Influence of the neutron star cooling on X-ray burst

> Akira Dohi (Kyushu Univ.) 土肥 明 (九州大学)

In collabolation with Tsuneo Noda (Kurume Inst. Tech.) and

Masa-aki Hashimoto (Kyushu Univ.)

Table of Contents

- Introduction of LMXB and X-ray burst
- *Clocked burster* GS1826-24
	- Observational feature about the light curves
	- Some numerical studies about modeling of GS1826-24
- \bullet Setup of our burst calculations
	- Focus on the influence of nucleon Direct Urca process (DU)
- Results of some light curves
- Conclusion

Low Mass X-ray Binary (LMXB) and X-ray Burst

- Property of LMXB
	- *M*donar ≲ 1 *M[⊙]*
	- \bullet Old system ($t \gtrsim 1$ Gyr) with weak magnetic field $(B \lesssim 10^{12} \text{ G})$
	- Roche-Lobe Overflow
- X-ray burst
	- ¹ Accreting matter on NS
	- ² The flowing matter compresses NS until it becomes hot and dense enough to ignite
	- ³ Outburst by unstable H or He nuclear burning

LMXB 1.4 M_{\odot} $0.6 M_{\odot}$ $\overline{}$ $o=2.0 R_{\odot}$ $P_{orb} = 5.6$ hours (Tauris & Heuvel. 2005) GAS₂ **DISK DONAR**

The characteristic parameter of X-ray burst

Textbook/Clocked burster GS1826-24

- Observed for the first time by *Ginga* in 1998.
- 3 series of outbursts have been observed in 1997(8), 2000, and 07.
- Mass accretion rate is not changed so much and the shape of the light curve is almost the same.
- All Non-Photospheric Radius Expansion bursts.
- It's useful to examine the validity of burst models.

Observed ∆*t* of *clocked burster* GS1826-24

The comparison of some previous X-ray burst models with *clocked burster* GS1826-24

The comparison of some previous X-ray burst models with *clocked burster* GS1826-24

- However, they all consider only outside NS crust.
- Our aim is to calculate X-ray burst from center of NS in order to consider the inner physics (e.g. Crust Heating, *ν* Cooling)

Energy Sources in Accreting NS

• OUTER PHYSICS OF NS

- Release of Gravitation
- Nuclear Burning
	- 3*α* reaction*→*HCNO cycle (Wallance & Woosley 1981) *→αp* process*→rp* process (Woosley & Weaver 1981,84) *→*SnSbTe cycle (Schatz+ 2001)
- INNER PHYSICS OF NS
	- Crustal Heating (Haensel & Zdnick 1990, 2008)
	- Photon Emission
	- *ν* Emission $(Slow + Fast Cooling)$

Energy Sources in Accreting NS

• OUTER PHYSICS OF NS

- Release of Gravitation
- Nuclear Burning
- 3*α* reaction*→*HCNO cycle (Wallance & Woosley 1981) *→αp* process*→rp* process (Woosley & Weaver 1981,84)
- *→*SnSbTe cycle (Schatz+ 2001)
- INNER PHYSICS OF NS
	- Crustal Heating (Haensel & Zdnick 1990, 2008)
	- Photon Emission
	- *ν* Emission $(Slow + Fast Cooling)$
- yck-RAD TON COOLING **CALIFORNIA CALIFORNIA** o_{l_2} **MERITA CRISTIN** W. Island **145** OUTER COMMON G Ê <u>superfluidity</u>

 $\log_{10}\rho_B[{\rm g/cc}]$

Above all, DU may influence the burst parameters. *⇒* We investigate the influence of DU on recurrence time ∆*t*.

Setup

- *M.Y.Fujimoto*'s code which can solve relativistic steller evolution equations (Fujimoto et al. 1984)
- Approximate reaction network with 88 nuclei is adopted (M. Hashimoto, AD et al., 2019, *submitted*)
- 11 burst profiles for analysis, considering the maximum times of observed series of outbursts (2000)
- Accretion rate *^M*˙ *[−]*⁹ = 3 [10*−*⁹ *^M⊙/*yr]
- $X/Y = 2.9$ and $Z = 0.002, 0.02$
- $M = 1.4 M_{\odot}$, $2.0 M_{\odot}$ (R=12.7, 11.3km), respectively.
- Slow *ν* cooling processes (Modified Urca + Bremsstrahlung) are considered in all models.
- No rotation, no magnetic field

Construction of Initial Models in Quiescence

- \bullet With DU, the temperature at interior NS cools rapidly.
- \bullet We use the temperature structure being constant $(\gtrsim 10^5\ \mathrm{yr})$ as initial model of burst calculation.

DU effect on burst with 1.4 M_\odot and $Z=0.02$

• w/o DU: $\langle \Delta t \rangle = 2.15$ hr

• w DU: $\langle \Delta t \rangle = 2.32$ hr

- Δt becomes longer for another 0.17 hr(+8%) by DU.
- Neglegible in conparison with GS1826-24.

DU effect on burst with 2.0 M_{\odot} and $Z = 0.02$

• w/o DU: $\langle \Delta t \rangle = 2.09$ hr

- \bullet Δt becomes longer for another 0.21 $\rm hr(+10\%)$ by $\rm DU$
- \bullet Longer than in case of 1.4 M_\odot due to higher central density
- However neglegible in conparison with GS1826-24.

DU effect on burst with 2.0 M_\odot and $Z=0.002$

 $\bullet \,$ w/o DU: $\langle \Delta t \rangle = 3.21$ hr

- \bullet Δt becomes longer for another 0.86 hr(+27%) by DU.
- \bullet The model with DU is consistent with GS1826-24

DU effect on burst with 2.0 M_\odot and $Z=0.002$

• w/o DU: $\langle \Delta t \rangle = 3.21$ hr

- \bullet Δt becomes longer for another 0.86 hr(+27%) by DU.
- \bullet The model with DU is consistent with GS1826-24
- *ν* Cooling could be a parameter to account for GS1826-24 Akira Dohi QCS2019(釜山) September 27, 2019 13 / 14

Summary of My Talk

- We calculated X-ray burst with the Direct Urca process as inner physics of neutron star and show that ν cooling is one of the important factors for X-ray burst.
- In our model with $M = 2M_{\odot}$, $Z = 0.002$, $M_{-9} = 3$, we can see the effect of DU on Δt (+27%)
- However, we should compare the model with the light curve of GS1826-24 every burst as well.

```
^{**} In future work ^{**}
```
Akira Dohi

Another calculations with some input parameters $(M, R, \dot{M}_{-9}, Z, X/Y, \text{and so on})$

Thank you for your attention