Quarks and Compact Stars 2019

Effects of nuclear symmetry energy and equation of state on neutron star properties

Presenter : Fan Ji Supervisor : Prof. Hong Shen

Collaborators :

2019 BUSAN KOREA

Jinniu HuNankai University (China)Shishao BaoShanxi Normal University (China)

2019.09.26~2019.09.28, Pusan National University, Korea

Structure of neutron star

EOS

J. M. Lattimer and M. Prakash, Science 304, 536 (2004)

Non-unified EOS

Matching EOS with different models

M. Fortin, C. Providencia, Ad. R. Raduta, F. Gulminelli, J. L. Zdunik, P. Haensel, and M. Bejger, Phys. Rev. C94, 035804 (2016).

Unified EOS

Outer crust EOS: BPS EOS

G. Baym, C. Pethick, and P. Sutherland, Astrophys. J.**170**, 299 (1971).

Inner crust EOS: TM1 models S. S. Bao and H. Shen, Phys. Rev. C 91, 015807 (2015).

Core EOS: TM1 models

2 Model and method

Lagrangian density

$$\begin{split} \mathcal{L}_{\text{RMF}} &= \sum_{b=p,n} \bar{\psi}_{b} \left\{ i \gamma_{\mu} \partial^{\mu} - (M + g_{\sigma} \sigma) \right. \\ &- \gamma_{\mu} \left[g_{\omega} \omega^{\mu} + \frac{g_{\rho}}{2} \tau_{a} \rho^{a\mu} + \frac{e}{2} \left(1 + \tau_{3} \right) A^{\mu} \right] \right\} \psi_{b} \\ &+ \frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma - \frac{1}{2} m_{\sigma}^{2} \sigma^{2} - \frac{1}{3} g_{2} \sigma^{3} - \frac{1}{4} g_{3} \sigma^{4} \\ &- \frac{1}{4} W_{\mu\nu} W^{\mu\nu} + \frac{1}{2} m_{\omega}^{2} \omega_{\mu} \omega^{\mu} + \frac{1}{4} c_{3} \left(\omega_{\mu} \omega^{\mu} \right)^{2} \\ &- \frac{1}{4} R_{\mu\nu}^{a} R^{a\mu\nu} + \frac{1}{2} m_{\rho}^{2} \rho_{\mu}^{a} \rho^{a\mu} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \\ &+ \Lambda_{v} \left(g_{\omega}^{2} \omega_{\mu} \omega^{\mu} \right) \left(g_{\rho}^{2} \rho_{\mu}^{a} \rho^{a\mu} \right) \\ &+ \sum_{l=e,\mu} \bar{\psi}_{l} \left(i \gamma_{\mu} \partial^{\mu} - m_{l} + e \gamma_{\mu} A^{\mu} \right) \psi_{l}, \end{split}$$

Symmetry energy slope

$$L = 3n_0 \left[\frac{\partial E_{\text{sym}} \left(n_b \right)}{\partial n_b} \right]_{n_b = n_0}$$

TM1 parametrization

Model	TM1(L=40)	TM1(L=60)	TM1(L=80)	TM1(L=111)
g_{σ}	10.0289	10.0289	10.0289	10.0289
g_ω	12.6139	12.6139	12.6139	12.6139
$g_2 \; ({\rm fm}^{-1})$	-7.2325	-7.2325	-7.2325	-7.2325
g_3	0.6183	0.6183	0.6183	0.6183
c_3	71.3075	71.3075	71.3075	71.3075
$g_{ ho}$	13.9714	11.2610	10.1484	9.2644
$\Lambda_{\mathbf{v}}$	0.0429	0.0248	0.0128	0.0000
$n_0 ~({\rm fm}^{-3})$	0.145	0.145	0.145	0.145
$E_0 ({ m MeV})$	-16.3	-16.3	-16.3	-16.3
$K \; ({\rm MeV})$	281	281	281	281
$E_{\rm sym}$ (MeV)	31.38	33.29	34.86	36.89
$L \ (MeV)$	40	60	80	111
$\triangle r_{\rm np} \ (^{208}{\rm Pb}) \ ({\rm fm})$	0.16	0.21	0.24	0.27
$r_{\rm c} \ (^{208}{\rm Pb}) \ ({\rm fm})$	5.56	5.55	5.54	5.54
E/A (²⁰⁸ Pb) (MeV)	7.88	7.88	7.88	7.88

2 Model and method

S. S. Bao and H. Shen, Phys. Rev. C 89, 045807 (2014)

B. P. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev. Lett. 119, 161101 (2017).

B. P. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev. Lett. 119, 161101 (2017).

3 Results—Effects of the crust EOS

Tidal deformability Λ

Tidal deformability Λ

Tidal deformability Λ

3 Results—Effects of the core EOS

Tidal deformability Λ

The model with a small *L* predicts a large crust-core transition density.

A small *L* corresponds to a small neutron-star radius and a small tidal deformability.

The effect of the core EOS on the tidal deformability Λ is more significant than the one of the crust EOS .

Both the crust and core EOSs could significantly affect neutron star properties such as the radius and tidal deformability.

Thank you!