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QCD at extreme conditions 

QCD has complicated phase structure  
as a function of temperature and density 
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QCD at extreme conditions 

I. Each QCD phases defined by its own order parameters 

II. Behavior of order parameters governed by dynamics of symmetry 

III. Symmetry and its breakdown governed by vacuum structure 

Chiral symmetry ⬌ Quark (chiral) condensate: Hadron or not? 
Center symmetry ⬌ VEV of Polyakov loop: Confined or not? 

Color symmetry ⬌ Diquark condensate: Superconducting or not? 
Color-flavor symmetry (locking) ⬌ Diquark condensate at high density 

QCD phase ⬌ Symmetries of QCD ⬌ QCD vacuum
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Why are heavy-ion collision experiments special for QCD? 

Phase structure of QCD Nontrivial QCD vacuum

Chiral symmetry

C/P/T-invariance 
Color symmetry 

Flavor symmetry

Z(N) center 
symmetry

Symmetries and their breakdown
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QCD at extreme conditions 

SCSB results in nonzero chiral (quark) condensate due to nonzero effective  
quark mass even in the chiral limit, i.e. m=0 

Nonzero <qq> indicates hadron (Nambu-Goldstone) phase, whereas 
zero <qq> does non-hadronic phase, not meaning deconfinement 

Thus, <qq> is an order parameter for chiral symmetry 

In the real world with nonzero quark current mass ~ 5 MeV,  
at low density, there appears crossover near T ~ 0, and it becomes  

1st-order phase transition as density increases 

In the vicinity of critical density, there are various and complicated  
phases, such as color-superconducting, quarkyonic phase, etc.
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QCD and effective models 

Instanton interprets well the spontaneous chiral symmetry breaking  
(SCSB) and U(1) axial anomaly (Witten-Veneziano theorem), etc. 

Technically, it has only two model parameters for light-flavor sector 
in the large Nc limit: Average instant on size & inter-instanton distance 

Unfortunately, there is NO confinement!!! 

Some suggestions for the confinement with instanton physics: 
Dyon, nontrivial-holonomy caloron, etc. 

It has been believed that confinement is not so relevant in  
ground-state hadron spectra, in contrast to resonances,  

Regge behavior, Hagedorn spectrum, etc.
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Introduction: QCD and effective models 

A sophiscated QCD-like model: Liquid-Instanton Model (LIM) 
Instanton: A semi-classical solution which minimize YM action 

Simpler understanding of instanton: Tunneling path of vacua 
Or, instanton is a low-energy effective-nonperturbative gluon     
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Introduction: QCD and effective models 
  

Partition function of LIM 

Example: Pion weak-decay constant
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Medium-modified Effective models 

T-modified LIM:(mLIM) Instanton parameters are modified with  
trivial-holonomy caloron solution (Not dyon, vortex, or something) 

Caloron is an instanton solution for periodic in Euclidean time, i.e 
temperature, but no confinement 

Distribution func. via trivial-holonomy (Harrington-Shepard) caloron 

Using this, we modify the two instanton parameters as functions of T
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Medium-modified Effective models 

mLIM parameters (left) and effective quark mass M (right)  

Hence, effective quark mass plays the role of UV regulator 

instanton

instanton
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QGP and transport coefficients  

▪ Recent heavy-ion collision experiment showed possible evidence of QGP 

▪ Interpreted well by hydrodynamics with small viscosity: ~ perfect fluid 

▪ Properties of QGP can be understood by transport coefficients: 

Bulk and sheer viscosities, electrical conductivity, and so on   

▪ They can be studied using Kubo formulae via linear response theory 

Strong magnetic (B) field in QGP 
▪ RHIC experiments observed strong B field ~ (pion mass)2  
▪ Strong B field modify nontrivial QCD vacuum structure 

▪ Charged-current asymmetry: Chiral magnetic effect (wave) 

▪ B field enhances SBCS: Magnetic catalysis 

B. I. Abelev et al. (STAR Collaboration), Phys. Rev. Lett.103, 251601 (2009).

K. Fukushima, D. E. Kharzeev, and H. J. Warringa, Phys.Rev. D 78, 074033 (2008).

D. P. Menezes, M. Benghi Pinto, S. S. Avancini, A. Perez Martinez, and C. Providencia, Phys. Rev. C 79, 035807 (2009).

F. Karsch, D. Kharzeev, and K. Tuchin, Phys. Lett. B 663, 217 (2008).

 J. Adams et al.  [STAR Collaboration],  Nucl. Phys. A, 102 (2005)
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Various transport coefficients

Electric conductivity 

Bulk viscosity Shear viscosity 

Heat conductivity 

Kubo formula: 
Current-current 

correlation
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Shear viscosity of QGP (Instanton vacuum) 

Entropy density shows increasing functions of T  
Min[η/s]  ~ 1/(4π):KSS bound (Kovtun, Son, and, Starinets) 
LQCD, NJL, and ChPT results are compatible with ours 
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Electric conductivity of QGP (Instanton vacuum) 

The numerical results compatible with LQCD data for various τ 

Effects of B field is negligible (thick and thin lines)  

EC increases obviously beyond T ~ 200 MeV B. Kerbikov and M. Andreichikov, arXiv:1206.6044.

Gupta et al., PLB597 (2004) 
SU(3). Unrenormalized VC 

Aarts et al., PRL99 (2007) 
SU(3). Unrenormalized VC 

Ding et al., PRD83 (2011): SU(3)  
SU(3). Unrenormalized VC 

Buividovich et al., PRL105 (2010): SU(2)
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SiN, C.W.Kao, Phys.Rev. D83 (2011) 096009
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Chiral condensate under B field (Instanton vacuum)



Chiral condensate for u and d flavors under B field

SiN, C.W.Kao, Phys.Rev. D83 (2011) 096009
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Thermodynamic properties of matter can be understood by EoS 

Neutron star in terms of effective Dofs: Smooth transition possible?

Medium-modified Effective model: EoS
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Quark matter

Quark-meson 
matter

Meson matter

Quark-meson 
matter

Baryon matter

Scale
Semi-bosonization

Non-topological  
soliton

Semi-bosonization

Bosonization

Topological  
soliton

Neutron Star

Lattice  
QCD?



Medium-modified Effective model in SU(2f)
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I. INTRODUCTION

II. THEORETICAL FORMALISM

A. E↵ective thermodynamic potential density ⌦e↵ for (E,B) = 0

First, to derive the e↵ective thermodynamic potential without the external electromagnetic (EM) fields, we start

from the flavor-averaged e↵ective action density for SU(Nf ) from LIM in Euclidean space as follows:

Se↵ = �N

V
ln


N

V

2⇡2⇢̄2

NcM0M

�
� 2Nc

Z
d4k

(2⇡)4
ln


k2 + M̄2

k

k2 +m2

�
, (1)

where N/V is the instanton number density. We assumed the numbers of the instantons (I) and anti-instantons

(Ī) are the same NI = NĪ = N/2, i.e., CP -symmetric QCD matter. Note that N/V ⇡ 1/R̄4
, in which R̄ ⇡ 1

fm corresponds to the average inter-(anti)instanton distance. Another model parameter ⇢̄ ⇡ 1/3 fm denotes the

average (anti)instanton size. The free massive parameter M is introduced to make the argument of the logarithm

dimensionless. We note that, parametrically, N/V / mass
2/⇢̄2 in this setup [? ]. The relevant mass terms read

Mk ⌘ M0F
2
(k2), M̄k = m+Mk. (2)

Here, M0 stands for the constituent-quark mass and the current-quark mass is given by m ⌘ mu,d ⇡ 5 MeV for

the light-flavor sector. The Fourier transform of the zero-mode solution with the instanton-background field which

corresponds to the spatial extension of the quark wave function is given by

F (k2) = XXX ⇡ 2

2 + ⇢̄2k2
. (3)

From this action density, we can obtain following saddle-point equation [? ]

@Se↵

@M0
= 0 ! N

V
= 4Nc

Z
d4k

(2⇡)4
MkM̄k

k2 + M̄2
k

. (4)

Considering the model parameters (R̄, ⇢̄) = (1, 1/3) fm, the constituent-quark mass is determined as M0 =

(0.353, 0.343)GeV ⌘ M00 in vacuum for m = (0, 5) MeV. Following the standard procedure [? ] by employing

the Matsubara formula for the quarks as

Z
d4k

(2⇡)4
f [k4,k] ! T

1X

n=�1

Z
d3k

(2⇡)3
f [(2n+ 1)⇡T,k], (5)

⇤E-mail: sinam@pknu.ac.kr
†E-mail: cwkao@cycu.edu.tw
‡E-mail: wakayama@rcnp.osaka-u.ac.jp

Typeset by REVTEX

PKNU-NuHaTh-2019-04

QCD phase diagram from the flavor-SU(2) nonlocal chiral-quark model
under external electromagnetic fields

Seung-il Nam,
1, 2, 3, ⇤

Chung-Wen Kao,
4, †

and Masayuki Wakayama
2, 1, ‡

1Department of Physics, Pukyong National University (PKNU), Busan 48513, Korea
2Center for Extreme Nuclear Matters (CENuM), Korea University, Seoul 02841, Korea

3Asia Pacific Center for Theoretical Physics (APCTP), Pohang 37673, Korea
4Department of Physics, Chung-Yuan Christian University (CYCU), Chung-Li 32023, Taiwan

(Dated: July 19, 2019)

PACS numbers:
Keywords:

I. INTRODUCTION

II. THEORETICAL FORMALISM

A. E↵ective thermodynamic potential density ⌦e↵ for (E,B) = 0

First, to derive the e↵ective thermodynamic potential without the external electromagnetic (EM) fields, we start

from the flavor-averaged e↵ective action density for SU(Nf ) from LIM in Euclidean space as follows:

Se↵ = �N

V
ln


N

V

2⇡2⇢̄2

NcM0M

�
� 2Nc

Z
d4k

(2⇡)4
ln


k2 + M̄2

k

k2 +m2

�
, (1)

where N/V is the instanton number density. We assumed the numbers of the instantons (I) and anti-instantons
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2

we arrive at the flavor-averaged thermodynamic potential of the present model as follows:

⌦
LIM
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For comparison, we also showed the potential from the Nambu–Jona-Lasinio (NJL) model ⌦
NJL
e↵ [? ]. Here, the

relevant notations read

X = e�E+/T , Y = e�E�/T , E± ⌘ E ± µ =

p
k2 + (m+M2)± µ,

X = e�E+/T , Y = e�E�/T , E± ⌘ E ± µ =

p
k2 + (m+M)2 ± µ. (7)

The NJL model parameters are given by G = 2.44/⇤2
, ⇤ = 653 MeV, m = 5 MeV. The momentum-dependent

e↵ective quark mass is defined by

M = M0(µ, T )
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where the parameter N will be determined consistently within the model to reproduce the vacuum values of the

constituent-quark masses M00 at (µ, T ) = 0. In principle, M0 is a function of T and µ, and its medium behavior

can be explored by the following saddle-point equation, considering M0 as an order parameter for the QCD phase

structure:
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Taking into account the parametric behavior N/V / mass
2
, we parameterize the (anti)instanton-number density as

follows:

N

V
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V
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M0,vac.

�2
, (11)

where the value of N/V is fixed to be its vacuum one, i.e., 1 fm
4
hereafter. Combining Eqs. (10) and (11), we obtain

N = (3.581, 3.545) for m = (0, 5) MeV for the e↵ective quark mass in Eq. (9).
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Having obtained a thermodynamic potential once, thermodynamic quantities of QCD matter, such as the quark-

number density, pressure, entropy, and energy density, are determined as follows in a standard way:

p(T, µ) = �(⌦� ⌦vac.), n(T, µ) = �@⌦

@µ
, s(T, µ) = �@⌦

@T
, ✏(T, µ) = T s(T, µ) + µn(T, µ)� p(T, µ), (13)

From the present model, those thermodynamic quantities for the SU(Nf ) quark matter are derived straightforwardly

as follows:

pLIM = �(⌦
LIM
e↵ � ⌦

LIM
e↵,vac.), (14)

nLIM = 2NfNc

Z
d3k

(2⇡)3


E(Y �X) + (1�XY )MMµ

E(1 +X)(1 + Y )

�
� 2M0M

µ
0

M2
0,vac.

N

V
(15)

sLIM = 2NfNc

Z ⇤ d3k

(2⇡)3


ln [(1 +X) (1 + Y )] +

E[E�(1 +X)Y + E+(1 + Y )X] + T (1�XY )MM (T )

ET (1 +X)(1 + Y )

�

2

we arrive at the flavor-averaged thermodynamic potential of the present model as follows:

⌦
LIM
e↵ = ⌦

g
e↵ + ⌦

q
e↵ = �NfN

V
ln


N

V

2⇡2⇢̄2

NcM0M

�
� 2NcNf

Z
d3k

(2⇡)3
[E + T ln [(1 + Y ) (1 +X)]] ,

⌦
NJL
e↵ =

(M�m)
2

4G
� 2NcNf

Z ⇤ d3k

(2⇡)3
[E + T ln [(1 + Y) (1 + X )]] . (6)

For comparison, we also showed the potential from the Nambu–Jona-Lasinio (NJL) model ⌦
NJL
e↵ [? ]. Here, the

relevant notations read

X = e�E+/T , Y = e�E�/T , E± ⌘ E ± µ =

p
k2 + (m+M2)± µ,

X = e�E+/T , Y = e�E�/T , E± ⌘ E ± µ =

p
k2 + (m+M)2 ± µ. (7)

The NJL model parameters are given by G = 2.44/⇤2
, ⇤ = 653 MeV, m = 5 MeV. The momentum-dependent

e↵ective quark mass is defined by

M = M0(µ, T )


2

2 + ⇢̄2 (k2 + [⇡T ]2)

�N
, (8)

M = M0(µ, T )


2

2 + ⇢̄2 k2

�N
, (9)

where the parameter N will be determined consistently within the model to reproduce the vacuum values of the

constituent-quark masses M00 at (µ, T ) = 0. In principle, M0 is a function of T and µ, and its medium behavior

can be explored by the following saddle-point equation, considering M0 as an order parameter for the QCD phase

structure:

NNf

VM0
= 2NcNf

Z
d3k

(2⇡)3
(m+M)FN

E


(1�XY )

(1 +X)(1 + Y )

�
,

M�m

2G
= 2NcNf

Z ⇤ d3k

(2⇡)3
(m+M)

E


1� XY

(1 + X )(1 + Y)

�
, (10)

Taking into account the parametric behavior N/V / mass
2
, we parameterize the (anti)instanton-number density as

follows:

N

V
! N

V


M0

M0,vac.

�2
, (11)

where the value of N/V is fixed to be its vacuum one, i.e., 1 fm
4
hereafter. Combining Eqs. (10) and (11), we obtain

N = (3.581, 3.545) for m = (0, 5) MeV for the e↵ective quark mass in Eq. (9).

NNf

VM0
⇡ 2NcNf

Z
d3k

(2⇡)3
(m+M)

E

4

9


(1�XY )

(1 +X)(1 + Y )

�
,

(12)

Having obtained a thermodynamic potential once, thermodynamic quantities of QCD matter, such as the quark-

number density, pressure, entropy, and energy density, are determined as follows in a standard way:

p(T, µ) = �(⌦� ⌦vac.), n(T, µ) = �@⌦

@µ
, s(T, µ) = �@⌦

@T
, ✏(T, µ) = T s(T, µ) + µn(T, µ)� p(T, µ), (13)

From the present model, those thermodynamic quantities for the SU(Nf ) quark matter are derived straightforwardly

as follows:

pLIM = �(⌦
LIM
e↵ � ⌦

LIM
e↵,vac.), (14)

nLIM = 2NfNc

Z
d3k

(2⇡)3


E(Y �X) + (1�XY )MMµ

E(1 +X)(1 + Y )

�
� 2M0M

µ
0

M2
0,vac.

N

V
(15)

sLIM = 2NfNc

Z ⇤ d3k

(2⇡)3


ln [(1 +X) (1 + Y )] +

E[E�(1 +X)Y + E+(1 + Y )X] + T (1�XY )MM (T )

ET (1 +X)(1 + Y )

�

Effective action from liquid-instanton vacuum (Euclidean)

Thermodynamic potential from LIM and NJL

Matsubara frequency for fermions



QCS2019, 26~28 Sep. 2019, Hanhwa resort, Busan, Korea

2

we arrive at the flavor-averaged thermodynamic potential of the present model as follows:

⌦
LIM
e↵ = ⌦

g
e↵ + ⌦

q
e↵ = �NfN

V
ln


N

V

2⇡2⇢̄2

NcM0M

�
� 2NcNf

Z
d3k

(2⇡)3
[E + T ln [(1 + Y ) (1 +X)]] ,

⌦
NJL
e↵ =

(M�m)
2

4G
� 2NcNf

Z ⇤ d3k

(2⇡)3
[E + T ln [(1 + Y) (1 + X )]] . (6)

For comparison, we also showed the potential from the Nambu–Jona-Lasinio (NJL) model ⌦
NJL
e↵ [? ]. Here, the

relevant notations read

X = e�E+/T , Y = e�E�/T , E± ⌘ E ± µ =

p
k2 + (m+M2)± µ,

X = e�E+/T , Y = e�E�/T , E± ⌘ E ± µ =

p
k2 + (m+M)2 ± µ. (7)

The NJL model parameters are given by G = 2.44/⇤2
, ⇤ = 653 MeV, m = 5 MeV. The momentum-dependent

e↵ective quark mass is defined by

M = M0(µ, T )


2

2 + ⇢̄2 (k2 + [⇡T ]2)

�N
, (8)

M = M0(µ, T )


2

2 + ⇢̄2 k2

�N
, (9)

where the parameter N will be determined consistently within the model to reproduce the vacuum values of the

constituent-quark masses M00 at (µ, T ) = 0. In principle, M0 is a function of T and µ, and its medium behavior

can be explored by the following saddle-point equation, considering M0 as an order parameter for the QCD phase

structure:

NNf

VM0
= 2NcNf

Z
d3k

(2⇡)3
(m+M)FN

E


(1�XY )

(1 +X)(1 + Y )

�
,

M�m

2G
= 2NcNf

Z ⇤ d3k

(2⇡)3
(m+M)

E


1� XY

(1 + X )(1 + Y)

�
, (10)

Taking into account the parametric behavior N/V / mass
2
, we parameterize the (anti)instanton-number density as

follows:

N

V
! N

V


M0

M0,vac.

�2
, (11)

where the value of N/V is fixed to be its vacuum one, i.e., 1 fm
4
hereafter. Combining Eqs. (10) and (11), we obtain

N = (3.581, 3.545) for m = (0, 5) MeV for the e↵ective quark mass in Eq. (9).

NNf

VM0
⇡ 2NcNf

Z
d3k

(2⇡)3
(m+M)

E

4

9


(1�XY )

(1 +X)(1 + Y )

�
,

(12)

Having obtained a thermodynamic potential once, thermodynamic quantities of QCD matter, such as the quark-

number density, pressure, entropy, and energy density, are determined as follows in a standard way:

p(T, µ) = �(⌦� ⌦vac.), n(T, µ) = �@⌦

@µ
, s(T, µ) = �@⌦

@T
, ✏(T, µ) = T s(T, µ) + µn(T, µ)� p(T, µ), (13)

From the present model, those thermodynamic quantities for the SU(Nf ) quark matter are derived straightforwardly

as follows:

pLIM = �(⌦
LIM
e↵ � ⌦

LIM
e↵,vac.), (14)

nLIM = 2NfNc

Z
d3k

(2⇡)3


E(Y �X) + (1�XY )MMµ

E(1 +X)(1 + Y )

�
� 2M0M

µ
0

M2
0,vac.

N

V
(15)

sLIM = 2NfNc

Z ⇤ d3k

(2⇡)3


ln [(1 +X) (1 + Y )] +

E[E�(1 +X)Y + E+(1 + Y )X] + T (1�XY )MM (T )

ET (1 +X)(1 + Y )

�

2

we arrive at the flavor-averaged thermodynamic potential of the present model as follows:

⌦
LIM
e↵ = ⌦

g
e↵ + ⌦

q
e↵ = �NfN

V
ln


N

V

2⇡2⇢̄2

NcM0M

�
� 2NcNf

Z
d3k

(2⇡)3
[E + T ln [(1 + Y ) (1 +X)]] ,

⌦
NJL
e↵ =

(M�m)
2

4G
� 2NcNf

Z ⇤ d3k

(2⇡)3
[E + T ln [(1 + Y) (1 + X )]] . (6)

For comparison, we also showed the potential from the Nambu–Jona-Lasinio (NJL) model ⌦
NJL
e↵ [? ]. Here, the

relevant notations read

X = e�E+/T , Y = e�E�/T , E± ⌘ E ± µ =

p
k2 + (m+M2)± µ,

X = e�E+/T , Y = e�E�/T , E± ⌘ E ± µ =

p
k2 + (m+M)2 ± µ. (7)

The NJL model parameters are given by G = 2.44/⇤2
, ⇤ = 653 MeV, m = 5 MeV. The momentum-dependent

e↵ective quark mass is defined by

M = M0(µ, T )


2

2 + ⇢̄2 (k2 + [⇡T ]2)

�N
, (8)

M = M0(µ, T )


2

2 + ⇢̄2 k2

�N
, (9)

where the parameter N will be determined consistently within the model to reproduce the vacuum values of the

constituent-quark masses M00 at (µ, T ) = 0. In principle, M0 is a function of T and µ, and its medium behavior

can be explored by the following saddle-point equation, considering M0 as an order parameter for the QCD phase

structure:

NNf

VM0
= 2NcNf

Z
d3k

(2⇡)3
(m+M)FN

E


(1�XY )

(1 +X)(1 + Y )

�
,

M�m

2G
= 2NcNf

Z ⇤ d3k

(2⇡)3
(m+M)

E


1� XY

(1 + X )(1 + Y)

�
, (10)

Taking into account the parametric behavior N/V / mass
2
, we parameterize the (anti)instanton-number density as

follows:

N

V
! N

V


M0

M0,vac.

�2
, (11)

where the value of N/V is fixed to be its vacuum one, i.e., 1 fm
4
hereafter. Combining Eqs. (10) and (11), we obtain

N = (3.581, 3.545) for m = (0, 5) MeV for the e↵ective quark mass in Eq. (9).

NNf

VM0
⇡ 2NcNf

Z
d3k

(2⇡)3
(m+M)

E

4

9


(1�XY )

(1 +X)(1 + Y )

�
,

(12)

Having obtained a thermodynamic potential once, thermodynamic quantities of QCD matter, such as the quark-

number density, pressure, entropy, and energy density, are determined as follows in a standard way:

p(T, µ) = �(⌦� ⌦vac.), n(T, µ) = �@⌦

@µ
, s(T, µ) = �@⌦

@T
, ✏(T, µ) = T s(T, µ) + µn(T, µ)� p(T, µ), (13)

From the present model, those thermodynamic quantities for the SU(Nf ) quark matter are derived straightforwardly

as follows:

pLIM = �(⌦
LIM
e↵ � ⌦

LIM
e↵,vac.), (14)

nLIM = 2NfNc

Z
d3k

(2⇡)3


E(Y �X) + (1�XY )MMµ

E(1 +X)(1 + Y )

�
� 2M0M

µ
0

M2
0,vac.

N

V
(15)

sLIM = 2NfNc

Z ⇤ d3k

(2⇡)3


ln [(1 +X) (1 + Y )] +

E[E�(1 +X)Y + E+(1 + Y )X] + T (1�XY )MM (T )

ET (1 +X)(1 + Y )

�

2

we arrive at the flavor-averaged thermodynamic potential of the present model as follows:

⌦
LIM
e↵ = ⌦

g
e↵ + ⌦

q
e↵ = �NfN

V
ln


N

V

2⇡2⇢̄2

NcM0M

�
� 2NcNf

Z
d3k

(2⇡)3
[E + T ln [(1 + Y ) (1 +X)]] ,

⌦
NJL
e↵ =

(M�m)
2

4G
� 2NcNf

Z ⇤ d3k

(2⇡)3
[E + T ln [(1 + Y) (1 + X )]] . (6)

For comparison, we also showed the potential from the Nambu–Jona-Lasinio (NJL) model ⌦
NJL
e↵ [? ]. Here, the

relevant notations read

X = e�E+/T , Y = e�E�/T , E± ⌘ E ± µ =

p
k2 + (m+M2)± µ,

X = e�E+/T , Y = e�E�/T , E± ⌘ E ± µ =

p
k2 + (m+M)2 ± µ. (7)

The NJL model parameters are given by G = 2.44/⇤2
, ⇤ = 653 MeV, m = 5 MeV. The momentum-dependent

e↵ective quark mass is defined by

M = M0(µ, T )


2

2 + ⇢̄2 (k2 + [⇡T ]2)

�N
, (8)

M = M0(µ, T )


2

2 + ⇢̄2 k2

�N
, (9)

where the parameter N will be determined consistently within the model to reproduce the vacuum values of the

constituent-quark masses M00 at (µ, T ) = 0. In principle, M0 is a function of T and µ, and its medium behavior

can be explored by the following saddle-point equation, considering M0 as an order parameter for the QCD phase

structure:

NNf

VM0
= 2NcNf

Z
d3k

(2⇡)3
(m+M)FN

E


(1�XY )

(1 +X)(1 + Y )

�
,

M�m

2G
= 2NcNf

Z ⇤ d3k

(2⇡)3
(m+M)

E


1� XY

(1 + X )(1 + Y)

�
, (10)

Taking into account the parametric behavior N/V / mass
2
, we parameterize the (anti)instanton-number density as

follows:

N

V
! N

V


M0

M0,vac.

�2
, (11)

where the value of N/V is fixed to be its vacuum one, i.e., 1 fm
4
hereafter. Combining Eqs. (10) and (11), we obtain

N = (3.581, 3.545) for m = (0, 5) MeV for the e↵ective quark mass in Eq. (9).

NNf

VM0
⇡ 2NcNf

Z
d3k

(2⇡)3
(m+M)

E

4

9


(1�XY )

(1 +X)(1 + Y )

�
,

(12)

Having obtained a thermodynamic potential once, thermodynamic quantities of QCD matter, such as the quark-

number density, pressure, entropy, and energy density, are determined as follows in a standard way:

p(T, µ) = �(⌦� ⌦vac.), n(T, µ) = �@⌦

@µ
, s(T, µ) = �@⌦

@T
, ✏(T, µ) = T s(T, µ) + µn(T, µ)� p(T, µ), (13)

From the present model, those thermodynamic quantities for the SU(Nf ) quark matter are derived straightforwardly

as follows:

pLIM = �(⌦
LIM
e↵ � ⌦

LIM
e↵,vac.), (14)

nLIM = 2NfNc

Z
d3k

(2⇡)3


E(Y �X) + (1�XY )MMµ

E(1 +X)(1 + Y )

�
� 2M0M

µ
0

M2
0,vac.

N

V
(15)

sLIM = 2NfNc

Z ⇤ d3k

(2⇡)3


ln [(1 +X) (1 + Y )] +

E[E�(1 +X)Y + E+(1 + Y )X] + T (1�XY )MM (T )

ET (1 +X)(1 + Y )

�

Momentum-dependent effective quark mass 

Medium-modified Effective model

Gap (saddle-point) equations for LIM and NJL

Parameterization of instanton packing fraction in medium



2

we arrive at the flavor-averaged thermodynamic potential of the present model as follows:

⌦
LIM
e↵ = ⌦

g
e↵ + ⌦

q
e↵ = �NfN

V
ln


N

V

2⇡2⇢̄2

NcM0M

�
� 2NcNf

Z
d3k

(2⇡)3
[E + T ln [(1 + Y ) (1 +X)]] ,

⌦
NJL
e↵ =

(M�m)
2

4G
� 2NcNf

Z ⇤ d3k

(2⇡)3
[E + T ln [(1 + Y) (1 + X )]] . (6)

For comparison, we also showed the potential from the Nambu–Jona-Lasinio (NJL) model ⌦
NJL
e↵ [? ]. Here, the

relevant notations read

X = e�E+/T , Y = e�E�/T , E± ⌘ E ± µ =

p
k2 + (m+M2)± µ,

X = e�E+/T , Y = e�E�/T , E± ⌘ E ± µ =

p
k2 + (m+M)2 ± µ. (7)

The NJL model parameters are given by G = 2.44/⇤2
, ⇤ = 653 MeV, m = 5 MeV. The momentum-dependent

e↵ective quark mass is defined by

M = M0(µ, T )


2

2 + ⇢̄2 (k2 + [⇡T ]2)

�N
, (8)

M = M0(µ, T )


2

2 + ⇢̄2 k2

�N
, (9)

where the parameter N will be determined consistently within the model to reproduce the vacuum values of the

constituent-quark masses M00 at (µ, T ) = 0. In principle, M0 is a function of T and µ, and its medium behavior

can be explored by the following saddle-point equation, considering M0 as an order parameter for the QCD phase

structure:

NNf

VM0
= 2NcNf

Z
d3k

(2⇡)3
(m+M)FN

E


(1�XY )

(1 +X)(1 + Y )

�
,

M�m

2G
= 2NcNf

Z ⇤ d3k

(2⇡)3
(m+M)

E


1� XY

(1 + X )(1 + Y)

�
, (10)

Taking into account the parametric behavior N/V / mass
2
, we parameterize the (anti)instanton-number density as

follows:

N

V
! N

V


M0

M0,vac.

�2
, (11)

where the value of N/V is fixed to be its vacuum one, i.e., 1 fm
4
hereafter. Combining Eqs. (10) and (11), we obtain

N = (3.581, 3.545) for m = (0, 5) MeV for the e↵ective quark mass in Eq. (9).

NNf

VM0
⇡ 2NcNf

Z
d3k

(2⇡)3
(m+M)

E

4

9


(1�XY )

(1 +X)(1 + Y )

�
,

(12)

Having obtained a thermodynamic potential once, thermodynamic quantities of QCD matter, such as the quark-

number density, pressure, entropy, and energy density, are determined as follows in a standard way:

p(T, µ) = �(⌦� ⌦vac.), n(T, µ) = �@⌦

@µ
, s(T, µ) = �@⌦

@T
, ✏(T, µ) = T s(T, µ) + µn(T, µ)� p(T, µ), (13)

From the present model, those thermodynamic quantities for the SU(Nf ) quark matter are derived straightforwardly

as follows:

pLIM = �(⌦
LIM
e↵ � ⌦

LIM
e↵,vac.), (14)

nLIM = 2NfNc

Z
d3k

(2⇡)3


E(Y �X) + (1�XY )MMµ

E(1 +X)(1 + Y )

�
� 2M0M

µ
0

M2
0,vac.

N

V
(15)

sLIM = 2NfNc

Z ⇤ d3k

(2⇡)3


ln [(1 +X) (1 + Y )] +

E[E�(1 +X)Y + E+(1 + Y )X] + T (1�XY )MM (T )

ET (1 +X)(1 + Y )

�

QCS2019, 26~28 Sep. 2019, Hanhwa resort, Busan, Korea

2

we arrive at the flavor-averaged thermodynamic potential of the present model as follows:

⌦
LIM
e↵ = ⌦

g
e↵ + ⌦

q
e↵ = �NfN

V
ln


N

V

2⇡2⇢̄2

NcM0M

�
� 2NcNf

Z
d3k

(2⇡)3
[E + T ln [(1 + Y ) (1 +X)]] ,

⌦
NJL
e↵ =

(M�m)
2

4G
� 2NcNf

Z ⇤ d3k

(2⇡)3
[E + T ln [(1 + Y) (1 + X )]] . (6)

For comparison, we also showed the potential from the Nambu–Jona-Lasinio (NJL) model ⌦
NJL
e↵ [? ]. Here, the

relevant notations read

X = e�E+/T , Y = e�E�/T , E± ⌘ E ± µ =

p
k2 + (m+M2)± µ,

X = e�E+/T , Y = e�E�/T , E± ⌘ E ± µ =

p
k2 + (m+M)2 ± µ. (7)

The NJL model parameters are given by G = 2.44/⇤2
, ⇤ = 653 MeV, m = 5 MeV. The momentum-dependent

e↵ective quark mass is defined by

M = M0(µ, T )


2

2 + ⇢̄2 (k2 + [⇡T ]2)

�N
, (8)

M = M0(µ, T )


2

2 + ⇢̄2 k2

�N
, (9)

where the parameter N will be determined consistently within the model to reproduce the vacuum values of the

constituent-quark masses M00 at (µ, T ) = 0. In principle, M0 is a function of T and µ, and its medium behavior

can be explored by the following saddle-point equation, considering M0 as an order parameter for the QCD phase

structure:

NNf

VM0
= 2NcNf

Z
d3k

(2⇡)3
(m+M)FN

E


(1�XY )

(1 +X)(1 + Y )

�
,

M�m

2G
= 2NcNf

Z ⇤ d3k

(2⇡)3
(m+M)

E


1� XY

(1 + X )(1 + Y)

�
, (10)

Taking into account the parametric behavior N/V / mass
2
, we parameterize the (anti)instanton-number density as

follows:

N

V
! N

V


M0

M0,vac.

�2
, (11)

where the value of N/V is fixed to be its vacuum one, i.e., 1 fm
4
hereafter. Combining Eqs. (10) and (11), we obtain

N = (3.581, 3.545) for m = (0, 5) MeV for the e↵ective quark mass in Eq. (9).

NNf

VM0
⇡ 2NcNf

Z
d3k

(2⇡)3
(m+M)

E

4

9


(1�XY )

(1 +X)(1 + Y )

�
,

(12)

Having obtained a thermodynamic potential once, thermodynamic quantities of QCD matter, such as the quark-

number density, pressure, entropy, and energy density, are determined as follows in a standard way:

p(T, µ) = �(⌦� ⌦vac.), n(T, µ) = �@⌦

@µ
, s(T, µ) = �@⌦

@T
, ✏(T, µ) = T s(T, µ) + µn(T, µ)� p(T, µ), (13)

From the present model, those thermodynamic quantities for the SU(Nf ) quark matter are derived straightforwardly

as follows:

pLIM = �(⌦
LIM
e↵ � ⌦

LIM
e↵,vac.), (14)

nLIM = 2NfNc

Z
d3k

(2⇡)3


E(Y �X) + (1�XY )MMµ

E(1 +X)(1 + Y )

�
� 2M0M

µ
0

M2
0,vac.

N

V
(15)

sLIM = 2NfNc

Z ⇤ d3k

(2⇡)3


ln [(1 +X) (1 + Y )] +

E[E�(1 +X)Y + E+(1 + Y )X] + T (1�XY )MM (T )

ET (1 +X)(1 + Y )

�

2

we arrive at the flavor-averaged thermodynamic potential of the present model as follows:

⌦
LIM
e↵ = ⌦

g
e↵ + ⌦

q
e↵ = �NfN

V
ln


N

V

2⇡2⇢̄2

NcM0M

�
� 2NcNf

Z
d3k

(2⇡)3
[E + T ln [(1 + Y ) (1 +X)]] ,

⌦
NJL
e↵ =

(M�m)
2

4G
� 2NcNf

Z ⇤ d3k

(2⇡)3
[E + T ln [(1 + Y) (1 + X )]] . (6)

For comparison, we also showed the potential from the Nambu–Jona-Lasinio (NJL) model ⌦
NJL
e↵ [? ]. Here, the

relevant notations read

X = e�E+/T , Y = e�E�/T , E± ⌘ E ± µ =

p
k2 + (m+M2)± µ,

X = e�E+/T , Y = e�E�/T , E± ⌘ E ± µ =

p
k2 + (m+M)2 ± µ. (7)

The NJL model parameters are given by G = 2.44/⇤2
, ⇤ = 653 MeV, m = 5 MeV. The momentum-dependent

e↵ective quark mass is defined by

M = M0(µ, T )


2

2 + ⇢̄2 (k2 + [⇡T ]2)

�N
, (8)

M = M0(µ, T )


2

2 + ⇢̄2 k2

�N
, (9)

where the parameter N will be determined consistently within the model to reproduce the vacuum values of the

constituent-quark masses M00 at (µ, T ) = 0. In principle, M0 is a function of T and µ, and its medium behavior

can be explored by the following saddle-point equation, considering M0 as an order parameter for the QCD phase

structure:

NNf

VM0
= 2NcNf

Z
d3k

(2⇡)3
(m+M)FN

E


(1�XY )

(1 +X)(1 + Y )

�
,

M�m

2G
= 2NcNf

Z ⇤ d3k

(2⇡)3
(m+M)

E


1� XY

(1 + X )(1 + Y)

�
, (10)

Taking into account the parametric behavior N/V / mass
2
, we parameterize the (anti)instanton-number density as

follows:

N

V
! N

V


M0

M0,vac.

�2
, (11)

where the value of N/V is fixed to be its vacuum one, i.e., 1 fm
4
hereafter. Combining Eqs. (10) and (11), we obtain

N = (3.581, 3.545) for m = (0, 5) MeV for the e↵ective quark mass in Eq. (9).

NNf

VM0
⇡ 2NcNf

Z
d3k

(2⇡)3
(m+M)

E

4

9


(1�XY )

(1 +X)(1 + Y )

�
,

(12)

Having obtained a thermodynamic potential once, thermodynamic quantities of QCD matter, such as the quark-

number density, pressure, entropy, and energy density, are determined as follows in a standard way:

p(T, µ) = �(⌦� ⌦vac.), n(T, µ) = �@⌦

@µ
, s(T, µ) = �@⌦

@T
, ✏(T, µ) = T s(T, µ) + µn(T, µ)� p(T, µ), (13)

From the present model, those thermodynamic quantities for the SU(Nf ) quark matter are derived straightforwardly

as follows:

pLIM = �(⌦
LIM
e↵ � ⌦

LIM
e↵,vac.), (14)

nLIM = 2NfNc

Z
d3k

(2⇡)3


E(Y �X) + (1�XY )MMµ

E(1 +X)(1 + Y )

�
� 2M0M

µ
0

M2
0,vac.

N

V
(15)

sLIM = 2NfNc

Z ⇤ d3k

(2⇡)3


ln [(1 +X) (1 + Y )] +

E[E�(1 +X)Y + E+(1 + Y )X] + T (1�XY )MM (T )

ET (1 +X)(1 + Y )

�

3

� 2M0M
(T )
0

M2
0,vac.

N

V
. (16)

pNJL = �(⌦
NJL
e↵ � ⌦

NJL
e↵,vac.), (17)

nNJL = 2NfNc

Z ⇤ d3k

(2⇡)3


E(Y � X ) + (1� XY)MM(µ)

E(1 + X )(1 + Y)

�
� (M�m)M(µ)

2G
, (18)

sNJL = 2NfNc

Z ⇤ d3k

(2⇡)3


ln [(1 + X ) (1 + Y)] +

E [E�(1 + X )Y + E+(1 + Y)X ] + T (1� XY)MM(T )

ET (1 + X )(1 + Y)

�

� (M�m)M(T )

2G
. (19)

B. Thermodynamic potential under the external electromagnetic (EM) field

eE(t, r) = ↵EM

X

a

(1� v2a)Ra

R3
a[1� (va ⇥Ra)

2/R2
a]

3/2
, eB(t, r) = ↵EM

X

a

(1� v2a)(va ⇥Ra)

R3
a[1� (va ⇥Ra)

2/R2
a]

3/2
, (20)

|va|2 = 1� 4m2
p/sNN

|E| = |B|/|va| and E ·B = 0.

eqB = eqB0x̂1, eqE =
eqB0q

1� 4m2
p/sNN

x̂2 (21)

Trc,f,� ln [/k + i [M +N(� · F )]] = NcNf ln det� [/k + i [M +N(� · F )]] (22)

N =
1

2

@M

@|k|2 = � 12M0⇢̄2

(2 + k2⇢̄2)4
(23)

�µ⌫ =
i

2
(�µ�⌫ � �⌫�µ). (24)

Fµ⌫ = 0 except for F12 = �F21 = eqB0

� · F = i[�1, �2]F12 (25)

M̄f ⌘ M̄ +
2N2

(efB0)
2
[2N2

(efB0)
2 � M̄2

]

M̄(k2 + M̄2)
, (eu, ed) =

✓
2

3
,�1

3

◆
eQ (26)

Ve↵ [µ, T,B0]

V
= C0

+
N

V
ln�� 2Nc

X

f=u,d

Z

E

d3k

(2⇡)3

n
Ef + T ln

h⇣
1 + e�Ef�/T

⌘⇣
1 + e�Ef+/T

⌘io
(27)

Ef± ⌘ Ef ± µ =

q
k2 + M̄2

f ± µ (28)

3

� 2M0M
(T )
0

M2
0,vac.

N

V
. (16)

pNJL = �(⌦
NJL
e↵ � ⌦

NJL
e↵,vac.), (17)

nNJL = 2NfNc

Z ⇤ d3k

(2⇡)3


E(Y � X ) + (1� XY)MM(µ)

E(1 + X )(1 + Y)

�
� (M�m)M(µ)

2G
, (18)

sNJL = 2NfNc

Z ⇤ d3k

(2⇡)3


ln [(1 + X ) (1 + Y)] +

E [E�(1 + X )Y + E+(1 + Y)X ] + T (1� XY)MM(T )

ET (1 + X )(1 + Y)

�

� (M�m)M(T )

2G
. (19)

B. Thermodynamic potential under the external electromagnetic (EM) field

eE(t, r) = ↵EM

X

a

(1� v2a)Ra

R3
a[1� (va ⇥Ra)

2/R2
a]

3/2
, eB(t, r) = ↵EM

X

a

(1� v2a)(va ⇥Ra)

R3
a[1� (va ⇥Ra)

2/R2
a]

3/2
, (20)

|va|2 = 1� 4m2
p/sNN

|E| = |B|/|va| and E ·B = 0.

eqB = eqB0x̂1, eqE =
eqB0q

1� 4m2
p/sNN

x̂2 (21)

Trc,f,� ln [/k + i [M +N(� · F )]] = NcNf ln det� [/k + i [M +N(� · F )]] (22)

N =
1

2

@M

@|k|2 = � 12M0⇢̄2

(2 + k2⇢̄2)4
(23)

�µ⌫ =
i

2
(�µ�⌫ � �⌫�µ). (24)

Fµ⌫ = 0 except for F12 = �F21 = eqB0

� · F = i[�1, �2]F12 (25)

M̄f ⌘ M̄ +
2N2

(efB0)
2
[2N2

(efB0)
2 � M̄2

]

M̄(k2 + M̄2)
, (eu, ed) =

✓
2

3
,�1

3

◆
eQ (26)

Ve↵ [µ, T,B0]

V
= C0

+
N

V
ln�� 2Nc

X

f=u,d

Z

E

d3k

(2⇡)3

n
Ef + T ln

h⇣
1 + e�Ef�/T

⌘⇣
1 + e�Ef+/T

⌘io
(27)

Ef± ⌘ Ef ± µ =

q
k2 + M̄2

f ± µ (28)

Medium-modified Effective model
Standard representations for thermodynamic properties of QCD matter
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Chiral phase diagram via effective quark mass
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FIG. 1:

@Ve↵ [µ, T,B0]

@�
! N

V
�Nc

X

f=u,d

Z

E

d3k

(2⇡)3
MfM̄f

Ef


1� e�Ef�/T

1 + e�Ef�/T
� e�Ef+/T

1 + e�Ef+/T

�
= 0 (29)

N

V
⇡

C0NcM2
0f

⇡2⇢̄2
, (30)

M0f stands for the constituent-quark mass at zero virtuality under the external magnetic field by setting k = 0

and m = 0 in Eq. (26):

M̄0f = M̄0 +
2N2

0 (efB0)
2
[2N2

0 (efB0)
2 � M̄2

0 ]

M̄3
0

. (31)

For simplicity, we assume that C0 and ⇢̄ are not changed in the presence of the magnetic field.
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FIG. 2:

III. NUMERICAL RESULTS AND DISCUSSIONS

IV. SUMMARY AND FUTURE PERSPECTIVES
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Appendix

X

a=±

Z

x

"
iTrNf [Mqq0

a Ja
qq0 ]� (Nf � 1)

✓
1

�a
detNf [Mqq0

a Nc]

◆ 1
Nf�1

#

NJL

LIM



Summary 

Along with lattice QCD and theory beyond QFT, QCD-like EFT plays a 
important role  to understand strongly-interacting systems  

Strongly-interacting QGP believed to be created in HIC is a good place to 
test QCD in extreme conditions, i.e. hot and dense QCD matter 

QCD-like EFTs are modified in medium with helps of lattice QCD, 
Euclidean-time formula, nonperturbative gluonic correlations, etc. 

Various physical properties of QGP investigated using QCD-like EFTs, 
such as transport coefficients, EoS, effects of B-fields, etc: Instanton. 

There are still insufficient understandings and obvious distinctions between 
EFTs, and they can be resolved along with lattice QCD 
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