Quarks and Compact Stars 2019 26-28 Sept. 2019 @ Hanwha Resort, Busan

Thermal Evolution of Quark-Hadron Hybrid Stars with Nucleon Superfluidity and Quark Superconductivity

Tsuneo NODA (野田 常雄) Kurume Institute of Technology (Fukuoka, JAPAN)

INTRODUCTION

THERMAL HISTORY OF COMPACT STARS

- Compact stars are born from supernovae explosions.
 - Born at high temperature (~10¹⁰ K)
- No internal heat source
 - Emitting thermal energy by neutrinos
 - Isolated compact star only cools down.
 - $t < 10^5$ yr: Neutrinos
 - $t > 10^5$ yr: Photon (X-ray)

COOLING OF COMPACT **STARS**

Cooling process corresponds the internal matter state

- Normal nuclear matter (Standard Cooling)
- π condensation
- K condensation Exotic Cooling
- Hyperon mixing
- Quark matter
- Superfluidity etc...
- Exotic phase appears at higher density, and it cools star rapidly.

SUPERFLUIDITY

- Superfluidity has 2 effects on neutrino emissivities of compact stars
 - Normal→Super Transition: v-emission (PBF/Strong Cooling)
 - After Transition: Suppression of v-emissivity (Weak Cooling)
- $n {}^{3}P_{2}$
 - Density dependence of critical temperature affects to cooling curves

Shternin et al. 2011

OBSERVATIONS OF COMPACT STARS

• PSR J1614-2230, PSR J0348-0432, MSP J0704+6620

(Demorest+ 2010, Antoniadis+ 2013, Cromartie+ 2019)

- 2M_o compact stars in binary systems (Companion: WD)
- The EoS must support the maximum mass $2M_{\odot}$
- Central Source of Cassiopeia A (Cas A, CXOU J232327.9+584842) (Ho & Heinke 2009)
 - Isolated compact star
 - Young (~330 yr) & Heavy (1.5-2.4 M_{\odot}) Compact Star, Hot for its age
 - Rapid cooling in these 20 years? (Heinke & Ho 2010, Posselt+ 2013)
- PSR J0205+6449 (3C58) (Slane+ 2002), Vela Pulsar (Pavlov+ 2001)
 - Isolated compact stars
 - **Cold** for their ages, unknown masses
- SAX J1808.4–3658 (Campana+ 2002)
 - Compact star in LMXB
 - Lower surface temperature for accretion rate -> Exotic cooling process

MOTIVATION

Cas A

- Hot, young and heavy
- Isolated compact star with known mass range

3C58 / Vela

- Cold compact stars
 - Older than Cas A
 - Lower temperature
- Isolated compact stars (mass range unknown)

Should be explained by a single model

Cas A is heavy, and has an exotic phase, but not cooled down \Rightarrow Colour Superconductivity in quark phase (TN+,2013)

CALCULATION SETUP

- Quark-Hadron Hybrid Star EoS
 - Satisfies $2M_{\odot}$
 - Brueckner-Hartree-Fock (HM) + Dyson-Schwinger (QM)
 - Mixed phase between HM-QM (Yasutake+ 2016)
- Surface Composition: ⁵⁶Fe
- Cooling Process
 - Modified URCA + Bremsstrahlung
 - n-Super(${}^{1}S_{0}, {}^{3}P_{2}$), p-Super(${}^{1}S_{0}$)
 - Hadronic Direct URCA ($y_p > 1/9$)
 - Quark Cooling with
 Colour Superconductivity (CSC)
- Parameters
 - Mass
 - Critical Temperature model of neutron ³P₂ superfluidity
 - CSC paring

MODELS

QUARK PHASE

Quark matter at high density

Colour super conductivity (CSC)

CSC state has similar effect to nucleon superfluidity

- Assuming $\Delta \ge 10 \text{ MeV}$
- Suppression of neutrino emissivity $\propto \exp(-\Delta/k_{\rm B}T)$
- Quark-Hadron Mixed Phase Between hadronic phase
 - No uniform QM appears in this model

PAIRING OF QUARKS

- CSC quarks paring pattern
 - Due to the degrees of freedom of colour and flavour
- **CFL Phase** (Colour Flavour Locking High density)
 - All colours & flavours make pairs below the gap
 - All quarks becomes superconductor → Suppression of neutrino emission
- **2SC Phase** (Two-Flavour Superconductivity Low density)
 - 2 colours, 2 flavours make pairs (e.g. ud-ud, ud&s remain as normal)
 - Remaining Normal quarks (~1/3) -> Strong neutrino emission

QUARK PHASE

- Large gap: $\Delta \ge 10$ MeV
- Once quark phase appears, quarks are in **CSC**.
- Models
 - **CFL**: CSC pairing is CFL, no 2SC phase appears
 - **2SC**: CSC paring is 2SC, no CFL phase appears
- No transition during the cooling
- Quark-Hadron mixed phase
 - Neutrino emissivities are multiplied by the volume fraction of each phase (hadron/quark)

NUCLEON SUPERFLUIDITY

 Superfluidity Neutron: ¹S₀, ³P₂

Proton: ¹S₀

- Critical Temperature(T_{cr})
 Parameterized density dependence
- Effects on Cooling
 At the transition: Strong cooling
 (Pair Breaking and Formation)
 (Page+ 2004)

 After transition: Suppress other
 neutrino emission processes

COOLING PROCESSES

Hadronic Phase

Bremsstrahlung	with n/p-super	
Modified URCA	with n/p-super	
PBF (Superfluid)		
Direct URCA	with n/p-super	en
$(y_{\rm p} > 1/9)$		sity
Quark Phase		\prec
Quark β-decay	with Q-super	
	$(\Delta \ge 10 \text{ MeV})$	
Works in the high dense region (Q-H Mixed)		

RESULTS & DISCUSSIONS

SUMMARY

We examined cooling of compact stars with quark colour superconductivity Difference of Quark paring affects the cooling profiles of compact stars

• Heavy star with 2SC

- Very fast cooling, dropping the temperature below observations
- Neutron ${}^{3}P_{2}$ superfluidity does **NOT** affect to the cooling profile
- Dominant cooling process: Quark β-decay

• Heavy star with CFL

- Fast cooling but slower than 2SC
- Cooling curves are affected by **neutron** ³*P*₂ **superfluidity**
- Dominant cooling process: Hadronic Direct URCA
- Cold stars can be explained by two way
 - With 2SC phase: Cooled by Quark β-decay
 - With CFL phase: Cooled by **Direct URCA with neutron superfluidity**

FUTURE PROSPECTS

- Tuning of surface composition & neutron superfluidity
 - To fit Cas A or other warm stars
- Other exotic states, CSC paring
 - Hyperon-mixed, Meson-condensation
 - 2SC+X colour superconductivity (Grigorian+ 2005, Fujimoto+ 2019)
 - FFLO superfluidity
- Direct URCA problem
 - EoS with small symmetry energy S does not allow Direct URCA

(Togashi+ 2017, Dohi+ 2019)

- Further Observation
 - GW signals from binaries of double NS / BH-NS
 - Temperature of young & isolated neutron stars (SN1987A??)