200}$

Update analysis with NR waveform

- Analysis without $2M_{\odot}$ constraint
 - $R_1 = 10.8^{+2.0}_{-1.7} \, \mathrm{km}$
 - $R_2 = 10.7^{+2.1}_{-1.5} \text{ km}$

A summary of NS structure constraint

EOS comparison : GW vs. Heavy Ion Col.

Q. How to explore the higher densities ?

A. Study GW from more massive NS for which the central density is higher

GW from post-merger phases

Numerical relativity simulation modelling GW170817

No GW from merger remnant detected

Sensitivities of future detectors

LIGO A+ : a few times more sensitive in kHz band than adv. LIGO (Torres-Rivas et al. (2019) PRD 98 084061)

Constraints from EM signals

Constraints from EM observations

 $M_{\text{crit}} = M_{\text{EOS,max}} + \Delta M_{\text{rot,rig}} + \Delta M_{\text{rot,diff}} + \Delta M_{\text{therm}}$

Condition 1 : BH should not form promptly after the merger

• need $M \gtrsim 0.01 M_{\odot}$ mass ejection to explain the observed kilonova

 $M_{\rm crit} \gtrsim M_{\rm GW170817} = 2.74 M_{\odot}$

- too soft EOS or too compact NS is excluded (e.g., Bauswein et al. 2017)
- Condition 2 : massive NS formed after the merger should not be too long-lived
 - No signal from long-lived NS (e.g. Sun et al. 2017)

$$M_{\rm EOS,max} + \Delta M_{\rm rot,rig} \lesssim 2.74 M_{\odot}$$

- ▶ stiff EOS with $M_{\rm EOS,max} \gtrsim 2.3 M_{\odot}$ is excluded
- Margalit & Metzger 2017; Shibata et al. 2017; Rezzolla et al. 2018

Summary of constraint on NS structure using both GW and EM

Radius (km)

Future prospects

Listening GW from merger remnant NS

- Characteristic frequency of GW from merger remnant depends on EOS
 - If peak frequency can be determined within 10% error, then we could constrain radius of massive NS with $\Delta R \sim 1 \text{ km}$ Hotokezaka et al. 2013; Bauswein et al. 2013

Proving 1st order hadron-quark transition

- If hadron-quark phase transition occurs at higher densities, so that the tidal deformability (structure) of $< 1.4M_{\odot}$ NS is same
- On the other hand, structure of more massive NS is different ⇒ the peak frequency of GW from post-merger system will be different

Proving 1st order hadron-quark transition

Sensitivities of future detectors

Future detectors with 5-8 times more sensitive in kHz band (like <u>Cosmic</u> <u>Explorer</u>) will be necessary (Torres-Rivas et al. (2019) PRD 98 084061)

Summary of constraint on NS structure using both GW and EM

Radius (km)

Summary

Conservative result from tidal deformability extraction

- Radius of $M = 1.4 M_{\odot}$ NS : $10 \leq R_{1.4} \leq 13$ km
- EOS constraint from GW is consistent with that from nuclear experiments and heavy ion collision
- Using waveform calibrated by Numerical Relativity is very important
- the results is not informative for $\rho > 3 4\rho_0$
- To explore the higher density region, massive NS is necessary
 - GW from merger remnant NS, if detected, is a promising
 - Need 2-3 times higher sensitive that advanced LIGO \Rightarrow next generation detector
- Observation of EM signal will tell us about the maximum mass of NS
 - Estimated event rate is quite high 1-10/year
 - Numerical relativity simulation + theoretical modelling of EM signal is promising

Appendices

NS matter equation of state (EOS)

- Tidal deformability extraction
- Maximum mass constraint
- Short gamma-ray bursts (SGRB) central engine
- Origin of heavy elements
 - r-process nucleosynthesis
 - kilonova/macronova from decay energy of the synthesized elements
- GW as standard siren
 - Hubble constant

- NS matter equation of state (EOS)
 - Tidal deformability extraction
 - Maximum mass constraint
- Short gamma-ray bursts (SGRB) central engine
- Origin of heavy elements
 - r-process nucleosynthesis
 - kilonova/macronova from decay energy of the synthesized elements
- GW as standard siren
 - Hubble constant

- NS matter equation of state (EOS)
 - Tidal deformability extraction
 - Maximum mass constraint
- Short gamma-ray bursts (SGRB) central engine
- Origin of heavy elements
 - r-process nucleosynthesis
 - kilonova/macronova : UV-Infrared from decay energy of the synthesized elements
- GW as standard siren
 - Hubble constant

- NS matter equation of state (EOS)
 - Tidal deformability extraction
 - Maximum mass constraint
- Short gamma-ray bursts (SGRB) central engine
- Origin of heavy elements
 - r-process nucleosynthesis
 - kilonova/macronova from decay energy of the synthesized elements
- GW as standard siren
 - Hubble constant

Expected NS-NS merger rate: 320-4740 Gpc⁻³yr⁻¹

NS-NS merger as origin of r-process nucleosynthesis

- ▶ NS-NS rate from GW170817 : 320-4740 Gpc⁻³yr⁻¹
 - Mej ~ 0.01 Msun is sufficient for NS-NS merger to be the origin of r-process elements ! (Abbott et al. 2017)

x (km)

Importance of GW template

- Abbott et al. PRL (2017) : The 1st paper and the related papers
 - used <u>3.5PN</u> (Post-Newtonian) <u>point-particle</u> waveform (TaylorF2)
 - 3.5PN : relativistic correction up to $(v/c)^{2 \times 3.5}$
 - tidal effects join at <u>5PN</u>
 - $\flat \Rightarrow \underline{\text{at least 5PN point-particle waveform is necessary to extract <math>\widetilde{\Lambda}$ correctly
 - Otherwise A will be overestimated because tidal effects are contaminated by PN point particle corrections which are not taken into account
 - Modulations, which is due to 4-5PN+ point-particle corrections, are included in the tidal correction in an incorrect manner
 - Considerable difficulties in calculating higher order (> 4PN) waveform
 - No well-established PN waveform so far
 - □ But see 4.5PN waveform proposed in Messina & Nagar PRD 96, 049907 (2017)
 - \Rightarrow importance of **numerical-relativity (NR)** waveform

Update analysis with NR waveform

LIGO and Virgo Collaboration 1805.11581

- orange: previous PRL
- Blue: parametrized EOS model by Lindblom (similar to piecewise Polytoric EOS) without 2Msun NS constraint
- Green: EOS independent relation by Yagi-Yunes

LIGO and Virgo Collaboration 1805.11579

- Basic update f-range : 30-2048Hz to 23-2048Hz, about (2700 (original)) + 1500 additional GW cycles
 - Improved 90% sky localization from 28 deg² to 16 deg²
- Using

LIGO and Virgo Collaboration 1805.11579

Massive NS is necessary to explore high density region

- core bounce in supernovae
 - mass: 0.5~0.7Msun
 - <u>ρc : a few ρs</u>
- canonical neutron stars
 - mass : 1.35-1.4Msun
 - ρc : several ρs
- massive NS (> 1.6 Msun)
 - ρc : > 4ρs
- massive NSs are necessary to explore higher densities
 - We can use GW from NS-NS merger remnant:
 - NS with M > 2 Msun

x (km)

y (km)

Kiuchi et al. PRL (2010); Hotokezaka et al. (2013)

Kilonova from NS-NS merger

- Ejecta from NS-NS merger is very neutron rich
- Rapid (faster than β decay) neutron capture proceeds (r-process) in the ejecta, synthesizing neutron rich nuclei (r-process nucleosynthesis)

Kilonova from NS-NS merger

- Ejecta from NS-NS merger is very neutron rich
- Rapid (faster than β decay) neutron capture proceeds (r-process) in the ejecta synthesizing neutron rich nuclei (r-process nucleosynthesis)

Importance of GW template

For GW from NS-NS, template is much more important than BH-BH

Constraints from EM observations

- Electromagnetic (EM) observations can be used to tell weather BH is formed after the merger
 - Although no GW from post-merger phase is detected
 - Modelling based on Numerical Relativity is necessary

<u>Threshold mass for the BH formation</u>

 $M_{\rm crit} = M_{\rm EOS,max} + \Delta M_{\rm rot,rig} + \Delta M_{\rm rot,diff} + \Delta M_{\rm therm}$

- $M_{\rm EOS,max}$: maximum mass of cold spherical NS determined by EOS
- $\Delta M_{\rm rot,rig}$: additional support from rigid rotation
- △M_{rot,diff}: additional support from differential rotation
 □ Short-time support : magnetic field will destroy differential rotation
- ΔM_{therm} : additional thermal support
 - □ Short-time support : emission of neutrinos will remove thermal support

Numerical relativity simulation

Proving 1st order hadron-quark transition

- If hadron-quark phase transition occurs at higher densities, so that the tidal deformability of $< 1.4 M_{\odot}$ NS is same
- On the other hand, structure of more massive NS is different ⇒ the peak frequency of GW from post-merger system will be different