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Discrete gate set is necessary

e Useful quantum computation often requires 100,000,000 gates or more. In order for the computation to
be reliable, the precision per operation must be much smaller than 1/100,000,000.
* With the fault-tolerant quantum computation technique, one can boost the precision from ~1/100 to an

arbitrarily small number.
 However, the fault-tolerant gate set is discrete.



Discrete gate set is sufficient
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Popular fault-tolerant gate set: T, H, CNOT..

* Any single qubit gate can be approximated with error € by using at most 3 logi + O(loglog i) T-

gates. (Same scaling for H-gate.) [Ross and Selinger (2014)]

€ T-count | T-bound Actual error Runtime | Candidates | Time/Candidate
10~10 102 > 102 [ 0.91180- 10 1° 0.0190s 3.0 0.0064s
10—20 200 > 198 | 0.87670- 10720 0.0433s 7.0 0.0061s
10730 298 > 298 | 0.99836 - 10730 0.0600s 7.0 0.0085s
1040 402 > 400 | 0.77378 - 1040 0.0976s 11.7 0.0084s
1050 500 > 500 | 0.82008 - 10—5° 0.1353s 20.3 0.0067s
1060 602 > 596 | 0.61151-10~9° 0.1548s 16.0 0.0097s
10~ 702 > 698 | 0.40936 - 10~ 7° 0.1931s 20.9 0.0093s
1080 804 > 794 | 0.92372-10780 0.2402s 27.2 0.0088s
10—9 898 > 898 | 0.96607 - 10~2° 0.2696s 22.2 0.0121s
10100 1000 > 998 | 0.78879 - 1010 0.3443s 31.2 0.0110s
10200 1998 | > 1994 | 0.73266 - 10200 1.1423s 62.3 0.0183s
10500 4990 | > 4986 | 0.67156 - 10500 8.6509s 170.4 0.0508s
101000 9974 | > 9966 | 0.80457 - 10~1000 I 47.9300s 270.4 0.1773s
10—2000 19942 | > 19934 | 0.88272- 1072000 || 383.1024s 556.7 0.6881s

From Ross and Selinger(2014)




Fault-tolerant quantum computation

: : . o . 1
* Because a discrete gate set can approximate any continuous gate set arbitrarily well with smaII(O(logE))

overhead, it suffices to make those gates really, really good.
 The theory of fault-tolerant qguantum computation attempts to achieve this goal.



Fault-tolerance: Active

10) € z
10) <P P-z
4 — —!l
: !
7 ®
* Approach: Check if an error occurs in the middle of the computation. 0) - S z z
If an error is detected, identify the most likely scenario and correct. e T’I
* Tricky part 9
* Theory: The check may also suffer an error. So we need to verify o - [
the checks as well. 10) -4 z
* Experiment: For n-qubit system, one needs to calibrate O(n) 0P ¢
frequencies, pulses, etc. Because a useful quantum 12 — Tl
computation requires ~10° qubits, this poses a significant ﬁ )|
engineering challenge. 15 ¢

From Reichardt and Cao(2017)

5/22/19



Fault-tolerance: Passive

e Approach: Build a physical device that is fault-tolerant by its nature.
* Most of these approaches has been pioneered by Kitaev.
* Anyons(1996)
 Majorana wire(2000)
* Superconducting current mirror(2006)
* |dea: Once you are in some quantum phase, then all of your gates are protected.



Topological quantum computation

* Adiabatic transport of quasiparticles Antiparticle

‘ Particle
* /ero temperature I
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Topological quantum computation: Error source

e Zero errorin the zero temperature limit and infinite separation between quasiparticles.
* Finite temperature effect: O(e‘BA), where 8 inverse temperature and A quasiparticle gap.
* Finite separation effect: O(e‘l/’f). Typically é~1/A.
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The Pfaffian state is an attractive candidate for the observed quantized Hall plateau at Landau level filling
fraction v = 5/2. This is particularly intriguing because this state has unusual topological properties, including
quasiparticle excitations with non-Abelian braiding statistics. In order to determine the nature of the v = 5/2
state, one must measure the quasiparticle braiding statistics. Here, we propose an experiment which can si-
multaneously determine the braiding statistics of quasiparticle excitations and, if they prove to be non-Abelian,
produce a topologically-protected qubit on which a logical NOT operation is performed by quasiparticle braid-
ing. Using the measured excitation gap at v = 5/2, we estimate the error rate to be 10™3° or lower.
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Example 1: Majorana fermion

* A fermion that is its own antiparticle.
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Gate set

* Operators: ¢,,,, m = 1,2,3,4, ...
* {Cn' Cm} = Onm-
* Braid Gates: exp(%i CnCm)-
* This gate exchanges ¢,, = ¢, €y = —Cyp,.
* This gate set generates a finite group.
* Therefore, this gate set is not universal.

 Measurement: Parity of n, m.
* Observable: —ic, cy,-



Universal gate set

* In order to complete a universal gate set, a non-topological gate must be included.
* Difference

* Topological gates(Braid gates and parity measurement): Universal property of the phase. Assume to

be nearly perfect.
* Non-topological gates: Non-universal, depends on the details of the experiment.
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Universal gate set: Why is this reasonable?

 Non-topological gates will be generally much worse than topological gates, because it requires fine-
tuning.
 However, there is a “software-approach” to mitigate the fine tuning.
* |f topological gates are perfect, the error rate for non-topological gates only need to be below 14%.
[Bravyi (2005)]
* Note: If every gate suffers the same error, the highest error rate that we can tolerate is ~¥3%. [Knill
(2005)]. But Knill’s approach is a bit unrealistic. For realistic schemes, the best one out there can

tolerate ~0.7%[Raussendorf, Harrington, Goyal (2007)].



Generality: Braid group

Braid group is infinite! bj=
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Generality: Particle type

There are finite numbers of particle types, and they can fuse and become another particle.
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Generality: How to determine the gates?

1. Based on what particle type fuses into what particle type, we can constrain F.
2. Solve the consistency equations.
3. If solution exists, our gates are R, FRF ™1, ...
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e b

These equations are not easy to solve in general...

5/22/19 18



Example 2: Fibonacci anyon

* 4 anyons encode a qubit.

* Braiding is universal. e4mi/5 0 - pm
* Potentially available forv = 12/5 FQHE state. R = ( ) , F= (

*  Much less experimental effort.
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Original proposal

e Das Sarma, Freedman, Nayak(2005): Use v = gfractional guantum Hall state.

* Experimentally, excitation gap of 100mK observed.
* The ground state may host an Ising anyon,[Read and Moore (1991)] whose computational power is
exactly equal to the Majorana fermion.

 Drawbacks
* Both quasiparticle transport and charge measurement difficult in practice.
* The existence of anyon is not confirmed yet.



Leading modern proposal

* Majorana nanonwire [Alicea et al. (2012)]
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Leading modern proposal

* Majorana nanonwire [Alicea et al. (2012)]
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Majorana nanowire

e Zero errorin the zero temperature limit and infinite separation between quasiparticles.
* Finite temperature effect: O(e‘BA), where 8 inverse temperature and A quasiparticle gap.
* Finite separation effect: O(e‘l/f). Typically é~1/A.

 Manufacturing yield is not very good yet.
* Quasi-particle transport is challenging in practice.



Important lessons

* Non-topological gates will be generally much worse than topological gates, because it requires fine-
tuning.
 However, there is a “software-approach” to mitigate the fine tuning.
* |f topological gates are perfect, the error rate for non-topological gates only need to be below 14%.
[Bravyi (2005)]
* If every gate suffers the same error, the highest error rate that we can tolerate is ~3%. [Knill (2005)].
But Knill’s approach is a bit unrealistic. For realistic schemes, the best one out there can tolerate
~0.7%.
* |f every single-qubit gate is perfect, the highest noise rate one can tolerate is not too different from
0.7% ~3% range.
* Lesson 1: If we have very good two-qubit gates, fault-tolerant quantum computation becomes much
easier.
* Lesson 2: Topological quantum computation is attractive because we can have very good two-qubit

gates.



Summary

* |n principle, topological quantum computation can yield very low error rate.
* Finite temperature effect: O(e'ﬂA), where 8 inverse temperature and A quasiparticle gap.
* Finite separation effect: O(e‘l/f). Typically é~1/A.

* The existing manufacturing process is not mature enough.

* However, once the process becomes scalable, we can expect to have very good qubits.



Topological quantum error correction

e Topological quantum computation: Cool to zero temperature by dissipating heat = Small error
* Topological quantum error correction: Cool to zero temperature by classical feedback — Vanishing error

Anyon model

H = Zihi
Cool to zero temperature. Measure h;. Lower energy based on
the measurement outcome.
Topological quantum computation Topological quantum error correction

Error=~e—BA Error=~e L for LxL system.

No classical computation necessary Classical computation necessary.



Topological quantum error correction

O Thermal excitations

In a fixed time, thermal excitations are created and travel.

5/22/19 27



Topological quantum error correction

Q Thermal excitations

One can reverse this effect by annihilating the thermal excitations.
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Topological quantum error correction

O Thermal excitations

But there is an ambiguity...
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Topological quantum error correction

Q Thermal excitations

The most likely scenario: A path with the shortest travel distance.
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Topological quantum error correction

O Thermal excitations

Most of the time, this will work.
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Topological quantum error correction

O Thermal excitations

But sometimes we will get it wrong.
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Topological quantum error correction: Measurement error

Q Thermal excitations

Sometimes, you might fail to detect the excitation.
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Topological quantum error correction: Measurement error

Q Thermal excitations

Sometimes, you might fail to detect the excitation.
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Topological quantum error correction: Measurement error

O Thermal excitations

Solution: Repeat the measurement many times
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Topological quantum error correction: Complete picture

* Foral Xl system, measure and locate the excitations for O (1) time.
* Guess the most likely path of the excitations.
* Fuse excitations with their partners.

25jr wwwwwwwwwwwww T ]
< 20 ~ °
e Below p~2.7%, error decays exponentially
5 with L.
T 15
g 191
Q.
S 10f
i-’ F —o— | =6
S L=10 . . :
S 5/ L=14 0 (13)-time algorithm exists.
- f - L=18 [Nickerson and Delfosse(2018)]
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From [Nickerson and Delfosse(2018)]
5/22/19 36



Topological quantum error correction: Fault-tolerant gate

* Problem: Underlying anyon model is Abelian.
Nothing happens...
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Topological quantum error correction: Fault-tolerant gate

* Problem: Underlying anyon model is Abelian.
Phase of -1 is accumulated.
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Topological quantum error correction: Fault-tolerant gate

* Problem: Underlying anyon model is Abelian.
Phase of -1 is accumulated.
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Topological quantum error correction: Defect
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Topological quantum error correction: Defect

A pair of defect line encodes a qubit.
Braiding the end of defect line realizes the entire Clifford group.
[Bombin (2006)]
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Summary

1. Topological quantum computation makes quantum gates robust by their physical nature.
2. While the gate sets are often not universal, there are schemes to complete the universal gate set.
3. Topological quantum computing approaches are often classified into two groups

1. Original approach: Cool down the system in braid anyons.

2. Active approach: Actively measure excitations and fuse them back.



