Quantum Computing Basic 1

Isaac Kim(PsiQuantum)

5/22/19

Breakdown

15 min	Classical vs. Quantum computing
15 min	Pauli group
15 min	Clifford group
15 min	Non-Clifford gate
15 min	Single-qubit gates
30 min	Universal gate set
15 min	Quantum circuits

Classical computing

- 1. Starts with a fixed initial state. (ex. 000000 ... 000000)
- 2. Apply a set of gates. (ex. NAND, OR, NOT, ...)
- 3. Read out the outcome. (ex. 101011110)

Quantum computing

- 1. Starts with a fixed initial state. (ex. $|000000 \dots 000000 >$)
- 2. Apply a set of gates. (ex. Pauli, Clifford, T, ...)
- 3. Read out the outcome. (ex. Measure $Z_1, Z_2, ...$)

Comparison

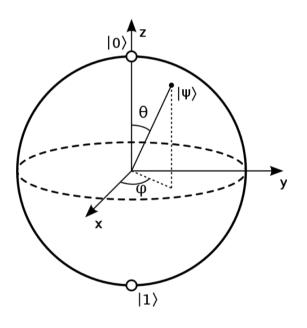
	Classical	Quantum	
Gate	Not reversible(ex. OR gate)	Reversible	
Readout	Does not change the state.	Changes the state.	
Gate set	Discrete	Discrete	
Elementary unit	Bit	Qubit	

Bit

- 0 or 1
- *n*-bit string can represent 2^{*n*} distinct values.
- State space forms a vector space over {0,1}.
 - Basis: *n*-bit string

Qubit

- $\alpha |0\rangle + \beta |1\rangle.$
- n qubits can represent 2^n orthogonal states.
- State space forms a (normalized) vector space over $\mathbb{C}.$
 - Basis: $|x\rangle$, where x is an n-bit string.



$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\varphi}\sin\frac{\theta}{2}|1\rangle$$

Classical Gates

Ex) AND gate

 Input: Bits

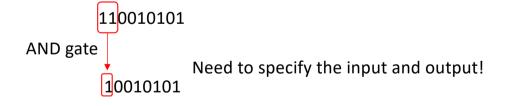
• Output: Bits

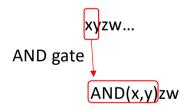
In 1	In 2	Out
0	0	0
0	1	0
1	0	0
1	1	1

Classical Gates

Ex) AND gate

	In 1	In 2	Out
	0	0	0
• Input: Bits	0	1	0
Input: BitsOutput: Bits	1	0	0
	1	1	1





5/22/19

Quantum Gates

Ex) Pauli X-gate

- Input: Vector over \mathbb{C} .
- Output: Vector over $\mathbb{C}.$

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} \beta \\ \alpha \end{pmatrix}$$

Quantum Gates

Ex) Pauli X-gate

- Input: Vector over \mathbb{C} .
- Output: Vector over \mathbb{C} .

 $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} \beta \\ \alpha \end{pmatrix}$

 $\alpha | 0 0 1 \rangle + \beta | 1 0 1 \rangle \rightarrow \alpha | 0 1 1 \rangle + \beta | 1 1 1 \rangle$

Quantum Gates

- Quantum gate must be a physical process
- Except for measurement, all physical processes are unitary.

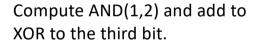
$$UU^{\dagger} = U^{\dagger}U = I$$

• This means that irreversible classical gates(ex. AND) are not allowed.

Quantum Computation generalizes classical computation

• Irreversible classical gates(ex. AND) can be implemented reversibly by adding a bit.

Toffoli gate						
in 1	In 2	In 3	Out 1 Out 2		Out 3	
0	0	0	0	0	0	
0	1	0	0	1	0	
1	0	0	1	0	0	
1	1	0	1	1	1	
0	0	1	0 0		1	
0	1	1	0 1		1	
1	0	1	1	0	1	
1	1	1	1	1	0	



• Therefore, any classical computation using N logic operations can be implemented on a quantum computer with N extra qubits.

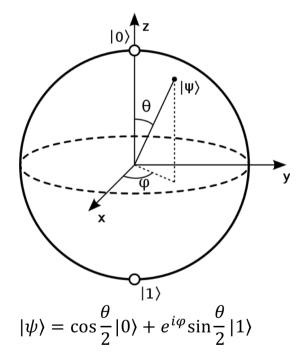
5/22/19

Quantum Gate

- Clifford hierarchy : This is a very useful way to organize quantum gates.
 - First level: Pauli
 - Second level: Clifford
 - Third level: non-Clifford
- The second level can be simulated efficiently on a classical computer. [Gottesman-Knill theorem]

Pauli gates

- $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ $Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ $X^{2} = Y^{2} = Z^{2} = I.$
- They all anticommute.
- They are all Hermitian.
- They are all unitary.



Up to a global phase, the gate set forms a finite group of order 4.

Pauli string

- $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ $Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
- Ex) $X_1 Z_2 Y_3 Y_4$
 - Interpretation: Apply X on qubit 1, Z on qubit 2, Y on qubit 3, and Y on qubit 4.

Clifford group

- Clifford group maps a Pauli string to a Pauli string.
- Any C such that $C^{-1}PC$ is a Pauli string for any Pauli string P.
- Generators
 - Hadamard: $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$

• Phase:
$$S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$$

• CNOT:
$$CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

- Still a finite group.
- Board: Let's check that these gates are in the Clifford group.
- Quick question: Up to a phase, what is the order of the Clifford group for single qubit?

Non-Clifford

- Clifford + Pauli gate generates a finite group -> Cannot be universal.
- Adding almost any gate completes the universal gate set.
- Popular examples are in the third level of Clifford hierarchy.
 - C is in the third level if $C^{-1}PC$ is a Clifford for any Pauli P.

- Examples

 - Controlled-Phase gate: $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & i \end{pmatrix}$ T-gate: $\begin{pmatrix} 1 & 0 \\ 0 & \sqrt{i} \end{pmatrix}$

$\binom{0}{i}$	ln 1	In 2	In 3	Out 1	Out 2	Out 3
	0	0	0	0	0	0
	0	1	0	0	1	0
	1	0	0	1	0	0
Toffoli -> Not in the Clifford hierarchy	1	1	0	1	1	1
	0	0	1	0	0	1
	0	1	1	0	1	1
	1	0	1	1	0	1
	1	1	1	1	1	0

Why the third level?

- In quantum error correction, we can often perform nearly perfect Pauli + Clifford.
- However, non-Clifford gates are generally more difficult.
- The standard approach is to distill low-noise non-Clifford gates from noisy non-Clifford gates.
- These gates can be distilled.

• Controlled-Phase gate:
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & i \end{pmatrix}$$

• T-gate:
$$\begin{pmatrix} 1 & 0 \\ 0 & \sqrt{i} \end{pmatrix}$$

• Toffoli

• However, not every gate can be distilled.