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・Transport properties should be an important subject  
 for thermal evolution of compact stars. 

I. Introduction 

A.Y. Potekhin et al., Space Sci. Rev. 191 (2015) 239. 
“Neutron Stars-Cooling and Transport,” 

・Transport  properties have been recently  discussed      
in the context of Dirac materials in condensed-matter 
physics. 

V. Konye and M. Ogata, PRB98, 195420 (2018). 
“Magnetoresistance of a three dim Dirac gas”  



・We have studied the inhomogeneous  
  chiral phase (iCP) in quark matter. 
                          H. Abuki’s talk yesterday 
・We have noticed that electromagnetic response  
  of iCP leads to interesting consequences, such as  
  spontaneous magnetization, assistance of  
  axial anomaly for iCP, anomalous Hall effect, etc. 
 
 
・In particular, magnetic field or the Landau level 
  plays crucial roles in these contexts. 
・On these backgrounds we here consider some  
  theoretical aspects of transport properties  
  inside compact stars. 

As a review paper, T.T. , JPS Conf.Proc. 20, 011008 (2018) 
and references therein. 



Thermal evolution of magnetars 

・Neutrino luminosity 
・Thermal transport in the strong magnetic field 

(Kaminkar et al., 2009) 
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・We discuss thermal transport properties in the strong  
  magnetic field. 
・(thermal) Hall effect  is highlighted in this talk,  
  which can be  decomposed into classical and  
  quantum parts.  
・Anomalous Hall effect  (AHE) may be possible in  
  iCP, which enjoys similar features  to the Weyl semimetals 
  in condensed-matter physics. 
・Some topological aspects can be seen there. 
 
・We may learn some transport properties  in compact  
  stars from terrestrial experiments. 



II Phenomenological transport equations 
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“gravitational ” potential 
(J.M. Luttinger, PR 135, A1505 (1964)) 

(Wiedemann-Franz law) 

Thus we need conductivity  s  at T=0 to obtain thermal  
conductivity  κ  at low temperature. 
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Drude model (Drude,1900: three years after J.J. Thomson’s discovery of electrons): 

n:number density 
τ:relaxation time 

Classical picture of conductivity 
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It should be interesting to see:  
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Thus dissipative  effects are indispensable  
for the diagonal components in any case,   
while it is not so effective for  Hall conductivity. 
This feature holds even in the fully quantum mechanical  
calculation. 

(i) 

(ii) 



N. Nagaosa et al., RMP 82, 1539 (2010). 
Di Xiao et al., RMP 82, 1959 (2010) .  III Anomalous Hall effect (AHE) 

0xy z s zR B R Mρ +=

Magnetic resistivity                     : 

(AHE) 

1ρ σ −∝

Appearance of a large spontaneous Hall current  
in response to  E even in the absence of magnetic field. 
So the Hall conductivity consists of two parts, 

・We can expect AHE for magnetic (ferro or anti-ferro)   
 materials, Weyl semimetals or iCP. 
・We shall see that the intrinsic contribution to AHE can  
  be regarded as  an “unquantized” version of  
  the quantum Hall effect. 

First, we’d like to demonstrate AHE by considering iCP  
in the absence of magnetic field. 



(B. Ruester) 

Chiral transition 

CCP 

Compact  stars 

5 3 ( ) exp( ( ))M qq i qi q iθγ τ ∆+ =≡ r r

Generalized order parameter 

H 

Inhomogeneous chiral phase (iCP) 

      (T. T. and E. Nakano, hep-ph/0408294. 
      E. Nakano and T. T., PRD 71 (2005) 114006.) 

ex) Dual Chiral Density Wave (DCDW) 
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NJL model for simplicity. 
2 2

0 5 0( ) ( ) ( ) , 0.NJL i m G i mψ ψ ψψ ψ γ ψ = ∂ − + + = τL

After the Weinberg transformation, 

5 3exp[ / 2] ,W iψ γ τ ψ= ⋅q r

2
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5MeVcm =

Chiral limit 

Tricritical point=Lifshitz point 

Critical end point 
(CEP) 

S. Karasawa and T.T., PRD92 (2015) 116004. 
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Dual Chiral Density Wave (DCDW) 

ref. T.T. and E. Nakano, hep-ph/0408294 
                                     PRD71(2005)114006. 
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single-particle energy: 

Resemblance  to Weyl semimetals 

Dual Chiral Density Wave (DCDW) 
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K0:Weyl nodes (points) 
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Weyl cone 

(T.T., R. Yoshiike, K. Kashiwa, PLB 785(2018) 46.) 
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4| | ( )b M R< = | |b M>

Weyl nodes To summarize, 
we know there have been many common features  
between nuclear physics and condensed-matter physics  
such as superfluidity or magnetism in compact stars. 
This is a new encounter  of nuclear physics with  
condensed-matter physics. 
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Weyl semimetal 
（E. Fradkin, Field Theories of Condensed Matter Physics, 
   Chap. 16,  Cambridge U. Press, 2013. 
 N.P. Armitage, E.J. Mele, A. Vishwanath, Rev.Mod.Phys. 
90, 015001 (2018).） 



Correspondence: 

DCDW Weyl semimetal 

Dynamical  
mass M 

Wave vector 
q 

Spin-orbit  coupling (SOC)  
strength M 

Spin splitting due to  
magnetic impurities  
or magnetic field b 

Momentum k Bloch momentum k 



IV What can we learn from Weyl semimetals (WSM)? 

・AHE is one of the main subjects to  
  specify  WSM experimentally. 

N.P. Armitage, E.J. Mele, A. Vishwanath, 
Rev.Mod.Phys.90, 015001 (2018). 

・It may affect the transport properties  
  through modification of the Maxwell equation. 

・Phenomenological implications  should be  
  also interesting for compact stars. 

In the following  we demonstrate AHE in DCDW phase  
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D.J. Thouless, M. Kohmoto, M.P. Nightingale,  
M. den Nijs, PRL 49, 405 (1982) 

For translational invariant systems,  

We can evaluate the Hall coefficient by way of  
the Kubo formula, considering a linear response to  
an electric field. 

In terms of the Berry curvature, B(k) in the momentum  
space, which is a generalization of the TKNN formula for  
2D quantum Hall systems.  
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Berry’s curvature for DCDW: 

・First term diverges and proper regularization is needed. 
P. Goswami and S. Tewari, PRB88, 245107 (2013) 

・Second term gives a topological number. 
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(T.T., R. Yoshiike, K. Kashiwa, PLB 785(2018) 46.) 
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Axion electrodynamics (F.Wilczek, PRL 58, 1799 (1987). 
 E.J. Ferrer, V. de la Incera, PLB 769 (2017) 208.) 

Some phenomenological implications may be possible, such as  
modification of transport properties inside compact stars.  

Linearly polarized Elliptically polarized 

(Example in Weyl semimetal)  (A. Grushin, PRD 86, 045001 (2012).)  
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(Effect of the Fermi surface) 

V Hall conductivity in the presence of magnetic field 



(i) Quantised Hall effect in 2D Hall systems, 

2
III 0,  ,  :

2
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π
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the Fermi energy 

(ii) If we can neglect the effect of impurities, 
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(iii) AHE is given by             
      by way of spectral asymmetry.  

II(0)  n  i xyN σ

(V. Konye and M. Ogata, PRB98, 195420 (2018).) 

(T.T., H. Abuki, in preparation) 

(P. Streda, J.Phys. C15(1972) L717). 

We’d like to demonstrate  the property (iii)  
by considering DCDW  in the presence of magnetic field. 

Three remarks about Hall conductivity: 
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VI Spectral asymmetry and AHE 

Spectral asymmetry (SA) for LLL 

K0:Weyl nodes (points): 

Number of “the vacuum” N(0) 
c.f. Cheshire Cat in Prof.  Young-Liang Ma ‘s talk yesterday 



Anomalous number 
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The anomalous Hall conductivity is B-independent  
to give through the Streda formula, 
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for DCDW. which is the same result to the previous one. 
(T.T., R. Yoshiike, K. Kashiwa, PLB 785(2018) 46.) 

・Similar result can be obtained for WSM. 

・However, note the different manifestation of  
 topological effect  in two cals: one is by  
   Berry’s curvature(monopole) and the other by SA.  



VII. Summary and concluding remarks 

・We have discussed some theoretical aspects of  
  transport properties of compact star matter  
  from the viewpoint of topological material  
  (Dirac material). 
・Some common features are indicated  
  with condensed-matter physics. 
・In the presence of the magnetic field,  
  we must carefully evaluate the Hall conductivity  
  by way of the Kubo formula; it consists of “classical”  
  and “quantum” components.   
  



  ex) We can easily generalize the CPT odd term,  

5 5 .bµ
µγ γ γ⋅ →γ b

Then we can incorporate the chiral magnetic effect,  
due to the effective          given by        , 5µ

0b
2

CME 022
e b
π

=j B

Even in such case,  AHE is not modified by  
the presence of        .   0b

(K.Fukushima et al., PRD 78, 074033 (2008).) 

・ AHE is prescribed by the quantum component,  
  and some topological features are concealed. 

・ Many subjects are left for further considerations. 
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