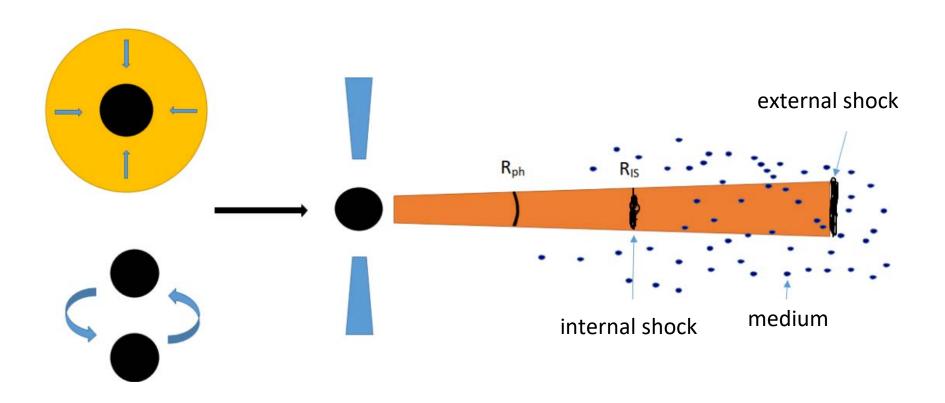
# To constrain NS's EoS by GRB X-ray plateau


Shuang Du (杜双)

**Peking University** 

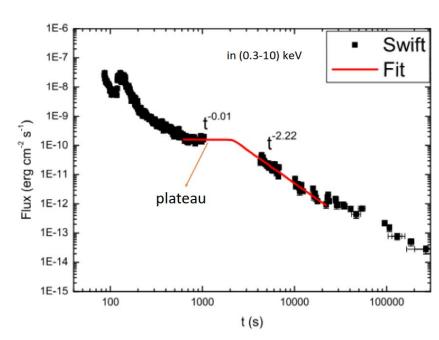
Collaborators: Renxin Xu, Enping Zhou

QCS2019, Sep. 25th-28th at Busan

## What is a GRB?



## The remnant may be a neutron star/magnetar


Spin down of the neutron star:

$$I\Omega\dot{\Omega} = -\frac{B_{\rm eff}^2 R^6 \Omega^4}{6c^3}$$

$$L_{\mathrm{sd}}(t) = L_{\mathrm{sd},0} \left( 1 + \frac{t}{\tau_{\mathrm{em}}} \right)^{-2} \quad \mathbb{E}_{\mathbb{F}_{\mathbf{o}}}^{\widehat{\mathbf{v}}_{\mathbf{o}}}$$

$$\tau_{\rm em} = \frac{3c^3I}{B_{\rm eff}^2R^6\Omega_0^2}$$

## Observation of the afterglow of GRB 080607



Du, Zhou, Xu, arXiv: 1905.01655, ApJ accepted

### Result

$$I > 1.0 \times 10^{45} \left(\frac{P_{\rm cri}}{1~{\rm ms}}\right)^2~{\rm g\cdot cm}^2$$
. for rotational inertia

| $B_{\rm eff, max} \ (10^{15} {\rm Gs})$ | $P_{\rm cri}~({\rm ms})$ | $R (10^5 {\rm cm})$ |
|-----------------------------------------|--------------------------|---------------------|
| 1.0                                     | 0.5                      | > 8.7               |
| 1.0                                     | 1.0                      | > 11.0              |
| 2.5                                     | 0.5                      | > 6.4               |
| 2.5                                     | 1.0                      | > 8.1               |
| $B_{\rm eff, max} \ (10^{15} {\rm Gs})$ | $P_0 \text{ (ms)}$       | $R (10^{5} cm)$     |
| 1.0                                     | 1.5                      | > 12.5              |
| 2.5                                     | 1.5                      | > 9.2               |
| 1.0                                     | 2.0                      | > 13.8              |
| 2.5                                     | 2.0                      | > 10.2              |

for equatorial radius

## Summary

- The constraint is weak due to the narrow-energy-range observation (0.3-10 keV). It is easy to be improved, e.g., 0.1-30 keV.
- This is a new method. It can be combined with the constraint of gravitational waves.

#### **Thanks**