

Quarks and Compact Stars (QCS2019)

Constraining equation of state of

neutron star matter

– Achievements in GW170817 and Future prospects -

GW170814 / WWWM

 Ω

Yuichiro Sekiguchi (Toho Univ. Japan)

GW170817

GW151226

1 time observable (seconds)

LIGO/University of Oregon/Ben Farr

 $\overline{}$

https://www.youtube.com/watch?v=vTeAFAGpfso&feature=share

Era of GW astronomy has come !

- ▶ The first direct GW detection GW150914 : dawn of GW astronomy
	- GW from BH-BH : 10 events in O2 and 22 candidates in O3 (started Apr, 2019)
- ▶ The first NS-NS event GW170817 opened the door to the multimessenger astronomy with GW
	- \triangleright Provides a way to constrain EOS of NS matter (topic of my talk)
	- Expected event rate $110~3840~\text{Gpc}^{-3}\text{yr}^{-1} \Rightarrow 0.1~10~\text{yr}^{-1}$ for adv. LIGO
- 5 NS-NS candidates in O3 (S190425z, S190426c, S190510g, S190901ap, S190910h)
	- If all these are the real event \Rightarrow event rate : \sim 10 yr⁻¹
	- But, only S190425z has small false alarm rate (FAR) $({\sim}10^{-5}yr^{-1})$, for other events FAR $\sim 0.2 - 1$ yr⁻¹ : such a low S/N, fake event can happen once per year/5 years)
		- \Rightarrow event rate : ~ 1 yr⁻¹
- Two BH-NS candidates :
	- S190814bv (FAR \sim 10⁻⁵yr⁻¹), S190910d (FAR \sim 10⁻¹yr⁻¹)

Era of GW astronomy has come !

- GW event rate for NS-NS, BH-NS may be large as $> 1 \,\mathrm{yr}^{-1}$
- Event rate \propto volume \propto (sensitivity)³
- **F** Twice better sensitivity results in 8 times larger rate : ~ 10 yr⁻¹
	- ▶ Detector update are ongoing and planned
- **We are now stepping into the era of GW astronomy !**
- ▶ In particular, physics of NS matter may be explored using GW from NS-NS/BH mergers
	- ▶ Indeed a constraint on EOS was obtained in GW170817

Gravitational waves from NS merger

Numerical relativity simulation modelling GW170817

Mass determination by the chirp signal

90% C.L

- S/N = 33.0 (signal to noise ratio)
	- \triangleright Assumption/setup of data analysis:
		- NS is not rotating rapidly like BH
		- Using the EM counterpart SSS17a/AT2017gfo for the source localization
		- Using distance indicated by the red-shift of the host galaxy NGC 4993

► Chirp mass :
$$
\frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}
$$
 = 1.186^{+0.001}M_⊙

- Total mass : $2.74M_{\odot}$ (1%)
- \triangleright Mass ratio : $m_1/m_2 = 0.7 1.0$
	- 1.46^{+0.12} Primary mass (m1) : 1.46^{+0.12} M
	- 1.27^{+0.09}% **>** 5econdary (m2): 1.27^{+0.09}
- \blacktriangleright Luminosity distance to the source : 40^{+10}_{-10} Mpc

LIGO-Virgo Collaboration GWTC-1 paper See also Abbott et al. PRL 119, 161101 (2017); arXiv:1805.11579

Tidal deformability

- Tidal Love number : λ
	- ▶ Response of quadrupole moment Q_{ij} to external tidal field E_{ij}

$$
Q_{ij}=-\lambda E_{ij}
$$

- Stiffer NS EOS
- ⇒ NS Gravity can be supported with less contraction
- ⇒ larger NS radius
- ⇒ larger
- \Rightarrow larger deviation from point particle GW waveform
- Tidal deformability (non-dim.): Λ

$$
\lambda = \frac{C^5}{G} \Lambda R^5
$$

Compactness parameter

 c^2R

 $C = \frac{GM}{a^2B}$

Lackey et al. PRD 91, 043002(2015)

The first PRL paper : upper limit on Λ�

Exercise Selected for a Viewpoint in *Physics* week ending PHYSICAL REVIEW LETTERS PRL 119, 161101 (2017) 20 OCTOBER 2017

 \mathcal{G}

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

B. P. Abbott *et al.*^{*}

(LIGO Scientific Collaboration and Virgo Collaboration)

(Received 26 September 2017; revised manuscript received 2 October 2017; published 16 October 2017)

Λ $\overline{\Lambda}$ < 800 \longrightarrow $\Lambda_{1.4} \leq 8$

- The analysis with **GW data only**, the other constraints such as
	- **►** causality $(c_S < c)$, $M_{\rm EOS,max} \ge 2M_{\odot}$, nuclear experiments
	- \triangleright the two NS should obey the same EOS
	- use of mass distribution of the observed binary pulsar as prior
- were **NOT** taken into account

 $\widetilde{\Lambda} = \frac{1}{1}$ 13 $m_1 + 12m_2)m_1^4\Lambda_1 + (m_2 + 12m_1)m_2^4\Lambda$ $(m_1 + m_2)^5$

Impact of $\widetilde{\Lambda}$ < 800 on NS radius & EOS

- \triangleright $\Lambda_{1.4}$ ≤ 800 : in terms of NS radius $10 \le R_{1.4M_{\odot}} \le 13.5$ km for an EOS
	- connects to the NNLO pQCD (Kurkela et al. 2010) and chiral EFT (Hebeler et al. 2013)
	- **►** causality $c_s < c$ and $M_{\text{EOS,max}} \geq 2M_{\odot}$ constraints in the intermediate region

Impact of $\widetilde{\Lambda}$ < 800 on NS radius & EOS

 $\Lambda_{1.4} \lesssim 800$: in terms of NS radius $10 \lesssim R_{1.4M_{\odot}} \lesssim 13.5$ km for an EOS

Impact of $\widetilde{\Lambda}$ < 800 : the other studies

- Almost all studies assume some phenomenological EOS model as in Annala et al. (2018)
	- Annala et al. (2018) : chiral EFT (up to 1.1ns) + pQCD
		- \triangleright 120 ≲ Λ _{1.4} ≲ 800 , 10 ≲ R _{1.4} ≲ 13.6 km
	- Tews et al. (2018) : chiral EFT (up to 2ns !!)
		- $80 \leq \Lambda_{1.4} \leq 570$ (the upper limit from EOS model, not from GW data)
	- ▶ Fattoyev et al. (2018) : using results of PREX (Pb Rudius EXperiment)
		- \triangleright 400 ≲ Λ ≲ 800, 12 ≲ $R_{1.4}$ ≲ 13.6 km (lower limit from $R_{\rm skin}^{208} \gtrsim 0.15$ fm)
		- suggest large symmetry energy ⇒ larger NS radius
	- Malik et al. (2018): using nuclear data (symmetry energy, incompressibility) $▶ 12 \le R_{1.4} \le 14$ km
	- \triangleright only an earlier studies are listed, there are many other studies

Importance of the other constraints

GW data analysis (not interpretation of $\tilde{\Lambda}$ **< 800)** using constraints of

- causality $(c_S < c)$
- $M_{\rm EOS,max} \gtrsim 2M_{\odot}$
- nuclear experiments
- the two NS $($ Λ $)$ should obey the same EOS
- use of mass distribution of the observed binary pulsar as prior in the Bayesian analysis

 $\widetilde{\Lambda} \sim 100 - 700$ $R_{1.4}$ ~9 – 13 km

De et al. PRL 121, 091102 (2018)

Importance of GW template

- GW template used in the first PRL paper and De et al. was not good !
	- used **3.5PN** (Post-Newtonian) **point-particle** waveform (TaylorF2)
		- ▶ 3.5PN : relativistic correction up to $(\nu/c)^{2\times3.5} \sim G^{3.5}$
	- **Tidal (non-point-particle) effects join at 5PN**
		- at least 5PN *point-particle* waveform is necessary to extract Λ� correctly
		- \triangleright Otherwise $\widetilde{\Lambda}$ will be overestimated because tidal effects would be contaminated by PN point particle corrections
	- ⇒ importance of adopting higher-order PN waveforms or **numericalrelativity (NR)** (calibrated) templates

Update analysis with NR waveform

PHYSICAL REVIEW LETTERS 121, 161101 (2018)

Editors' Suggestion

GW170817: Measurements of Neutron Star Radii and Equation of State

 $B.P.$ Abbott *et al.*^{*}

(The LIGO Scientific Collaboration and the Virgo Collaboration)

(Received 5 June 2018; revised manuscript received 25 July 2018; published 15 October 2018)

- waveform calibrated by **numerical relativity** simulations
- wider data range 30-2048 Hz \Rightarrow 23-2048 Hz (\approx 1500 cycle added)
- source localization from EM counterpart SSS17a/AT2017gfo
- the causality and maximum NS mass constraints are also considered

$\boldsymbol{\Lambda}$ $\overline{\Lambda}$ $< 800 \rightarrow N$ $\overline{\Lambda}$ \approx 300 $_{-}$ $+4$

Update analysis with NR waveform

- Analysis without $2M_{\odot}$ constraint $\vert \cdot \cdot \rangle$ Analysis with $2M_{\odot}$ constraint
	- $\rightarrow R_1 = 10.8^{+2.0}_{-1.7}$ km
	- $R_2 = 10.7^{+2.1}_{-1.5}$ km

- - $R_1 = 11.9^{+1.4}_{-1.4}$ km
	-

A summary of NS structure constraint

EOS comparison : GW vs. Heavy Ion Col.

Q. How to explore the higher densities ?

A. Study GW from more massive NS for which the central density is higher

GW from post-merger phases

Numerical relativity simulation modelling GW170817

No GW from merger remnant detected

Sensitivities of future detectors

 LIGO A+ : a few times more sensitive in kHz band than adv. LIGO (Torres-Rivas et al. (2019) PRD 98 084061) LIGO-T15TBI-v1 white paper

Constraints from EM signals

Constraints from EM observations

 $M_{\text{crit}} = M_{\text{EOS,max}} + \Delta M_{\text{rot,rig}} + \Delta M_{\text{rot,diff}} + \Delta M_{\text{therm}}$

Condition 1 : BH should not form promptly after the merger

need $M \geq 0.01 M_{\odot}$ mass ejection to explain the observed kilonova

 $M_{\text{crit}} \gtrsim M_{\text{GW170817}} = 2.74 M_{\odot}$

- ▶ too soft EOS or too compact NS is excluded (e.g., Bauswein et al. 2017)
- **Condition 2 : massive NS formed after the merger should not be too long-lived**
	- \triangleright No signal from long-lived NS (e.g. Sun et al. 2017)

$$
M_{\rm EOS,max} + \Delta M_{\rm rot,rig} \lesssim 2.74 M_{\odot}
$$

- \triangleright stiff EOS with $M_{\rm EOS,max} \gtrsim 2.3 M_{\odot}$ is excluded
- Margalit & Metzger 2017; Shibata et al. 2017; Rezzolla et al. 2018

Summary of constraint on NS structure using both GW and EM

Future prospects

Listening GW from merger remnant NS

- Characteristic frequency of GW from merger remnant depends on EOS
	- If peak frequency can be determined within 10% error, then we could constrain **radius of massive NS with** $\Delta R \sim 1 \text{ km}$ Hotokezaka et al. 2013; Bauswein et al. 2013

Proving 1st order hadron-quark transition

- If hadron-quark phase transition occurs at higher densities, so that the tidal deformability (structure) of $< 1.4 M_{\odot}$ NS is same
- **•** On the other hand, structure of more massive NS is different \Rightarrow the peak frequency of GW from post-merger system will be different

Proving 1st order hadron-quark transition

Sensitivities of future detectors

Future detectors with 5-8 times more sensitive in kHz band (like Cosmic Explorer) will be necessary (Torres-Rivas et al. (2019) PRD 98 084061)

Summary of constraint on NS structure using both GW and EM

Radius (km)

Summary

Conservative result from tidal deformability extraction

- Radius of $M = 1.4 M_{\odot}$ NS : $10 \le R_{1.4} \le 13$ km
- EOS constraint from GW is consistent with that from nuclear experiments and heavy ion collision
- Using waveform calibrated by Numerical Relativity is very important
- the results is not informative for $\rho > 3 4\rho_0$
- ▶ To explore the higher density region, massive NS is necessary
	- GW from merger remnant NS , if detected, is a promising
	- Need 2-3 times higher sensitive that advanced LIGO \Rightarrow next generation detector
- Observation of EM signal will tell us about the maximum mass of NS
	- **Estimated event rate is quite high 1-10/year**
	- \blacktriangleright Numerical relativity simulation + theoretical modelling of EM signal is promising

Appendices

NS matter equation of state (EOS)

- **Tidal deformability extraction**
- **Maximum mass constraint**
- ▶ Short gamma-ray bursts (SGRB) central engine
- Origin of heavy elements
	- r-process nucleosynthesis
	- kilonova/macronova from decay energy of the synthesized elements
- GW as standard siren
	- \blacktriangleright Hubble constant

- state (EOS)
	- Tidal deformability extraction
	- Maximum mass constraint
- **Short gamma-ray bursts (SGRB) central engine**
- Origin of heavy elements
	- r-process nucleosynthesis
	- kilonova/macronova from decay energy of the synthesized elements
- GW as standard siren
	- Hubble constant

- **NS matter equation of** state (EOS)
	- Tidal deformability extraction
	- Maximum mass constraint
- ▶ Short gamma-ray bursts (SGRB) central engine
- **Origin of heavy elements**
	- **r-process nucleosynthesis**
	- **kilonova/macronova : UV-Infrared from decay energy of the synthesized elements**
- GW as standard siren
	- \blacktriangleright Hubble constant

- NS matter equation of state (EOS)
	- Tidal deformability extraction
	- Maximum mass constraint
- ▶ Short gamma-ray bursts (SGRB) central engine
- Origin of heavy elements
	- r-process nucleosynthesis
	- kilonova/macronova from decay energy of the synthesized elements
- **GW as standard siren**
	- **Hubble constant**

Expected NS-NS merger rate**: 320-4740 Gpc-3yr-1**

NS-NS merger as origin of r-process nucleosynthesis

- \triangleright NS-NS rate from GW170817 : 320-4740 Gpc⁻³yr⁻¹
	- ▶ Mej ~ 0.01 Msun is sufficient for NS-NS merger to be the origin of r-process elements ! (Abbott et al. 2017)

 \times (km)

 θ

20

40

 \mathcal{D}

 -20

 -40

 -60

 -60

 -40

 -20

Importance of GW template

- Abbott et al. PRL (2017) : The 1st paper and the related papers
	- used **3.5PN** (Post-Newtonian) **point-particle** waveform (TaylorF2)
		- ▶ 3.5PN : relativistic correction up to $(v/c)^{2\times3.5}$
	- **tidal effects** join at **5PN**
		- ⇒ at least 5PN *point-particle* waveform is necessary to extract Λ� correctly
		- Otherwise $\overline{\Lambda}$ will be overestimated because tidal effects are contaminated by PN point particle corrections which are not taken into account
			- \Box Modulations, which is due to 4-5PN+ point-particle corrections, are included in the tidal correction in an incorrect manner
	- ▶ Considerable difficulties in calculating higher order (> 4PN) waveform
		- No well-established PN waveform so far
			- □ But see 4.5PN waveform proposed in Messina & Nagar PRD 96, 049907 (2017)
		- ⇒ importance of **numerical-relativity (NR)** waveform

Update analysis with NR waveform

LIGO and Virgo Collaboration 1805.11581

- **Corange: previous PRL**
- ▶ Blue: parametrized EOS model by Lindblom (similar to piecewise Polytoric EOS) without 2Msun NS constraint
- ▶ Green: EOS independent relation by Yagi-Yunes

LIGO and Virgo Collaboration 1805.11579

- Basic update f-range : 30-2048Hz to 23-2048Hz, about (2700 (original)) + 1500 additional GW cycles
	- ▶ Improved 90% sky localization from 28 deg^2 to 16 deg^2
- Using

LIGO and Virgo Collaboration 1805.11579

Massive NS is necessary to explore high density region

- **core bounce in supernovae**
	- mass**:**0.5~0.7Msun
	- **ρc:a few ρs**
- **canonical neutron stars**
	- mass**:** 1.35-1.4Msun
	- **ρc:several ρs**
- **massive NS (> 1.6 Msun)**
	- **ρc :> 4ρs**
- massive NSs are necessary to explore higher densities
	- **We can use GW from NS-NS merger remnant:**
	- **NS with M > 2 Msun**

x (km)

 y (km)

Kiuchi et al. PRL (2010); Hotokezaka et al. (2013)

Kilonova from NS-NS merger

- Ejecta from NS-NS merger is very neutron rich
- Rapid (faster than β decay) neutron capture proceeds (r-process) in the ejecta, synthesizing neutron rich nuclei (r-process nucleosynthesis)

Kilonova from NS-NS merger

- Ejecta from NS-NS merger is very neutron rich
- Rapid (faster than β decay) neutron capture proceeds (r-process) in the ejecta, synthesizing neutron rich nuclei (r-process nucleosynthesis)

Importance of GW template

For GW from NS-NS, template is much more important than BH-BH

Constraints from EM observations

- **Electromagnetic (EM) observations can be used to tell weather BH is formed after the merger**
	- Although no GW from post-merger phase is detected
	- Modelling based on Numerical Relativity is necessary

Threshold mass for the BH formation

 $M_{\text{crit}} = M_{\text{EOS,max}} + \Delta M_{\text{rot,rig}} + \Delta M_{\text{rot,diff}} + \Delta M_{\text{therm}}$

- $M_{\rm EOS,max}$: maximum mass of cold spherical NS determined by EOS
- $\Delta M_{\rm rot,rig}$: additional support from rigid rotation
- $\Delta M_{\rm rot,diff}$: additional support from differential rotation \Box Short-time support : magnetic field will destroy differential rotation
- ΔM_{therm} : additional thermal support
	- \Box Short-time support : emission of neutrinos will remove thermal support

Numerical relativity simulation

Proving 1st order hadron-quark transition

- If hadron-quark phase transition occurs at higher densities, so that the tidal deformability of $< 1.4 M_{\odot}$ NS is same
- \triangleright On the other hand, structure of more massive NS is different \Rightarrow the peak frequency of GW from post-merger system will be different