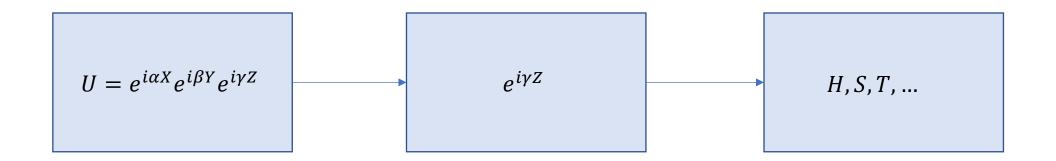
Quantum Computing Basic 2

Isaac Kim(PsiQuantum)

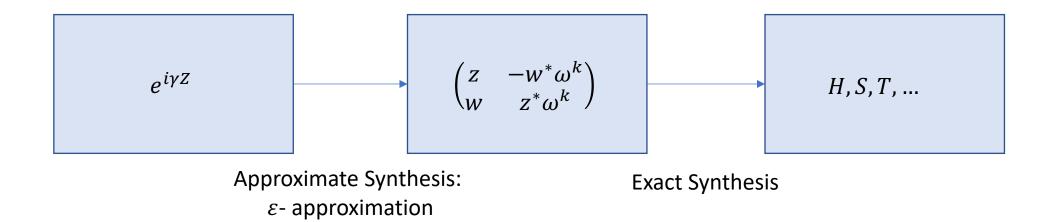
15 min	Classical vs. Quantum computing
15 min	Pauli group
15 min	Clifford group
15 min	Non-Clifford gate
15 min	Single-qubit gates
30 min	Universal gate set
15 min	Quantum circuits

- Pauli: X, Y, Z
- Clifford: H, S
- Non-Clifford: T
- Any single-qubit unitary gate can be approximated by a sequence of these gates.



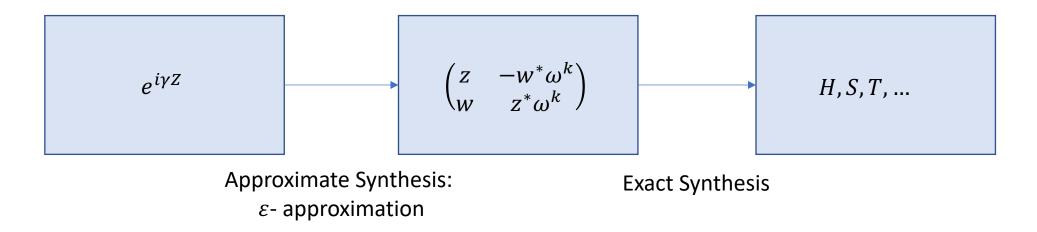
• Fact: Any gate composed of Clifford+T has the following form[Kliuchnikov, Maslov, Mosca (2013)]:

•
$$U = \begin{pmatrix} z & -w^* \omega^k \\ w & z^* \omega^k \end{pmatrix}$$
, where ω is the 8th root of unity.



• Fact: Any gate composed of Clifford+T has the following form[Kliuchnikov, Maslov, Mosca (2013)]:

•
$$U = \begin{pmatrix} z & -w^* \omega^k \\ w & z^* \omega^k \end{pmatrix}$$
, where ω is the 8th root of unity.



- Ross and Selinger: ε -approximation possible with ~3 log $\frac{1}{\epsilon}$ gates. (Both H and T.)
- This is nearly optimal.

• n-bit precision single-unitary can be done with O(n) elementary gates.

ε	T-count	T-bound	Actual error	Runtime	Candidates	Time/Candidate
10^{-10}	102	≥ 102	$0.91180 \cdot 10^{-10}$	0.0190s	3.0	0.0064s
10^{-20}	200	≥ 198	$0.87670\cdot 10^{-20}$	0.0433s	7.0	0.0061s
10^{-30}	298	$\geqslant 298$	$0.99836\cdot 10^{-30}$	0.0600s	7.0	0.0085s
10^{-40}	402	≥ 400	$0.77378\cdot 10^{-40}$	0.0976s	11.7	0.0084s
10^{-50}	500	≥ 500	$0.82008\cdot 10^{-50}$	0.1353s	20.3	0.0067s
10^{-60}	602	≥ 596	$0.61151\cdot 10^{-60}$	0.1548s	16.0	0.0097s
10^{-70}	702	≥ 698	$0.40936\cdot 10^{-70}$	0.1931s	20.9	0.0093s
10^{-80}	804	$\geqslant 794$	$0.92372\cdot 10^{-80}$	0.2402s	27.2	0.0088s
10^{-90}	898	$\geqslant 898$	$0.96607\cdot 10^{-90}$	0.2696s	22.2	0.0121s
10^{-100}	1000	$\geqslant 998$	$0.78879 \cdot 10^{-100}$	0.3443s	31.2	0.0110s
10^{-200}	1998	≥ 1994	$0.73266 \cdot 10^{-200}$	1.1423s	62.3	0.0183s
10^{-500}	4990	≥ 4986	$0.67156\cdot 10^{-500}$	8.6509s	170.4	0.0508s
10^{-1000}	9974	$\geqslant 9966$	$0.80457\cdot 10^{-1000}$	47.9300s	270.4	0.1773s
10^{-2000}	19942	$\geqslant 19934$	$0.88272\cdot 10^{-2000}$	383.1024s	556.7	0.6881s

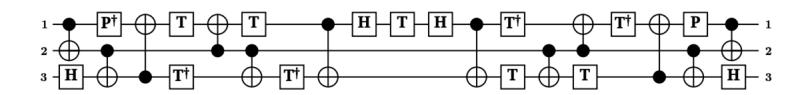
From [Ross, Selinger (2014)]

T-gate is the dominant cost of faulttolerant quantum computation.

- Generally, arbitrary single-qubit unitary + a fixed two-qubit unitary is universal.
- In particular, {H, T, CNOT} is a universal gate set.
- While this is not the only choice, this is one of the most popular choices.

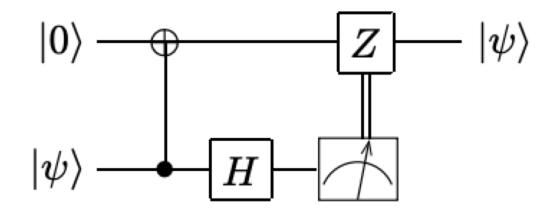
Quantum circuits

How do we actually apply these gates in practice?

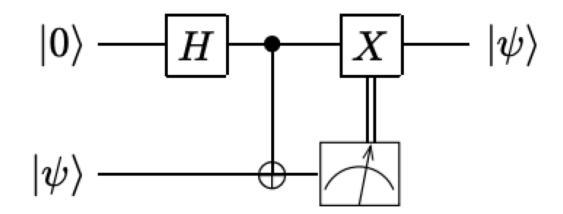


- Ordinary gates: Unitary operation
- Teleportation: Measurement + unitary
 - End result: Identity operation
- Gate teleportation: Measurement + unitary
 - End result: nontrivial unitary operation

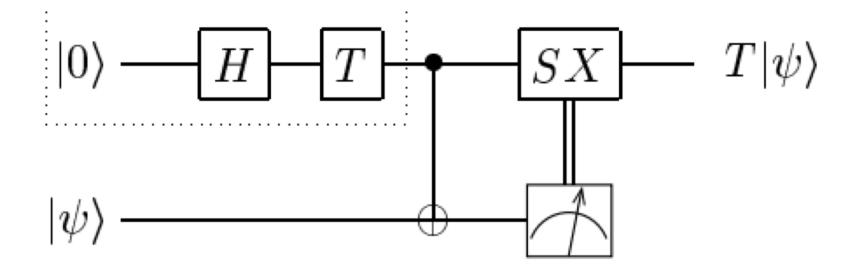
One-bit teleportation



One-bit teleportation



Phase/T-gate teleportation



- T-gate can be applied by gate teleportation. ٠
- The "fix" operation is the phase gate, which is Clifford. ٠
- Generally speaking, $\begin{pmatrix} 1 & 0 \\ 0 & e^{\frac{\pi}{2^n}i} \end{pmatrix}$ gate can be applied by gate teleportation followed by a fix operation
- $\begin{pmatrix} 1 & 0 \\ 0 & e^{\frac{\pi}{2^{n-1}i}} \end{pmatrix}.$ $\begin{pmatrix} 1 & 0 \\ 0 & e^{\frac{\pi}{2^{n-1}i}} \end{pmatrix}$ gate belongs to the (n+1)th level of Clifford hiercharchy.