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Symmetry energy

Semi-empirical mass formula

10.3: ...Nuclear binding energy (con’t)...

Using the expression (10.38), viz.

B(Z,A) = a
V
A− a

S
A2/3 − a

C
Z(Z − 1)A−1/3 − asym

(A− 2Z)2

A

+ap

(−1)Z[1 + (−1)A]

2
A−3/4

and adapting (10.35), viz.

BN(Z,A) = [Zm(1H) +Nmn −m(AX)]c2

we obtain the semi-empirical mass formula:

m(AX) = Zm(1H) +Nmn −B(Z,A)/c2 , (10.39)

that one may use to estimate m(AX) from measured values of the binding energy, or
vice-versa.

Nuclear Engineering and Radiological Sciences NERS 312: Lecture 10, Slide # 70:10.3

Symmetry energy in nuclear matter

Esym(ρ) = S0 + L ( ρ − ρ0

3ρ0 ) +
Ksym

2 ( ρ − ρ0

3ρ0 )
2

+ ⋯

The slope of symmetry energy

L = 3ρ0
∂Esym(ρ)

∂ρ ρ=ρ0

What is the Symmetry energy?

0
ρ

0
 = 0.16 fm

-3

E
0
 = -16 MeV

symmetric nuclear matter
pure neutron matter

Nuclear saturation

Symmetry energy

Assumption from experiments:

ESNM(⇢0) = �16MeV , ⇢0 = 0.16fm�3 , Esym = EPNM(⇢0) + 16

At ⇢0 we access Esym by studying PNM.

Stefano Gandolfi (LANL), stefano@lanl.gov The EOS of neutron matter 9 / 27
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The density dependence

N. B. Zhang and B. A. Li, Euro. Phys. J. A 55(2019)39 

The uncertainty of symmetry energy at high density 
Page 2 of 23 Eur. Phys. J. A (2019) 55: 39

Fig. 1. (Color online) Examples of the density dependences of nuclear symmetry energy predicted by various kinds of nuclear
many-body theories using different interactions, energy density functionals and/or techniques (made by amending a compilation
in ref. [21]) in comparison with the constraining boundaries (magenta dot-dashed lines) extracted in this work from studying
properties of neutron stars.

For example, over 520 nuclear energy density functionals
available by 2014 have been used to predict the Esym(ρ),
see, e.g., refs. [18–20]. Shown in the left panel of fig. 1
are 60 selected representatives from 6 classes of phe-
nomenological models and/or energy density functional
theories including the Relativistic Mean Field (RMF)
using 3 different kinds of coupling schemes, Relativis-
tic Hartree-Fock (RHF), Gogny Hartree-Fock (HF) and
Skyrme Hartree-Fock (for a detailed list of the interac-
tions/models used, see the compilation by Lie-Wen Chen
in ref. [21]). The large spread in the predicted symmetry
energies especially at high densities clearly calls for experi-
mental/observational constraints. To our best knowledge,
all microscopic and/or ab initio theories have also been
used to predict the Esym(ρ). Shown in the right panel of
fig. 1 are 11 examples [22–29]. They are from the Brueck-
ner Hartree Fock (BHF), Dirac-Brueckner Hartree Fock
(DBHF), Chiral Effective Field Theory (Chiral EFT) and
the Variational Many Body (VMB) theory using differ-
ent interactions and/or high-momentum cut-offs. Their
predictions also spread broadly at supra-saturation den-
sities. In fact, by design, some of these microscopic the-
ories are valid only at low-energies/densities. When they
are extrapolated to high densities, their predictions may
not converge and often depend on the high-momentum
cut-off used in the theories. A useful measure of the pre-
dicted spread of high-density symmetry energies is the

value of symmetry energy at twice the saturation density
Esym(2ρ0). Information about the EOS and symmetry en-
ergy around this density is most relevant for determining
the radii of NSs [30] and heavy-ion reactions with radioac-
tive beams of about 400MeV/nucleon [12]. The examples
shown in fig. 1 have Esym(2ρ0) values scatter between ap-
proximately 15 to 100MeV [31]. The magenta dot-dashed
lines are the boundaries of Esym(ρ) we extracted in this
work from studying properties of NSs as we shall explain
in detail in the following. Clearly, the extracted constraint
on symmetry energy can already exclude many of the pre-
dictions while it is still quite loose at densities above 2ρ0.

The proton fraction xp(ρ) in NSs at β-equilibrium is
uniquely determined by the Esym(ρ). Consequently, the
composition, critical nucleon density ρc (where xp(ρc) =
1/9) above which the fast cooling by neutrino emissions
through the direct URCA process can occur, and the
crust-core transition density in NSs all depend sensitively
on the Esym(ρ). It is well known that the radii of NSs
are most sensitive to the pressure around 1–2ρ0 where
the symmetry energy makes a significant contribution to
the pressure [30]. Moreover, the frequencies and damping
times of various oscillations, quadrupole deformations of
isolated NSs and the tidal deformability in NS mergers
also depend on the Esym(ρ) [32]. Furthermore, there is a
degeneracy between the EOS of super-dense neutron-rich
matter and the strong-field gravity in understanding both

Density functional theories ab initio methods
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The ab initio calculations
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Figure 12: Left panel: Brueckner and Dirac-Brueckner Hartree-Fock calculations for the symmetric
matter EoS as a function of the density. Figure taken from Ref.[121]. Right panel: unitary gas bound
compared to some ab-initio calculations for pure neutron matter EoS as a function of the density. See
text and Ref.[122] for details. Figure taken from Ref.[122].

In Fig.12 (right panel), unitary gas lower bound on the pure neutron matter EoS [122] is compared
to some state-of-the-art ab initio calculations based on different interactions and many-body methods
(see original reference for details). Most of these models respect the lower bound due to repulsive three-
body forces and show discrepancies between them of few MeV at saturation density. This agrees well
with the uncertainty derived from phenomenology on the value of J . At the moment, knowledge on the
EoS from ab initio, that is, from realistic potentials is limited. Taking this warning into account, one
can inspect recent results on the neutron matter EoS from Refs.[112] labeled as G in Fig.10 or labeled
as H in the same figure [113]. Those results are very narrow as compared to other estimations for the
values of J and L coming from different experimental analysis but nicely overlap with them.

4.2.2 Macroscopic-microscopic models

Macroscopic-microscopic (mac-mic) models are phenomenological models that have been devised to
reproduce as accurately as possible nuclear masses. Indeed, those models are the most accurate in
the literature displaying root mean square deviations with respect to experimental masses of only few
hundreds of keV (300-600keV) [131, 132, 133, 134, 135, 136]. Opposite to ab initio approaches, mac-
mic models can be applied to the study of nuclear masses, deformations, radii, etc. along the whole
nuclear chart. The disadvantage is that any connection with a more fundamental theory such as QCD
is completely lost and that macroscopic and microscopic terms are not derived based on the same
theoretical grounds.

The main idea behind mac-mic models is that masses can be already qualitatively well understood
from a macroscopic picture. If this picture is later complemented by the addition of “small” microscopic

35

I. Tews , J. M. Lattimer, A. Ohnishi, and E. E. Kolomeitsev, Astrophy. J. 848(2017)105
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The tensor and short range correlations

Complications

4

NN interaction is not unique

•Non-uniqueness of nucleon forces ✘

...but phase-shift equivalent!
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TABLE VI: np (T = 0) phase shifts in different partial waves, predicted by pvCD-Bonn C.

Tlab(MeV) 1P1
3S1 ε1 3D1

3D2
1F1

3D3 ε3 3F3
3G4

1 -0.19 147.76 0.10 -0.01 0.01 0.00 0.00 0.00 0.00 0.00
5 -1.50 118.19 0.67 -0.18 0.22 -0.01 0.00 0.01 0.00 0.00
10 -3.08 102.61 1.15 -0.68 0.85 -0.07 0.01 0.08 0.00 0.01
25 -6.42 80.58 1.76 -2.80 3.73 -0.42 0.07 0.55 -0.05 0.17
50 -9.81 62.66 2.04 -6.43 8.98 -1.10 0.38 1.61 -0.26 0.72
100 -14.43 43.02 2.33 -12.24 17.22 -2.12 1.48 3.48 -0.93 2.16
150 -18.23 30.51 2.67 -16.47 22.08 -2.80 2.69 4.83 -1.74 3.63
200 -21.60 21.09 3.09 -19.67 24.54 -3.39 3.69 5.76 -2.56 5.01
250 -24.60 13.46 3.55 -22.15 25.47 -3.99 4.41 6.39 -3.35 6.26
300 -27.28 6.99 4.02 -24.11 25.47 -4.65 4.82 6.82 -4.07 7.38

FIG. 7: The half-off-shell 3S1-3D1 (panel above) and 3P2-3F2 (panel behind) potentials. The

on-shell momentum is fixed at q′ = 265 MeV.

deuteron, which are consistent with the experimental data or empirical values. It should be

noted that the quadruple moment with PV coupling in pvCD-Bonn C potentials, Qd = 0.273

fm2 is more closed to the experiment data than the one from the CD-Bonn potentials with

PS coupling, Qd = 0.270 fm2. Furthermore, the pvCD-Bonn C potential has the strongest

tensor constituent with PD = 6.06%, which has been shown in the Fig. 7.

In Fig. 8, the wave functions of deuteron at S-state, u(r) and D-state, w(r) from pvCD-

Bonn A, B, C potentials are shown in coordinate space. These wave functions were solved

firstly in momentum representation with Lippmann-Schwinger equation. They are switched

to coordinate space by Fourier transformation. For S-state, the wave functions from three

potentials are almost identical. There are significant differences in the wave functions of

15

3S1-3D1

3P2-3F2

The repulsion at 

short range distance

The strong tensor force 

at intermediate range

C. Wang, J. Hu, Y. Zhang, H. Shen, Chin. Phys. C, accepted



27/09/2019 Jinniu Hu

The tensor force is very weak in T=1

Equation of states of Pure neutron matter

The tensor effect in pure neutron matter is very weak

BHF method
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The short range correlation
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Fig. 13: (Color online) Radial dependence of the relative wave function Ψ of two nucleons interacting
via a hard-core potential VNN . Φ refers to the uncorrelated wave function.

A resummation method has to be employed in order to take care of the strong short-range repulsion
contained in VNN .

This point is more evident if we consider the extreme model of a hard-core potential, as is the case
of the potential models developed in the early 1960s. This situation is illustrated in Fig. 13. For these
potentials the perturbation expansion of the effective interaction in terms of VNN is meaningless, since
each term of the series involving matrix elements of the NN potential between unperturbed two-body
states is infinite. This is because the unperturbed wave function, in contrast to the true wave function,
gives a non-zero probability of finding a particle located inside the hard-core distance.

The traditional way out of this problem is the so-called Brueckner reaction matrix G, which is based
on the idea of treating exactly the interaction between a given pair of nucleons [131]. The G matrix,
defined as a sum of all ladder-type interactions (see Sec. 4.1.2), is used to replace the NN interaction
vertices once a rearrangement of the effective interaction perturbative series has been performed.

Recently, a new method to renormalize the NN interaction has been proposed [42, 43]. A low-
momentum model space defined up to a cutoff momentum Λ is introduced and an effective potential
Vlow−k is derived from VNN . This Vlow−k satisfies a decoupling condition between the low- and high-
momentum spaces. Moreover, it is a smooth potential which preserves exactly the on-shell properties
of the original potential and it is thus suitable to advantageously replace VNN in realistic many-body
calculations.

Secs. 4.1 and 4.2 are devoted to the description of the reaction G matrix and Vlow−k potential,
respectively.

Before doing this, however, it may be worth recalling that a method to avoid the G-matrix treatment
to eliminate effects of the repulsive core in the NN potential was proposed in the late 1960s [132, 40].
As already mentioned in the Introduction, this consists in using the experimental NN phase shifts to
deduce matrix elements of the NN potential in a basis of relative harmonic oscillator states. These
matrix elements, which have become known as the Sussex matrix elements (SME), have been used
in several nuclear structure calculations, but the agreement with experiment has been generally only
semi-quantitative. A comparison between the results obtained by Sinatkas et al. [133] using the SME
and those obtained with a realistic effective interaction derived from the Bonn A potential is made for
the N=50 isotones in [134].

4.1 The Brueckner G-matrix approach

4.1.1 Historical introduction

The concept of G matrix originates from the theory of multiple scattering of Watson [135, 136]. In this
approach, the elastic scattering of a fast particle by a nucleus was described by way of a transformed
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Fig. 13: (Color online) Radial dependence of the relative wave function Ψ of two nucleons interacting
via a hard-core potential VNN . Φ refers to the uncorrelated wave function.

A resummation method has to be employed in order to take care of the strong short-range repulsion
contained in VNN .

This point is more evident if we consider the extreme model of a hard-core potential, as is the case
of the potential models developed in the early 1960s. This situation is illustrated in Fig. 13. For these
potentials the perturbation expansion of the effective interaction in terms of VNN is meaningless, since
each term of the series involving matrix elements of the NN potential between unperturbed two-body
states is infinite. This is because the unperturbed wave function, in contrast to the true wave function,
gives a non-zero probability of finding a particle located inside the hard-core distance.

The traditional way out of this problem is the so-called Brueckner reaction matrix G, which is based
on the idea of treating exactly the interaction between a given pair of nucleons [131]. The G matrix,
defined as a sum of all ladder-type interactions (see Sec. 4.1.2), is used to replace the NN interaction
vertices once a rearrangement of the effective interaction perturbative series has been performed.

Recently, a new method to renormalize the NN interaction has been proposed [42, 43]. A low-
momentum model space defined up to a cutoff momentum Λ is introduced and an effective potential
Vlow−k is derived from VNN . This Vlow−k satisfies a decoupling condition between the low- and high-
momentum spaces. Moreover, it is a smooth potential which preserves exactly the on-shell properties
of the original potential and it is thus suitable to advantageously replace VNN in realistic many-body
calculations.

Secs. 4.1 and 4.2 are devoted to the description of the reaction G matrix and Vlow−k potential,
respectively.

Before doing this, however, it may be worth recalling that a method to avoid the G-matrix treatment
to eliminate effects of the repulsive core in the NN potential was proposed in the late 1960s [132, 40].
As already mentioned in the Introduction, this consists in using the experimental NN phase shifts to
deduce matrix elements of the NN potential in a basis of relative harmonic oscillator states. These
matrix elements, which have become known as the Sussex matrix elements (SME), have been used
in several nuclear structure calculations, but the agreement with experiment has been generally only
semi-quantitative. A comparison between the results obtained by Sinatkas et al. [133] using the SME
and those obtained with a realistic effective interaction derived from the Bonn A potential is made for
the N=50 isotones in [134].

4.1 The Brueckner G-matrix approach

4.1.1 Historical introduction

The concept of G matrix originates from the theory of multiple scattering of Watson [135, 136]. In this
approach, the elastic scattering of a fast particle by a nucleus was described by way of a transformed
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Correlation function: 
Jastrow function,  
coupled-cluster method…

Renormalize interaction: 
G-matrix, Vlow k, SRG…,UCOM  

J. Hu, H. Toki, W. Wen, and H. Shen, Phys. Lett. B 687(2010)271 
J. Hu, H. Toki, and H. Shen, J. Phys. G 38(2011)08515  
J. Hu, H. Toki, and Y. Ogawa, Prog. Theor. Exp. Phys. 103D02 (2013) 
J. Hu, H. Shen and H. Toki, Phys. Rev. C, 95(2017)025804 
J. Hu, Y. Zhang, E. Epelbaum, U. G. Meissner, and J. Meng, Phys. Rev. C 96(2017)034307
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The Lagrangian of Bonn potentials

The realistic NN interaction

September 9, 2019 1:21 WSPC/INSTRUCTION FILE RHFUNS

The properties of neutron star from realistic nucleon-nucleon interaction within relativistic Hartree-Fock model 5

The Lagrangian of Bonn potential, which will be used in this work can be written
as,37

Lint = ψ̄

[
− gσσ − gδτaδ

a −
fη
mη

γ5γµ∂
µη −

fπ
mπ

γ5γµτa∂
µπa (10)

− gωγµω
µ +

fω
2M

σµν∂
νωµ − gργµτaρ

aµ +
fρ
2M

σµν∂
ντaρ

aµ

]
ψ

+
1

2
∂µσ∂

µσ −
1

2
m2

σσ
2 +

1

2
∂µδ

a∂µδa −
1

2
m2

δδ
a2

+
1

2
∂µη∂

µη −
1

2
m2

ηη
2 +

1

2
∂µπ

a∂µπa −
1

2
m2

ππ
a2

−
1

4
WµνW

µν +
1

2
m2

ωωµω
µ −

1

4
Ra

µνR
aµν +

1

2
m2

ρρ
a
µρ

aµ ,

where

Wµν = ∂µων − ∂νωµ , (11)

Ra
µν = ∂µρ

a
ν − ∂νρ

a
µ .

ψ is the nucleon field and M the nucleon mass. Moreover, a monopole form factor
is taken into account,

Fα(q
2) =

Λ2
α −m2

α

Λ2
α + q2

, (12)

for each meson-nucleon vertex, where α is denoted to the species of meson.
Once the form factor is included into the meson exchange potential, the con-

tact terms in the one-boson-exchange interaction become momentum dependent. In
principle, all the meson exchange interactions in Bonn potential can be expressed
in the form of Yukawa functions in coordinate space even after considering the form
factor effect,

V (m, r) =
e−mr

r
. (13)

When the unitary correlation operator U is applied to the two-body NN interac-
tion, we just take the following transformation in the potential V (r) as,

c†(i, j)V (m, r)c(i, j) = V (m,R+(r)). (14)

On the other hand, the kinetic energy part after the transformation by UCOM
operator is

c†(i, j)T (i, j)− T =
∑

i<j

(α⃗i − α⃗j) ·
r⃗

r

1
√
R′

+(r)

1

r
qr

r
√
R′

+(r)
(15)

+(α⃗i − α⃗j) ·
r⃗

r

(
1

R′
+(r)

−
r

R+(r)

)
qr +

(
r

R+(r)
− 1

)
(α⃗i − α⃗j) · q⃗.

Here, qr = r⃗ · q⃗/r is defined as the radial momentum. The Dirac matrix α⃗i is an
operator of the Dirac spinor for i-th nucleon and the prime denotes differentiation

R. Machleidt. Avd. Nucl. Phys. 19(1989)189



27/09/2019 Jinniu Hu

Correlation operator 
Unitary correlation operator method

Unitary

The Hamiltonian after correlated 
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range correlation of realistic NN potentials in neutron-rich matter.66, 67 The Jas-
trow function was included in the RHF model to deal with short range correlations
of Bonn A, B, C potentials by us, as the relativistic central variational method for
neutron star.68, 69 The maximum masses and corresponding radius generated by
such method can reproduce the results from RBHF model very well. Furthermore,
another very powerful short range correlation scheme, named as unitary correla-
tion operator method (UCOM) was also applied in RHF framework to consider the
short range correlation of central force, which also can generate the similar EOS of
the neutron-rich matter with that from RBHF model.70

In present work, the properties of neutron star, such as maximum mass, radii,
and tidal deformability will be investigated in the framework of RHF model with
Bonn potentials. To remove their strong repulsion at short range distance, the
UCOM will be taken into account. This paper is arranged as follows. In section II,
the fundamental formulas of RHF model with UCOM will be given. The numerical
results and discussion will be shown in section III. In section IV, the conclusion will
be summarized in section IV.

2. The relativistic Hartree-Fock model with unitary correlation

operator method

Twenty years ago, a very attractive method was developed by Feldmeier et al.

in terms of the unitary correlation operator method (UCOM) to treat the strong
repulsion at short range distance and the tensor correlation at intermediate range of
nucleon-nucleon (NN) interaction.71, 72 The UCOM was demonstrated extremely
efficient to provide the reasonable binding energies and wave functions of light nuclei
with the modified Afnan-Tang force .71 The essence of UCOM is to introduce a
unitary transformation,

ψ = Uφ. (1)

Here, ψ indicates the exact wave function of many-body system, while φ presents
the uncorrelated trivial wave function. Hence, if the details of correlation function,
U are well known, we can obtain the exact wave function in terms of the trivial
wave one. The unitary correlation operator U is written as

U = exp{−iC}, C = C†, (2)

where C is an hermitian generator of the correlations. Hence, we can get a set of
new equation of motion for nucleon as

Hψ = Eψ, (3)

U †HUψ = Eψ.

Furthermore, C includes a two-body operator or many-body operator because a
one-body operator would only cause the unitary transformations of single particle
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states,

C =
A∑

i<j

c(i, j) + three-body + ... (4)

However, we make an approximation of UCOM up to two-body correlation terms.71

This approximation is justified for the short-range correlation, because the proba-
bility that three-body nucleons enter their interaction ranges is small at the normal
nuclear matter density. Now, we can use the two-body correlation operator u(i, j)
instead of generalized correlation operator U . For a Hamiltonian in nuclear matter,
which consists of a one-body kinetic energy and a two-body potential,

H =
A∑

i

Ti +
A∑

i<j

V (i, j), (5)

after the modification of UCOM, it will be changed as

H̃ = u†(i, j)Hu(i, j) (6)

=
A∑

i

Ti +
A∑

i<j

Ṽ (i, j),

where an effective two-body interaction Ṽ (i, j) is generated from the short range
correlation on two-body kinetic energy and bare NN interaction,

Ṽ (i, j) = u†(i, j)V u(i, j) + u†(i, j)(Ti + Tj)u(i, j)− (Ti + Tj). (7)

This effective interaction including the short range correlation plays a same role as
the G-matrix in Brueckner method.53, 54

In actual calculation, it is not convenient to directly adopt the operator form.
This correlator, u(i, j), can be expressed in terms of a coordinate transformation
R+(r) for the radial distance,

R+(r) = r + α

(
r

β

)η

exp(− exp(r/β)). (8)

The parameter α determines the overall amount of the shift and β the length scale.
η controls the steepness around r = 0. The double-exponential can ensure the
correlator just has effect in the short-range distance. The most common operators
in Hamiltonian are transferred with following in the framework of UCOM,

u†(i, j)ru(i, j) = R+(r) (9)

u†(i, j)V (r)u(i, j) = V (R+(r))

u†(i, j)pru(i, j) =
1

√
R′

+(r)

1

r
pr

1
√
R′

+(r)
,

where pr is the radial momentum, ⟨r⃗|pr|φ⟩ = −i ∂
∂r ⟨r⃗|φ⟩. The other operators related

with angular momentum, as l⃗ and s⃗ are unchanged.
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This approximation is justified for the short-range correlation, because the proba-
bility that three-body nucleons enter their interaction ranges is small at the normal
nuclear matter density. Now, we can use the two-body correlation operator u(i, j)
instead of generalized correlation operator U . For a Hamiltonian in nuclear matter,
which consists of a one-body kinetic energy and a two-body potential,

H =
A∑

i

Ti +
A∑

i<j

V (i, j), (5)

after the modification of UCOM, it will be changed as

H̃ = u†(i, j)Hu(i, j) (6)

=
A∑

i

Ti +
A∑

i<j

Ṽ (i, j),

where an effective two-body interaction Ṽ (i, j) is generated from the short range
correlation on two-body kinetic energy and bare NN interaction,

Ṽ (i, j) = u†(i, j)V u(i, j) + u†(i, j)(Ti + Tj)u(i, j)− (Ti + Tj). (7)

This effective interaction including the short range correlation plays a same role as
the G-matrix in Brueckner method.53, 54

In actual calculation, it is not convenient to directly adopt the operator form.
This correlator, u(i, j), can be expressed in terms of a coordinate transformation
R+(r) for the radial distance,

R+(r) = r + α

(
r

β

)η

exp(− exp(r/β)). (8)

The parameter α determines the overall amount of the shift and β the length scale.
η controls the steepness around r = 0. The double-exponential can ensure the
correlator just has effect in the short-range distance. The most common operators
in Hamiltonian are transferred with following in the framework of UCOM,

u†(i, j)ru(i, j) = R+(r) (9)

u†(i, j)V (r)u(i, j) = V (R+(r))

u†(i, j)pru(i, j) =
1

√
R′

+(r)

1

r
pr

1
√
R′

+(r)
,

where pr is the radial momentum, ⟨r⃗|pr|φ⟩ = −i ∂
∂r ⟨r⃗|φ⟩. The other operators related

with angular momentum, as l⃗ and s⃗ are unchanged.
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The Hamiltonian of NN interaction

The effective interaction 
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Table 1
Various energy components of meson exchange potentials to the EOS of pure neutron matter at ρ = 0.15 fm−3. The kinetic energy is 25.7 MeV and the total energy is
12.2 MeV.

i σ ω π ρ δ η

E H,i (MeV) −109.2 75.3 0.0 3.1 −1.4 0.0
E F ,i (MeV) 42.5 −26.8 4.7 −1.9 0.8 −0.6
E H F ,i (MeV) −66.7 48.5 4.7 1.2 −0.6 −0.6

Fig. 1. The EOS of pure neutron matter calculated with the Bonn-A potential. The
solid curve is the result of the RHFU model, which is compared with the result of
the RBHF theory shown by triangle dots [8]. The dot-dashed curve does not include
the short range correlation.

in Fig. 1. We reproduce completely the result of the RBHF theory
[8]. In order to see the effect of the short range correlation, we
remove the UCOM transformation, and plot the EOS by the dot-
dashed curve in Fig. 1. The effect of the short range correlation is
very large and increases with density.

We show various components of potential energies for pure
neutron matter at ρ = 0.15 fm−3, which is close to the satura-
tion density of symmetric nuclear matter in Table 1. E H,i are the
Hartree contributions from various mesons, while E F ,i are those
from the Fock contributions. We find that σ and ω mesons provide
the main contributions to the total energy. The other components
of meson exchange potentials as pion and ρ meson exchanges are
very small. The pion contribution is larger than the ρ meson con-
tribution.

The Dirac nucleon mass in nuclear matter is defined as M∗
D,i =

MN + ΣS,i , where ΣS,i are the scalar components of nucleon self-
energy for protons and neutrons. There are striking differences
found in the literatures about the Dirac proton and neutron masses
due to their calculational methods in the relativistic Brueckner–
Hartree–Fock theory. In Ref. [6], the neutron Dirac mass is larger
than the proton mass, while the situation is completely opposite
in the RBHF calculation by Dalen et al. who used the projection
techniques [8]. In our RHFU model, the proton and neutron Dirac
masses are M∗

D,p = 703 MeV and M∗
D,n = 612 MeV respectively at

ρ = 0.15 fm−3. These values are close to the results of Dalen et al.
[8], where M∗

D,p = 724 MeV and M∗
D,n = 606 MeV.

The successful result for pure neutron matter encourages us
to consider the EOS’s of other ratios of neutrons and protons in
asymmetric nuclear matter. Therefore, we plot the EOS’s of asym-
metric nuclear matter for various values of the asymmetry param-
eter δ = (ρn −ρp)/(ρn +ρp) with Bonn-A potential in Fig. 2. Here,
δ = 1 corresponds to pure neutron matter and δ = 0 corresponds

Fig. 2. The EOS’s of asymmetric nuclear matter with the Bonn-A potential for various
proton-to-neutron ratios δ, where δ = (ρn − ρp)/(ρn + ρp). The continuous curves
are the results of the RHFU model for various δ. The corresponding results of the
RBHF theory are shown by various symbols, which are taken from Ref. [8].

to symmetric nuclear matter. The results for neutron-rich matter
are satisfactory until δ = 0.8. We start to see small deviation of
the RHFU results from the RBHF ones in the low density region.
As the δ decreases further the deviation of the two results be-
comes significant. By the time of symmetric nuclear matter δ = 0,
we are not able to reproduce the RBHF results in particular in the
low density regions ρ ! 0.2 fm−3. We have expected large devia-
tion of the RHFU results from those of the RBHF theory for δ = 0.
In this case, the binding energy per nucleon is −14.48 MeV at
saturation Fermi momentum, kF = 1.44 fm−1 and the symmetry
energy is 33.56 MeV. The incompressibility K is about 400 MeV
which means the EOS in the RHFU model is stiffer than the one of
the RBHF theory. We discuss here the properties of the UCOM pa-
rameters. As mentioned in the introduction, the tensor interaction
has a significant role on symmetric nuclear matter by providing a
large attraction, which is large at the low density and decreases
with density due to the Pauli blocking effect. With the choice of
the UCOM parameters to reproduce the EOS of pure neutron mat-
ter, we find the RHFU model provides the EOS deviating to the
under binding direction. If we use a larger β , the EOS is found
more bound than that of the RBHF theory in the high density re-
gion.

We discuss the different potentials for the EOS results now.
For this, we take the three potentials of the Bonn group, Bonn-A,
Bonn-B and Bonn-C, where the large difference among these
three potentials lies on the strength of the tensor interaction. The
Bonn-A has the weakest tensor strength [6]. We show the re-
sults of the EOS’s of pure neutron and symmetric nuclear matter
in Fig. 3. The EOS’s of the three cases almost agree each other
for pure neutron matter. Again, this fact indicates that the tensor
interaction does not contribute much for pure neutron matter. Ac-
tually, this situation also has been proven in Fig. 1 of Ref. [18] with
RBHF theory. On the other hand, the EOS’s of symmetric nuclear

Pure neutron matter Asymmetry nuclear matter

The present framework can reproduce the results of RBHF for PNM 
For SNM, the tensor correlation is important at low density region
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Fig. 3. The EOS of symmetric nuclear matter and pure neutron matter with the NN
interaction of Bonn-A, Bonn-B and Bonn-C.

matter differ each other largely. For the case of Bonn-A poten-
tial, the resulting EOS is not so bad, but other cases are largely
different from the RBHF results and the saturation properties. In
this case, the tensor interaction plays an important role to pro-
vide a large binding effect as has been demonstrated by Kaiser
and Weise [9].

In summary, we have successfully built a framework to deal
with neutron rich matter with a bare nucleon–nucleon interaction.
For this, it was essential to include the short range correlation in
terms of the unitary correlation operator method (UCOM) in the
RHF model. With the form factor of the nucleon–nucleon inter-
action, we have completely reproduced the EOS of pure neutron
matter in RBHF model with Bonn-A potential. The RHFU model
turned out to be good until the asymmetry parameter δ > 0.8.
As the asymmetry parameter δ is decreased so that the system
approaches symmetric nuclear matter, we have found that the de-
viations of the EOS’s become larger and larger in particular in the
low density region. The RHFU model works well for neutron-rich
matter with the asymmetry parameters δ above 0.8. This is related
with the construction of the RHFU model, which does not include
the tensor interaction. The tensor interaction is indispensable for
symmetric nuclear matter. We have studied the interaction depen-
dence on the EOS’s. As for the neutron matter, the results are not

much different among Bonn-A, Bonn-B and Bonn-C potentials. On
the other hand, for the symmetric nuclear matter these three po-
tentials provide largely different EOS’s. This is related with the fact
that the tensor interactions are different among the three poten-
tials.

It is very important to find that the RHF model with the UCOM
is able to reproduce the EOS’s of neutron-rich matter of the sophis-
ticate RBHF theory by using the bare nucleon–nucleon interaction.
It is then straightforward to calculate EOS’s in various situations
as finite temperature and higher densities within the RHFU model
for neutron-rich matter. We are able also to calculate the neutrino
reaction rates in neutron-rich matter, which are necessary for for-
mation of hot neutron star in the course of supernova explosion. In
the region where experimental data are available for smaller asym-
metry parameter δ < 0.5, we may introduce several parameters for
the coupling constants of the Lagrangian in the RHFU model to be
fixed by experimental data.
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empirical data, which is mainly dominated by the tensor force. However in present
framework, the tensor correlation is not considered.67 In Fig. 1, the symmetry
energies in RHFU model are presented as functions of density. The symmetry energy
generated by the isospin symmetry plays a very important role for the neutron-rich
system. The symmetry energy at empirical saturation density, ρ0 = 0.16 fm−3 is just
26.85 MeV for Bonn A potential, while its most probable value is Esym = 31.7±3.2
MeV.18 The several MeV difference is generated by the lack of tensor force. With
density increasing, the short range correlation becomes more important. At 2ρ0, the
symmetry energy in our framework is 54.00 MeV. It is consistent with the recent
ASY-EOS73 and RBHF theory.65 The symmetry energies derived from Bonn B and
Bonn C potentials are less than those from Bonn A potential, since their binding
energies of symmetric nuclear matter are larger.

Fig. 1. The symmetry energies as functions of density within Bonn A, B, C potentials in the
framework of RHFU model.

Then, the EOSs of neutron star matter, i.e., ε − P relation, are evaluated by
using the RHFU model with Bonn potentials as shown in Fig. 2. In the very low
density region of EOS, corresponding the crust of neutron star, there are nonuni-
form structures such as pasta phases. These inhomogeneous nuclear matter can be
described by the Thomas-Fermi approximation. In this work, the EOS from TM1
interaction is used, i. e. Shen EOS,74 which will be matched with the EOSs from
RHFU model at crust-core transition density. The EOSs from Bonn A, B, C poten-
tials at high density are very similar. It is because that the short range correlation
plays the dominant role when the distances of nucleons decrease gradually. The

Asymmetry nuclear matter

J. Hu, H. Toki, W. Wen, and H. Shen, Phys. Lett. B 687(2010)271 

Symmetry energy

The symmetry energies from three Bonn potentials are different due to  
the tensor effects on SNM 
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Fig. 3. The fractions of neutron, proton, electron and muon within Bonn A, B, C potentials in
the framework of RHFU model.

for the free Fermi gas in neutron star.76

Fig. 4. The fraction of proton within Bonn A, B, C potentials in the framework of RHFU model.

Once the EOSs are obtained, the global properties of neutron star can be calcu-
lated by solving TOV equation. The mass-radii relation and mass-density relations

The fractions of baryons and leptons

The Direct URCA process will firstly occur at Bonn A potential due to  
its largest symmetry energy.   



September 9, 2019 1:21 WSPC/INSTRUCTION FILE RHFUNS

The properties of neutron star from realistic nucleon-nucleon interaction within relativistic Hartree-Fock model 11

are shown in Figs. 5 and 6. The maximum masses of neutron star from Bonn po-
tentials are all around 2.2M⊙ and the corresponding radius are 11.18− 11.48 km,
which are consistent with results from RBHF model and relativistic central vari-
ational method with same potentials.56, 69 It is naturally to understand that the
maximum masses of neutron star are same, since three Bonn potentials generate
the analogous EOSs at high density. However, the differences of EOS in the inter-
mediate density will influence the mass-radii relation of lower neutron star mass,
that are measured in the observations of pulsar star at most. The radius at 1.4M⊙,
R1.4 , from Bonn A, B, C potentials are 12.40, 12.62 and 12.90 km, respectively.
These radius are consistent with the latest constraints from GW170817, where R1.4

should be less than 13.8 km.12, 15, 64 The mass-density relations among three Bonn
potentials are very similar. The slight differences arise at low density region due
to the EOSs. The central densities of the maximum mass are around 0.95 fm−3,
that are higher than those in RMF model, like TM1 parameter set. These densities
reduce to 0.40 fm−3 for 1.4M⊙ neutron star.

Fig. 5. The mass-radii relations of neutron star withing Bonn A, B, C potentials.

When there is a collision between two neutron stars, the tidal deformability of a
star in an external gravitational filed from another star can be extracted from the
gravitational wave of two neutron star merger. Therefore, the tidal deformability of
neutron star is growing into another new constraint to the EOS, besides its mass
and radii. As shown in Eq.(20), the dimensionless tidal deformability is related to
the compactness parameter and the dimensionless second Love number, which is

September 9, 2019 1:21 WSPC/INSTRUCTION FILE RHFUNS

12 Y. Zhang, P. Liu, and J. Hu

Fig. 6. The mass-density relations of neutron star withing Bonn A, B, C potentials.

obtained by solving a differential equation related to the pressure, energy density,
mass, and the speed of sound. The second Love number as a function of compactness
from Bonn A, B, C potentials are plotted in Fig. 7. The second Love number
firstly increases with compactness parameter rapidly, reaches the maximum around
C = 0.09 and then decreases slowly. The maximum values of second Love number
from Bonn A, B, C potentials are 0.142, 0.131, and 0.123, respectively, which are
consistent on the other methods, like RMF an SHF frameworks.77

After the second Love number, k2 calculated, the dimensionless tidal deforma-
bility, Λ can be immediately obtained, which are shown in Fig. 8 as a function
of neutron star mass within the RHFU model. It rapidly reduces with neutron
star mass increasing and approaches to zero at the maximum neutron star mass.
When compactness parameter, C is small, the value of k2 is also very small. Due
to Λ ∝ C−5, therefore at small neutron mass, the Λ is very large. Inversely, at
large neutron mass region, the C is a finite number, while k2 becomes very small
again, which generates a very small Λ. Furthermore, the Λ from Bonn C potential
is largest. It is because that the radii of neutron star from Bonn C is the largest
one at a fixing neutron star mass. In this case, Λ ∝ R5. The masses of neutron star
in GW170817 event were regarded to around 1.4M⊙. Therefore, the dimensionless
tidal deformability at 1.4M⊙, Λ1.4, is a more useful quantity to constrain the EOS.
There were already many works to analyze the data from GW170817 to extract the
value of Λ1.4. In general, it is believed that Λ1.4 should be less than 800 at least.64

In this work, the Λ1.4 from Bonn A, B, C potentials are 292, 318, and 354, respec-
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The properties of neutron star

Mass-radii relation Mass-density relation

The maximum masses of neutron star are about 2.2M⊙  
The radii at 1.4M⊙ are less than 13 km
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Fig. 7. The second Love number as a function of compactness from Bonn A, B, C potentials.

tively. These values are completely consistent with the present constraint about
Λ1.4.

Fig. 8. The tidal deformability as a function of neutron star mass from Bonn A, B, C potentials.
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Fig. 7. The second Love number as a function of compactness from Bonn A, B, C potentials.

tively. These values are completely consistent with the present constraint about
Λ1.4.

Fig. 8. The tidal deformability as a function of neutron star mass from Bonn A, B, C potentials.

Love number Tidal deformability

The tidal deformabilities at 1.4M⊙ are less than 400
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In GW170817 event, the chirp mass M = (m1m2)3/5(m1 +m2)−1/5 was mea-
sured, where m1 and m2 are the masses of two merger neutron stars. However, the
accurate values of these two neutron stars cannot be obtained from the gravitation-
wave signal. There is only possible distribution. Therefore, it is assumed that the
heavier neutron star is in the range from 1.365M⊙ to 1.600M⊙. The mass of lighter
one is from 1.170M⊙ to 1.365M⊙ with the constraint of chirp mass. The relations
between their tidal deformabilities, Λ1(m1) and Λ2(m2) is given in Fig. 9 from Bonn
A, B, C potentials. The 90% and 50% credible region for the tidal deformabilities
of two neutron stars from the analysis of GW170817 for the low-spin prior are pre-
sented as light cyan area and dark cyan area, respectively.8 It can be found that
the tidal deformabilities of the binary stars from RHFU model are located in the
constraint region from GW170817.

Fig. 9. The tidal deformabilities of the binaries in GW170817 event from Bonn A, B, C poten-
tials, where the light and deep shadow regions ar the 90% and 50% credible intervals from the
GW170817, respectively.

4. Conclusions

The properties of neutron star were investigated by the relativistic Hartree-Fock
model with unitary correlation operator method (RHFU). The realistic NN inter-
action, Bonn potentials were used. Their strong repulsions at short range distance
were taken into account by unitary correlation operator method (UCOM), while
the tensor correlation was neglected due the neutron-rich environment at neutron

Data from: B. P. Abbott et al. Phys. Rev. Lett. 121(2018)161101
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The properties of neutron star were calculated in 
framework relativistic Hartree-Fock model with UCOM 

The maximum masses and radius from Bonn potentials are 
almost identical.  

The properties of neutron star at 1.4M⊙ from three Bonn 
potentials are distinguished due to their different density 
dependences of symmetry energy. 

                  Thank you very much  
              for your attention!

The summary
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states,

C =
A∑

i<j

c(i, j) + three-body + ... (4)

However, we make an approximation of UCOM up to two-body correlation terms.71

This approximation is justified for the short-range correlation, because the proba-
bility that three-body nucleons enter their interaction ranges is small at the normal
nuclear matter density. Now, we can use the two-body correlation operator u(i, j)
instead of generalized correlation operator U . For a Hamiltonian in nuclear matter,
which consists of a one-body kinetic energy and a two-body potential,

H =
A∑

i

Ti +
A∑

i<j

V (i, j), (5)

after the modification of UCOM, it will be changed as

H̃ = u†(i, j)Hu(i, j) (6)

=
A∑

i

Ti +
A∑

i<j

Ṽ (i, j),

where an effective two-body interaction Ṽ (i, j) is generated from the short range
correlation on two-body kinetic energy and bare NN interaction,

Ṽ (i, j) = u†(i, j)V u(i, j) + u†(i, j)(Ti + Tj)u(i, j)− (Ti + Tj). (7)

This effective interaction including the short range correlation plays a same role as
the G-matrix in Brueckner method.53, 54

In actual calculation, it is not convenient to directly adopt the operator form.
This correlator, u(i, j), can be expressed in terms of a coordinate transformation
R+(r) for the radial distance,

R+(r) = r + α

(
r

β

)η

exp(− exp(r/β)). (8)

The parameter α determines the overall amount of the shift and β the length scale.
η controls the steepness around r = 0. The double-exponential can ensure the
correlator just has effect in the short-range distance. The most common operators
in Hamiltonian are transferred with following in the framework of UCOM,

u†(i, j)ru(i, j) = R+(r) (9)

u†(i, j)V (r)u(i, j) = V (R+(r))

u†(i, j)pru(i, j) =
1

√
R′

+(r)

1

r
pr

1
√
R′

+(r)
,

where pr is the radial momentum, ⟨r⃗|pr|φ⟩ = −i ∂
∂r ⟨r⃗|φ⟩. The other operators related

with angular momentum, as l⃗ and s⃗ are unchanged.
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The Lagrangian of Bonn potential, which will be used in this work can be written
as,37

Lint = ψ̄

[
− gσσ − gδτaδ

a −
fη
mη

γ5γµ∂
µη −

fπ
mπ

γ5γµτa∂
µπa (10)

− gωγµω
µ +

fω
2M

σµν∂
νωµ − gργµτaρ

aµ +
fρ
2M

σµν∂
ντaρ

aµ

]
ψ

+
1

2
∂µσ∂

µσ −
1

2
m2

σσ
2 +

1

2
∂µδ

a∂µδa −
1

2
m2

δδ
a2

+
1

2
∂µη∂

µη −
1

2
m2

ηη
2 +

1

2
∂µπ

a∂µπa −
1

2
m2

ππ
a2

−
1

4
WµνW

µν +
1

2
m2

ωωµω
µ −

1

4
Ra

µνR
aµν +

1

2
m2

ρρ
a
µρ

aµ ,

where

Wµν = ∂µων − ∂νωµ , (11)

Ra
µν = ∂µρ

a
ν − ∂νρ

a
µ .

ψ is the nucleon field and M the nucleon mass. Moreover, a monopole form factor
is taken into account,

Fα(q
2) =

Λ2
α −m2

α

Λ2
α + q2

, (12)

for each meson-nucleon vertex, where α is denoted to the species of meson.
Once the form factor is included into the meson exchange potential, the con-

tact terms in the one-boson-exchange interaction become momentum dependent. In
principle, all the meson exchange interactions in Bonn potential can be expressed
in the form of Yukawa functions in coordinate space even after considering the form
factor effect,

V (m, r) =
e−mr

r
. (13)

When the unitary correlation operator U is applied to the two-body NN interac-
tion, we just take the following transformation in the potential V (r) as,

c†(i, j)V (m, r)c(i, j) = V (m,R+(r)). (14)

On the other hand, the kinetic energy part after the transformation by UCOM
operator is

c†(i, j)T (i, j)− T =
∑

i<j

(α⃗i − α⃗j) ·
r⃗

r

1
√
R′

+(r)

1

r
qr

r
√
R′

+(r)
(15)

+(α⃗i − α⃗j) ·
r⃗

r

(
1

R′
+(r)

−
r

R+(r)

)
qr +

(
r

R+(r)
− 1

)
(α⃗i − α⃗j) · q⃗.

Here, qr = r⃗ · q⃗/r is defined as the radial momentum. The Dirac matrix α⃗i is an
operator of the Dirac spinor for i-th nucleon and the prime denotes differentiation
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Fig. 1. The multifaceted influence of the nuclear symmetry energy.

(i.e., nn and pp interactions versus np interactions). The energetics associated with the n − p asymmetry
can be characterized by the so-called symmetry energy, Esym, which is the leading coefficient of an
expansion of the total energy with respect to asymmetry: E(n, !) ≈ E0(n) + Esym!2 · · ·. The energy
"̂ = "n − "p!4Esym!, where "n and "p are the neutron and proton chemical potentials, respectively,
is crucial in determining reaction rates involving electrons and neutrinos, particle abundances, etc., in
astrophysical contexts such as supernova dynamics, proto-neutron star evolution, the r-process, the long-
term cooling of neutron stars, and the structure of cold-catalyzed neutron stars (i.e. their masses, radii
and crustal extent), etc. The pervasive role of the isospin dependence of strong interactions in nuclear
processes in the laboratory and the cosmos is sketched in Fig. 1. In this work some of these connections
will be discussed.

Recently, several empirical relationships have been discovered that underscore the role of isospin
interactions in nuclei and neutron stars. These include correlations between:

(1) The neutron star radius R and the pressure P of neutron star matter: Lattimer and Prakash [1,2]
found that the quantity RP−1/4 is approximately constant, for a given neutron star mass, for a wide
variety of equations of state when the pressure P of beta-equilibrated neutron-star matter is evaluated
at a density in the range n0 to 2n0, where n0 denotes equilibrium nuclear matter density. Since the
pressure of nearly pure neutron matter (a good approximation to neutron star matter) near n0 is
approximately given by n2!Esym/!n, the density dependence of the symmetry energy just above n0
will be a critical factor in determining the neutron star radius.

A. Steiner, M. Prakash, J. Lattimer and P. Ellis, Phys. Rep. 411(2005)325
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FIG. 5: The np (T = 1) phase shifts and mixing parameters in different partial waves (J ≤ 3).

The triangles, open circles, and crosses represent the phase shifts predictions from Nijmegen PWA,

CD-Bonn potential, chiral N4LO potential by Entem et al., respectively.

FIG. 6: The np (T = 0) phase shifts and mixing parameters in different partial waves (J ≤ 3).

The triangles, open circles, and crosses represent the phase shifts predictions from Nijmegen PWA,

CD-Bonn potential, chiral N4LO potential by Entem et al., respectively.

As an example, the coupling constants and masses of σ1 and σ2 mesons for pp, nn, np

components of pvCD-Bonn C potential up to total angular momentum J = 4 are listed

in Table II. Both the cut-off momenta of σ1 and σ2 mesons are taken as Λσ1, σ2
= 2500

MeV. The blank denotes that there is no meson contribution. The detailed values of phase

shifts for pp, nn, np scattering are tabulated in Tables III-VI. For all channels whose total

12

np potential T=0 case


