

Analysis of Milli-Hz QPO in the NS LMXB

Ming Lyu Quarks and Compact Stars 2019, Busan

What does it look like ?

Figure 1. Light curve of 4U 1636–53 with NICER (ObsID:1050080132). The light curve is in the 0.2-5.0 keV energy, with a time resolution of 10 seconds. Significant quasi-periodic oscillations are present at the timescale of \sim 110 seconds.

Figure 3. Distribution of the frequency of the mHz QPOs in 4U 1636–53. The red dashed line in the plot corresponds to the best-fitting Gaussian curve to the histogram.

Distribution of Absolute rms amplitude of mHz QPOs in 4U 1636-53

Fractional rms amplitude vs. Frequency in 4U 1636-53

Fractional rms = Absolute rms / PCU2 rate

Fractional rms amplitude vs. rate in 4U 1636-53

Constraining local gravity with mHz QPOs

According to the model, the oscillation period of the mHz QPOs is sensitive to the local gravity g around the region where QPO originate and the chemical abundance X for the nuclear burning (shown in the right plot). Therefore, when period and X are measured, we can deduce the g around the NS surface.

Constraining local gravity with mHz QPOs

A promising mHz QPO source for constraining the gravity is:

GS 1826-238

Which is called "clocked" bursts (Heger et al. 2007; Meisel 2018), suggesting a near so composition for the accreted fuel.

Strohmayer et al. (2018)

Thank you !