Hydrostatic equilibria of rotating stars in Lagrangian coordinate

Nobutoshi Yasutake (Chiba Inst. Tech./JAEA)

M. Ogata(a), K. Fujisawa(b), H. Okawa(a), S. Yamada(a) (a)Waseda univ. (b) Univ. of Tokyo

A big problem in astrophysics There is no scheme of time evolution for ``*deformed stars"* **in quasi-equilibrium !!**

Neutron star Interior Composition ExploreR

COMPACTNESS(M/R) AND FLUX

Thermal evolutions with magnetic field in 2,3D

NY, Kotake, Kutsuna, Shigeyama (2014) PASJ Vigano et al. (2018)

Without rotational law, no one can get rotating structures.

Rotating structures of neutron stars in fully GR formulation **NY**, Hashimoto, Eriguchi, PTP(2005)

Komatsu, Eriguchi, Hachisu(1989), Cook, Shapiro, Teukolsky(1992) Shaprio, Teukolsky, Nakamura(1994), Gourgoulhon et al.(1999) Usui, Uryu, Eriguchi(1999)….Uryu et al.(2017)

also in E. Zhou's talk

SPACE(+TIME) OR PARTICLES

HOW TO SOLVE ? IN LAGLANGIAN COORDINATE

We have to solve this eq. in mass-coordinate for baroclinic cases with arbitrary angular momentum profiles.

①**Uncertainty because of the gauge freedom. (Freedman&Shutz 1978)** ②**Numerical problems cf. Hour-glass problem** Problems

SOME APPROACHES HYDROSTATIC EQUILIBRIA IN LAGRANGIAN COORDINATE

① **Simple discretization** Ogata, Fujisawa, Okawa, **NY**, Yamada

$$
\frac{\partial P}{\partial r} \to \frac{P_{i+1} - P_i}{r_{i+1} - r_i}
$$

② **Spectral method** Fujisawa, Ogata, Okawa, **NY**, Yamada

③ **GR case** Okawa, Ogata, Fujisawa, **NY**, Yamada

④ **Neural Network**

NY, Ogata, Fujisawa, Okawa, Yamada

 $P = P(r, \theta) = \sum \alpha_{ij} \sigma_i(r) \sigma_j(\theta)$ *i*

 $\phi(r, \theta) \rightarrow f_0(r, \theta), f_1(r, \theta), f_2(r, \theta), \omega(r, \theta)$ gravitational potential Metric

① **Simple discretization** ∂*P*

Ogata, Fujisawa, Okawa, **NY**, Yamada

Fujisawa, Ogata, Okawa, **NY**, Yamada

Chebyshev's expansions

$$
\chi(r, v) = \sum_{n=0}^{N_{\text{max}}} \sum_{\ell=0}^{L_{\text{max}}} a_{n\ell} T_n(r) T_\ell(v) \qquad X = r, \cos \theta, P, \phi ...
$$

$$
\int \int T_n(r) T_\ell(v) \left\{ \nabla P + \rho \nabla \phi - \frac{\rho j^2}{\varpi^3} e_\varpi \right\} dr dv = 0
$$

We are ready to conduct evolution calculations !

gravitational potential Metric $\phi(r,\theta) \rightarrow f_0(r,\theta), f_1(r,\theta), f_2(r,\theta), \omega(r,\theta)$

Under the axial symmetric metric

 $ds^{2} = -f_{0}^{2}(r,\theta)dt^{2} + f_{1}^{-2}(r,\theta) (dr^{2} + r^{2}d\theta^{2}) + f_{2}^{-2}(r,\theta)r^{2}\sin^{2}\theta (d\varphi - \omega(r,\theta)dt)^{2}$

Highly non-linear equations (Not integral form) $E_{\mu\nu} (\equiv G_{\mu\nu} - \kappa_G T_{\mu\nu})$ Einstein eqs. $(E_{tt}, E_{\theta\theta}, E_{\varphi\varphi}, E_{t\varphi})$, Conservation $(\nabla_{\mu}T^{\mu}_{r}, \nabla_{\mu}T^{\mu}_{\theta})$ and EOS.

Example

$$
\mathbf{G}_{\mathbf{t}\mathbf{t}} = a_1^{(tt)} \left(\frac{\partial^2 f_0}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 f_0}{\partial \theta^2} \right) + a_2^{(tt)} \left(\frac{\partial^2 f_1}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 f_1}{\partial \theta^2} \right) + a_3^{(tt)} \left(\frac{\partial^2 f_2}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 f_2}{\partial \theta^2} \right) \n+ a_4^{(tt)} \left(\frac{\partial^2 \omega}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 \omega}{\partial \theta^2} \right) + a_5^{(tt)} \left(\frac{\partial f_0}{\partial r} \frac{\partial \omega}{\partial r} + \frac{1}{r^2} \frac{\partial f_0}{\partial \theta} \frac{\partial \omega}{\partial \theta} \right) \n+ a_6^{(tt)} \left(\frac{\partial f_2}{\partial r} \frac{\partial \omega}{\partial r} + \frac{1}{r^2} \frac{\partial f_2}{\partial \theta} \frac{\partial \omega}{\partial \theta} \right) + a_7^{(tt)} \frac{\partial f_0}{\partial r} + a_8^{(tt)} \frac{\partial f_1}{\partial r} + a_9^{(tt)} \frac{\partial f_2}{\partial r} + a_{10}^{(tt)} \frac{\partial \omega}{\partial r} \n+ a_{11}^{(tt)} \frac{\partial f_1}{\partial \theta} + a_{12}^{(tt)} \frac{\partial f_2}{\partial \theta} + a_{13}^{(tt)} \frac{\partial \omega}{\partial \theta} \n\mathbf{T}_{\mathbf{t}\mathbf{t}} = \frac{\rho f_0^4 f_2^4 + \rho \omega^2 r^4 \sin^4 \theta (\Omega - \omega)^2 + f_0^2 f_2^2 r^2 \sin^2 \theta (\Omega^2 P + 2\Omega \omega \rho - 2\omega^2 \rho)}{f_0^2 f_2^4 + f_2^2 r^2 \sin^2 \theta (\Omega - \omega)^2}
$$

W4 methods

H.Okawa, K.Fujisawa, R.Hirai, Y.Yamamoto, NY, H.Nagakura, Yamada A method to solve non-linear equations (arXiv1809.04495)

 Naive Newton-Raphon methods does not work for multi-dimensional hydrostatic equilibria in Lagrange coordinate [Ref. Friedman & Schutz 1978]. We, then, introduce a new method, named as `'W4 method'', which is based on the fixed point theorem.

$$
\mathbf{F} = \nabla P + \rho \nabla \phi - \frac{\rho j^2}{\varpi^3} \mathbf{e}_{\varpi}
$$

$$
\ddot{\mathbf{x}} + \mathbf{A} \dot{\mathbf{x}} + \mathbf{B} \mathbf{F} = 0
$$

$$
\ddot{x}_2 + A_2 \dot{x}_2 + B_2 F = 0
$$

【tangent vector space on S1】

Find a fixed point

Find a solution for 1st order differential eq. (SOR, Newton method etc.) **→Sometime, there is no fixed point.**

Here,
$$
F = F(x_1, x_2, \ldots, y_1, y_2, \ldots)
$$
.

In Lagrange scheme, the variables are ``coordinates" of nodes, which have mass, entropy, and angular momenta.

【 tangent vector space on S2】

Find a fixed point \Leftrightarrow

Find a solution for 2nd order differential eq. (W4, MD calculation etc.) **→ There must be fixed points.**

Current status of GR case

We already have some solutions with rotation.

x102

 $→$ Adaptable to proto-neutron stars: **τ** \sim **20s**.

cf.) dynamical simulations for supernovae with super computers: **τ**~**0.2s**.

④ **NEURAL NETWORK**

Why Neural network?

① **Universal approximation theorem → Useful for "non-linear equations". cf. Sign problem (K. Kashiwa's talk)** ② **Development of Hardware and Software cf. cuDNN(Numerical Libraries) tensorflow, Keras, cafe… etc.** ③ **Future high computings method** such as quantum computers. cf. D-wave,..etc.

EXAMPLES OF ROTATING STARS

Blue or **red** paths show trajectories (**vectors in left figure**) of Lagrangian mass elements, which are searched by **NN**.

These trajectories strongly depends on **NN**, and initial guess. Accuracy is not so good. Optimization doesn't equal to solve equations. High numerical costs are also problems.

SUMMARY&DISCUSSION

It is the most important for stellar evolutions to obtain (baroclinic) hydrostatic equilibria with arbitral angular-momentum profiles. But they are highly non-linear balance equation.

We have introduced 4 approaches in this talk.

- **1. Simple discretization**
- **2. Spectral method**
- **3. GR case**
- **4. Neural Network**

Optimization \neq Solving non-linear equations NN W4 method (arXiv: 1809.04495)

Now, our topic moves to **"stellar evolutions in 2D,3D"**.