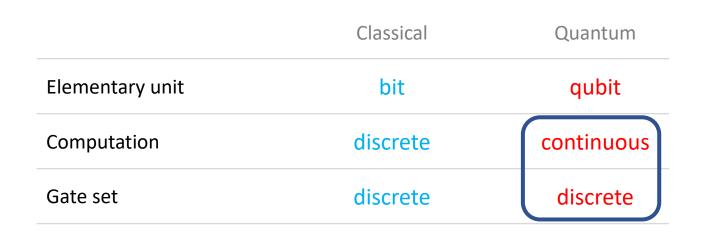
Topological Quantum Computation: Past and Present

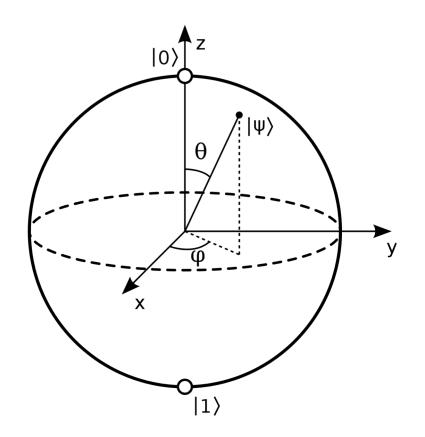
Isaac Kim(PsiQuantum)

Disclaimer: None of this work is related to what I do in PsiQuantum.

15 min	Challenges of quantum computing
15 min	Fault-tolerance
15 min	Topological quantum computation
15 min	Examples
30 min	Modern view

Classical vs. Quantum computing





- Useful quantum computation often requires 100,000,000 gates or more. In order for the computation to be reliable, the precision per operation must be much smaller than 1/100,000,000.
- With the fault-tolerant quantum computation technique, one can boost the precision from ~1/100 to an arbitrarily small number.
- However, the fault-tolerant gate set is discrete.

Discrete gate set is sufficient

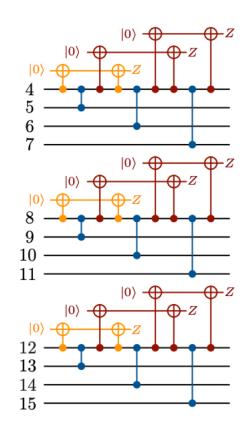
- Popular fault-tolerant gate set: *T*, *H*, *CNOT*.
 - Any single qubit gate can be approximated with error ϵ by using at most $3\log \frac{1}{\epsilon} + O(\log \log \frac{1}{\epsilon}) T$ -gates. (Same scaling for *H*-gate.) [Ross and Selinger (2014)]

ε	T-count	T-bound	Actual error	Runtime	Candidates	Time/Candidate
10^{-10}	102	$\geqslant 102$	$0.91180 \cdot 10^{-10}$	0.0190s	3.0	0.0064s
10^{-20}	200	$\geqslant 198$	$0.87670\cdot 10^{-20}$	0.0433s	7.0	0.0061s
10^{-30}	298	≥ 298	$0.99836 \cdot 10^{-30}$	0.0600s	7.0	0.0085s
10^{-40}	402	≥ 400	$0.77378\cdot 10^{-40}$	0.0976s	11.7	0.0084s
10^{-50}	500	≥ 500	$0.82008\cdot 10^{-50}$	0.1353s	20.3	0.0067s
10^{-60}	602	≥ 596	$0.61151\cdot 10^{-60}$	0.1548s	16.0	0.0097s
10^{-70}	702	≥ 698	$0.40936\cdot 10^{-70}$	0.1931s	20.9	0.0093s
10^{-80}	804	$\geqslant 794$	$0.92372\cdot 10^{-80}$	0.2402s	27.2	0.0088s
10^{-90}	898	≥ 898	$0.96607 \cdot 10^{-90}$	0.2696s	22.2	0.0121s
10^{-100}	1000	$\geqslant 998$	$0.78879 \cdot 10^{-100}$	0.3443s	31.2	0.0110s
10^{-200}	1998	≥ 1994	$0.73266 \cdot 10^{-200}$	1.1423s	62.3	0.0183s
10^{-500}	4990	$\geqslant 4986$	$0.67156\cdot 10^{-500}$	8.6509s	170.4	0.0508s
10^{-1000}	9974	$\geqslant 9966$	$0.80457\cdot 10^{-1000}$	47.9300s	270.4	0.1773s
10^{-2000}	19942	$\geqslant 19934$	$0.88272 \cdot 10^{-2000}$	383.1024s	556.7	0.6881s

From Ross and Selinger(2014)

- Because a discrete gate set can approximate any continuous gate set arbitrarily well with small($O(\log \frac{1}{\epsilon})$) overhead, it suffices to make those gates really, really good.
- The theory of fault-tolerant quantum computation attempts to achieve this goal.

- Approach: Check if an error occurs in the middle of the computation. If an error is detected, identify the most likely scenario and correct.
- Tricky part
 - Theory: The check may also suffer an error. So we need to verify the checks as well.
 - Experiment: For *n*-qubit system, one needs to calibrate O(n) frequencies, pulses, etc. Because a useful quantum computation requires $\sim 10^6$ qubits, this poses a significant engineering challenge.

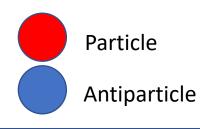


From Reichardt and Cao(2017)

- Approach: Build a physical device that is fault-tolerant by its nature.
- Most of these approaches has been pioneered by Kitaev.
 - Anyons(1996)
 - Majorana wire(2000)
 - Superconducting current mirror(2006)
- Idea: Once you are in some quantum phase, then all of your gates are protected.

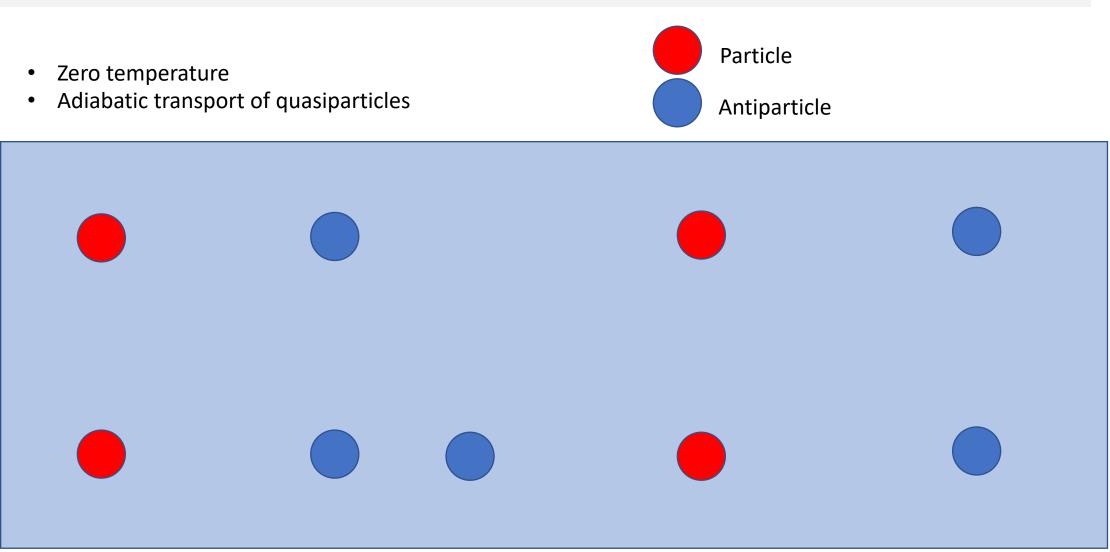
Topological quantum computation

- Zero temperature
- Adiabatic transport of quasiparticles



Energy subspace with splitting $O(e^{-l/\xi})$

Topological quantum computation



Topological quantum computation: Error source

- Zero error in the zero temperature limit and infinite separation between quasiparticles.
- Finite temperature effect: $O(e^{-\beta\Delta})$, where β inverse temperature and Δ quasiparticle gap.
- Finite separation effect: $O(e^{-l/\xi})$. Typically $\xi \sim 1/\Delta$.

Topologically-Protected Qubits from a Possible Non-Abelian Fractional Quantum Hall State

Sankar Das Sarma¹, Michael Freedman², Chetan Nayak^{2,3} ¹ Department of Physics, University of Maryland, College Park, MD 20742 ²Microsoft Research, One Microsoft Way, Redmond, WA 98052 ³ Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (Dated: September 10, 2018)

The Pfaffian state is an attractive candidate for the observed quantized Hall plateau at Landau level filling fraction $\nu = 5/2$. This is particularly intriguing because this state has unusual topological properties, including quasiparticle excitations with non-Abelian braiding statistics. In order to determine the nature of the $\nu = 5/2$ state, one must measure the quasiparticle braiding statistics. Here, we propose an experiment which can simultaneously determine the braiding statistics of quasiparticle excitations and, if they prove to be non-Abelian, produce a topologically-protected qubit on which a logical NOT operation is performed by quasiparticle braiding. Using the measured excitation gap at $\nu = 5/2$, we estimate the error rate to be 10^{-30} or lower.

Example 1: Majorana fermion

• A fermion that is its own antiparticle.

Gate set

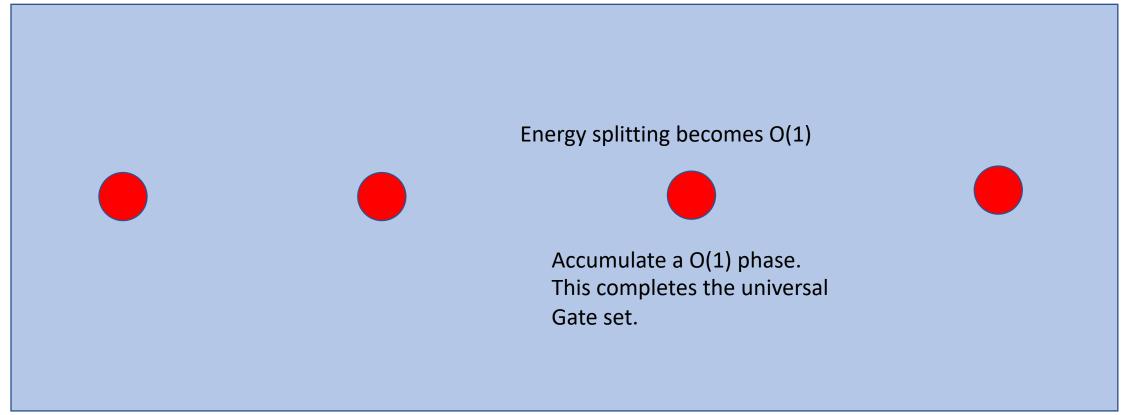
• Operators: $c_m, m = 1, 2, 3, 4, ...$

•
$$\{c_n, c_m\} = \delta_{nm}$$
.

- Braid Gates: $\exp(\frac{\pi}{4}i c_n c_m)$.
 - This gate exchanges $c_n \rightarrow c_m, c_m \rightarrow -c_n$.
 - This gate set generates a finite group.
 - Therefore, this gate set is not universal.
- Measurement: Parity of *n*, *m*.
 - Observable: $-ic_nc_m$.

Universal gate set

- In order to complete a universal gate set, a non-topological gate must be included.
- Difference
 - Topological gates(Braid gates and parity measurement): Universal property of the phase. Assume to be nearly perfect.
 - Non-topological gates: Non-universal, depends on the details of the experiment.

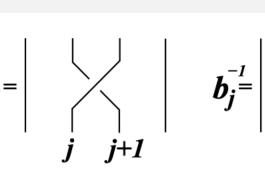


Universal gate set: Why is this reasonable?

- Non-topological gates will be generally much worse than topological gates, because it requires finetuning.
- However, there is a "software-approach" to mitigate the fine tuning.
 - If topological gates are perfect, the error rate for non-topological gates only need to be below 14%.
 [Bravyi (2005)]
 - Note: If every gate suffers the same error, the highest error rate that we can tolerate is ~3%. [Knill (2005)]. But Knill's approach is a bit unrealistic. For realistic schemes, the best one out there can tolerate ~0.7%[Raussendorf, Harrington, Goyal (2007)].

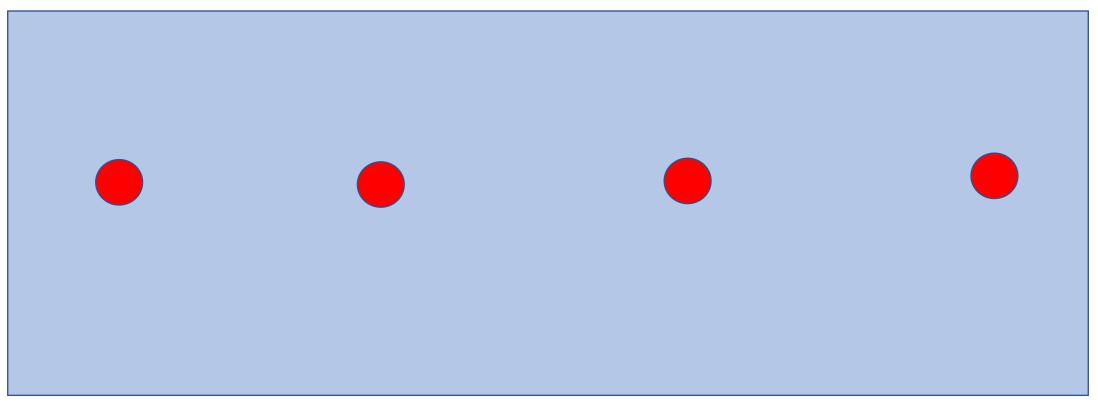
Generality: Braid group

Braid group is infinite! $b_j^{=}$



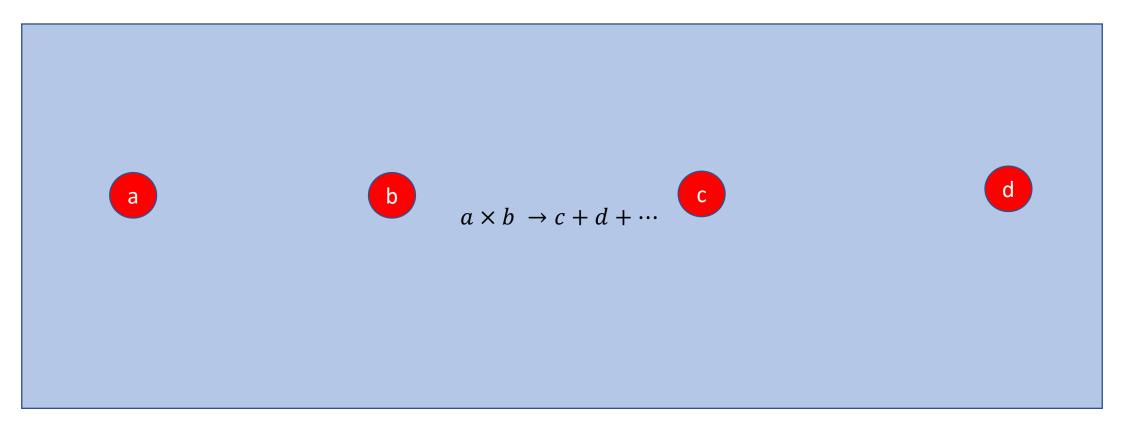
j+1

j



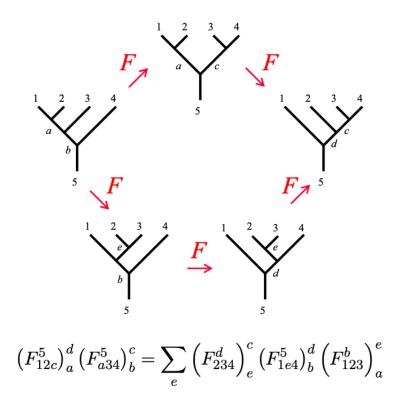
Generality: Particle type

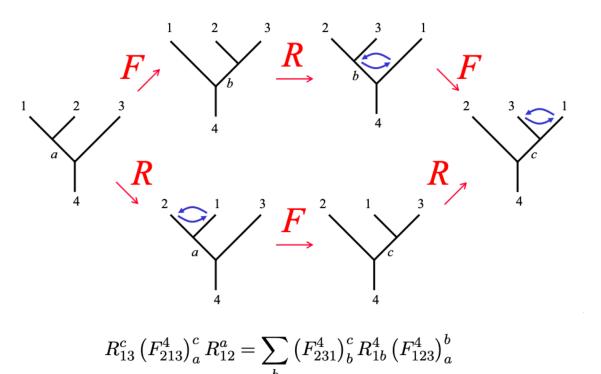
There are finite numbers of particle types, and they can fuse and become another particle.



Generality: How to determine the gates?

- 1. Based on what particle type fuses into what particle type, we can constrain F.
- 2. Solve the consistency equations.
- 3. If solution exists, our gates are $R, FRF^{-1}, ...$



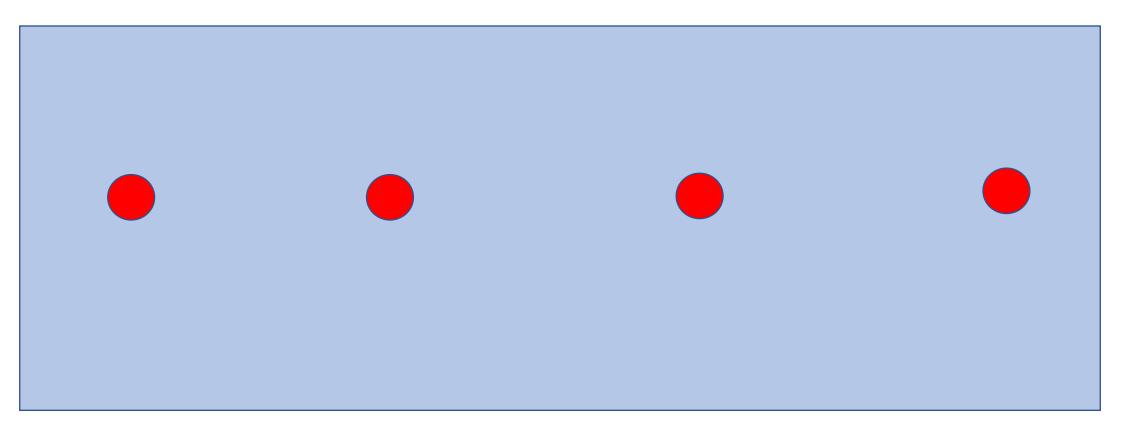


These equations are not easy to solve in general...

Example 2: Fibonacci anyon

- 4 anyons encode a qubit.
- Braiding is universal.
- Potentially available for $\nu = 12/5$ FQHE state.
- Much less experimental effort.

$$R = \begin{pmatrix} e^{4\pi i/5} & 0 \\ 0 & -e^{2\pi i/5} \end{pmatrix}$$
, $F = \begin{pmatrix} au & \sqrt{ au} \\ \sqrt{ au} & - au \end{pmatrix}$



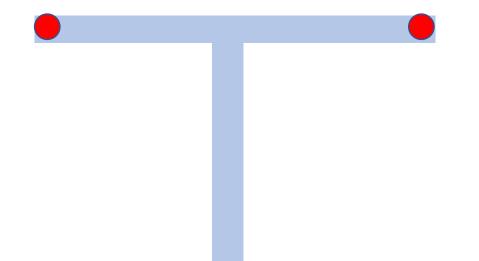
Original proposal

- Das Sarma, Freedman, Nayak(2005): Use $\nu = \frac{5}{2}$ fractional quantum Hall state.
 - Experimentally, excitation gap of 100mK observed.
 - The ground state may host an Ising anyon, [Read and Moore (1991)] whose computational power is exactly equal to the Majorana fermion.

- Drawbacks
 - Both quasiparticle transport and charge measurement difficult in practice.
 - The existence of anyon is not confirmed yet.

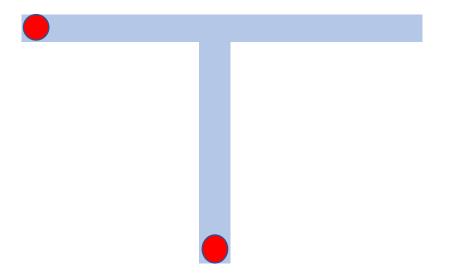
Leading modern proposal

• Majorana nanonwire [Alicea et al. (2012)]



Leading modern proposal

• Majorana nanonwire [Alicea et al. (2012)]



Majorana nanowire

- Zero error in the zero temperature limit and infinite separation between quasiparticles.
- Finite temperature effect: $O(e^{-\beta\Delta})$, where β inverse temperature and Δ quasiparticle gap.
- Finite separation effect: $O(e^{-l/\xi})$. Typically $\xi \sim 1/\Delta$.

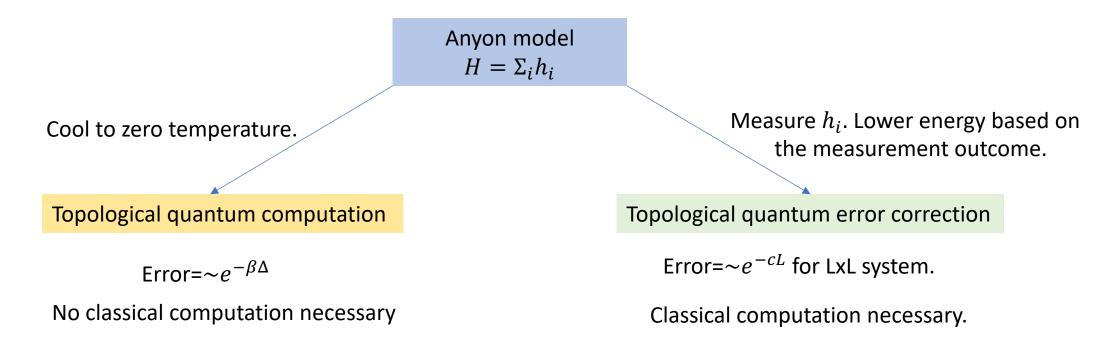
- Manufacturing yield is not very good yet.
- Quasi-particle transport is challenging in practice.

Important lessons

- Non-topological gates will be generally much worse than topological gates, because it requires finetuning.
- However, there is a "software-approach" to mitigate the fine tuning.
 - If topological gates are perfect, the error rate for non-topological gates only need to be below 14%.
 [Bravyi (2005)]
 - If every gate suffers the same error, the highest error rate that we can tolerate is ~3%. [Knill (2005)]. But Knill's approach is a bit unrealistic. For realistic schemes, the best one out there can tolerate ~0.7%.
 - If every single-qubit gate is perfect, the highest noise rate one can tolerate is not too different from 0.7% ~3% range.
- Lesson 1: If we have very good two-qubit gates, fault-tolerant quantum computation becomes much easier.
- Lesson 2: Topological quantum computation is attractive because we can have very good two-qubit gates.

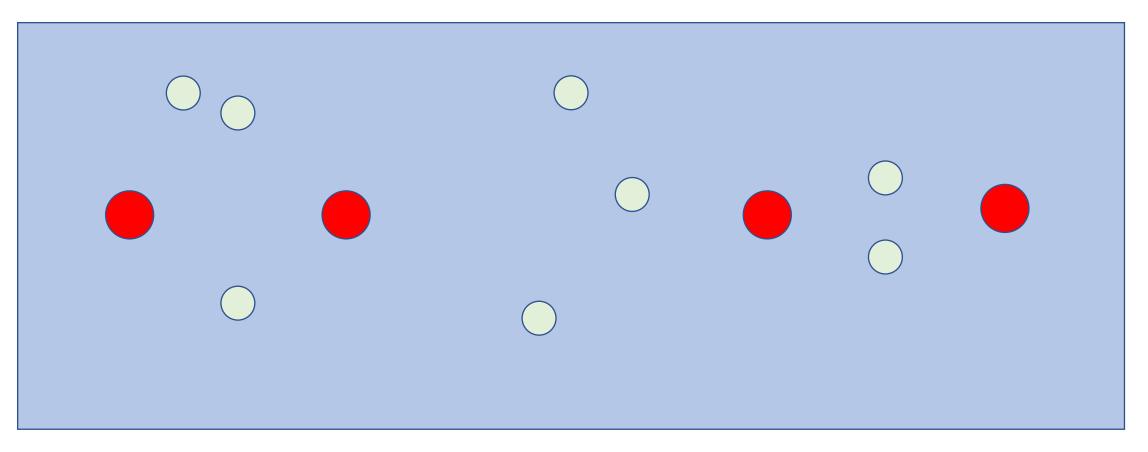
- In principle, topological quantum computation can yield very low error rate.
 - Finite temperature effect: $O(e^{-\beta\Delta})$, where β inverse temperature and Δ quasiparticle gap.
 - Finite separation effect: $O(e^{-l/\xi})$. Typically $\xi \sim 1/\Delta$.
- The existing manufacturing process is not mature enough.
- However, once the process becomes scalable, we can expect to have very good qubits.

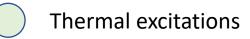
- Topological quantum computation: Cool to zero temperature by dissipating heat → Small error
- Topological quantum error correction: Cool to zero temperature by classical feedback → Vanishing error



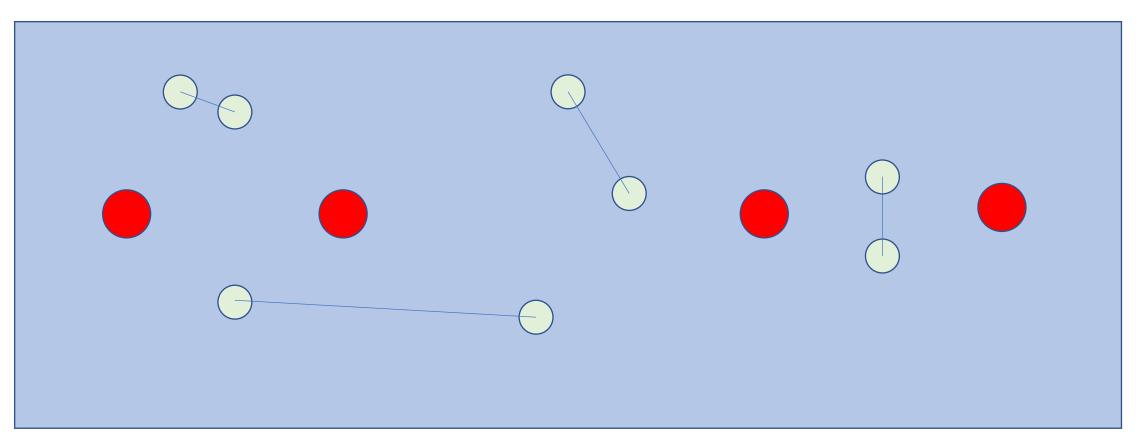
Thermal excitations

In a fixed time, thermal excitations are created and travel.



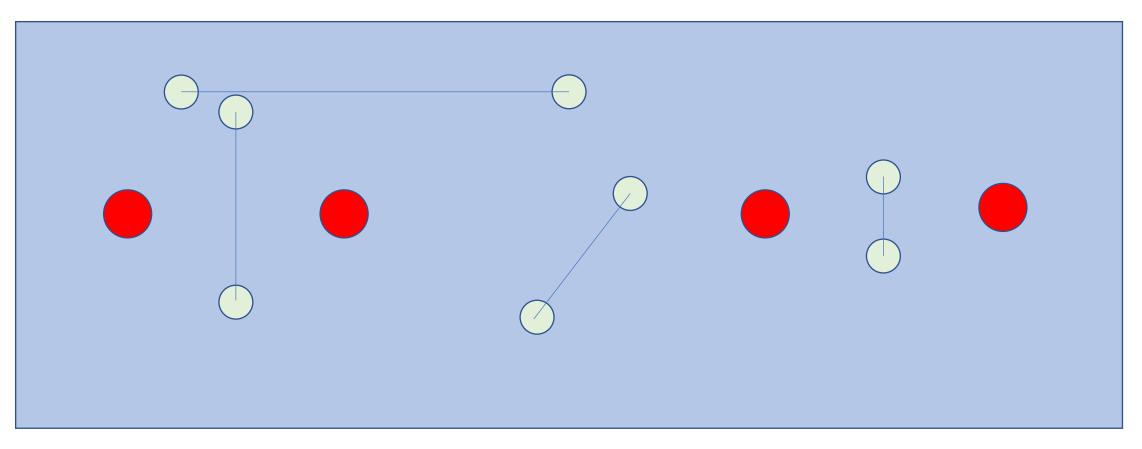


One can reverse this effect by annihilating the thermal excitations.



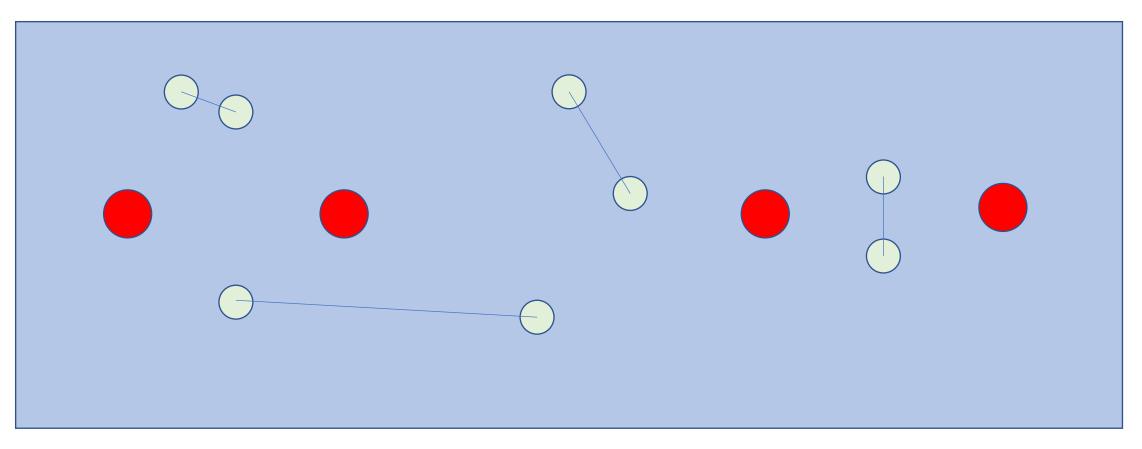


But there is an ambiguity...

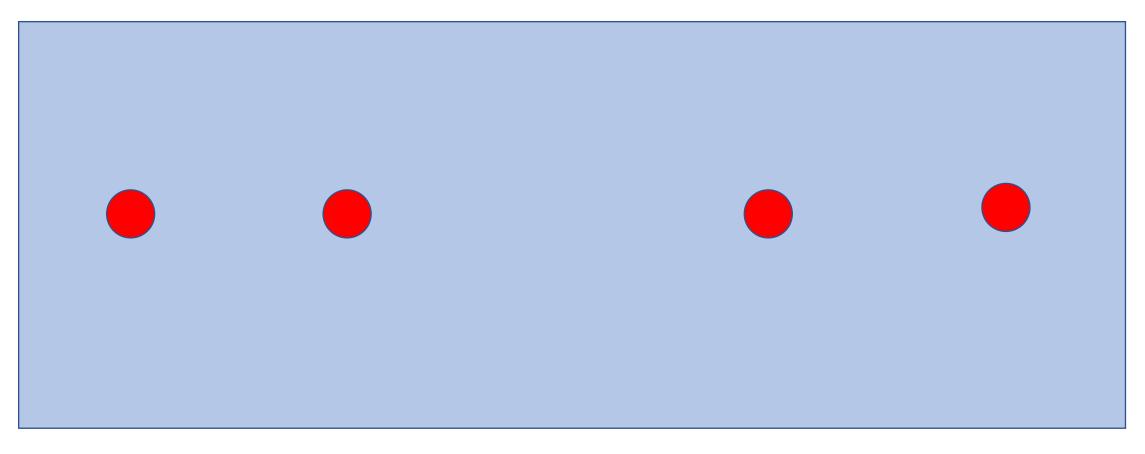


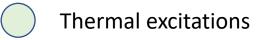
Thermal excitations

The most likely scenario: A path with the shortest travel distance.

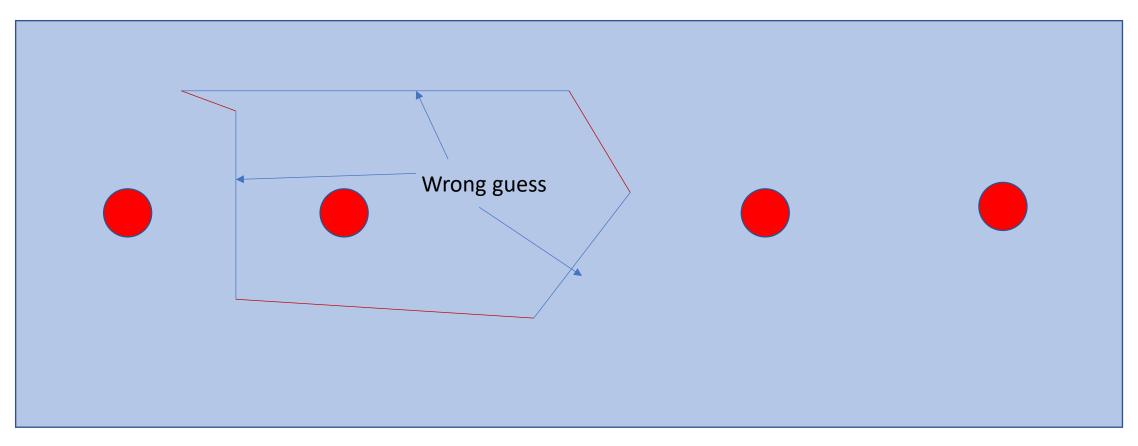


Most of the time, this will work.





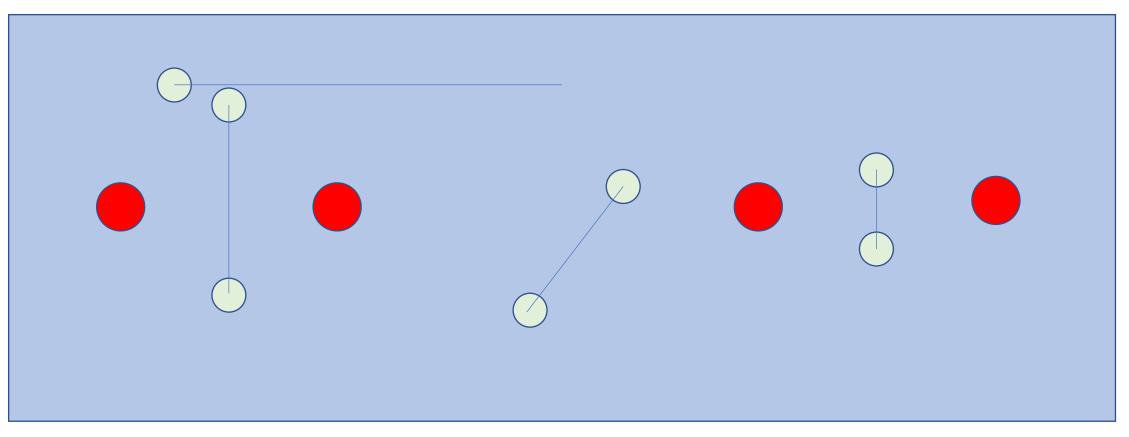
But sometimes we will get it wrong.



Topological quantum error correction: Measurement error

Thermal excitations

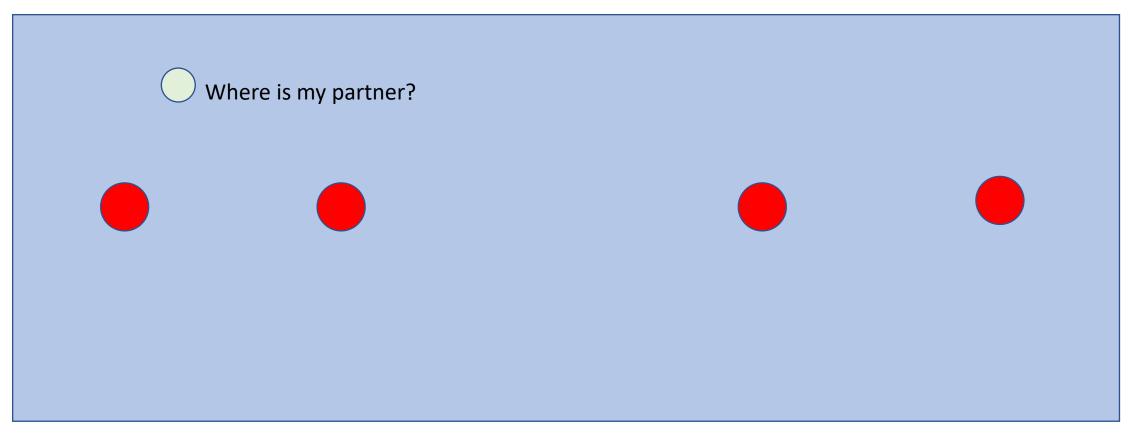
Sometimes, you might fail to detect the excitation.



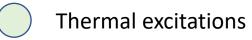
Topological quantum error correction: Measurement error

Thermal excitations

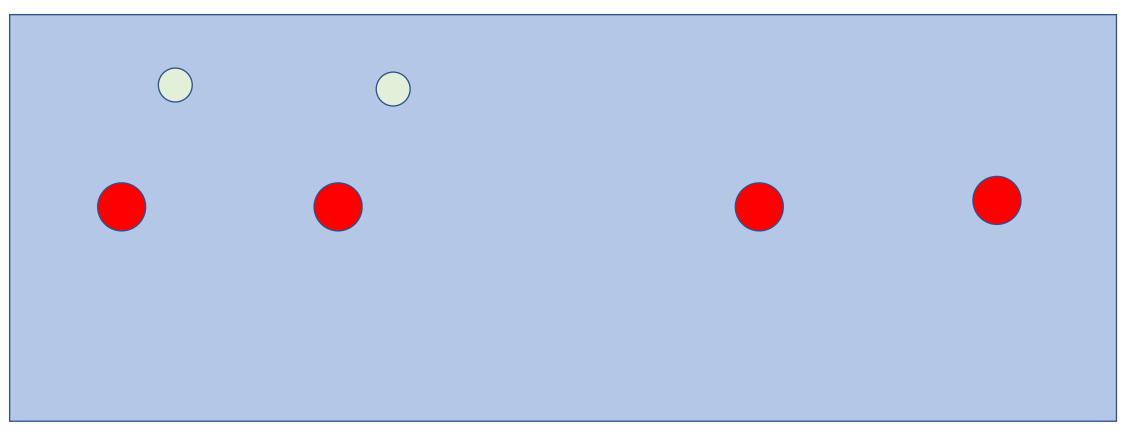
Sometimes, you might fail to detect the excitation.



Topological quantum error correction: Measurement error

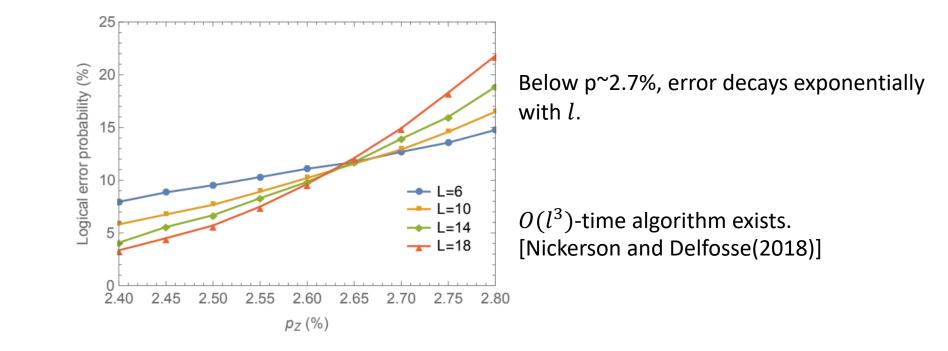


Solution: Repeat the measurement many times



Topological quantum error correction: Complete picture

- For a $l \times l$ system, measure and locate the excitations for O(l) time.
- Guess the most likely path of the excitations.
- Fuse excitations with their partners.

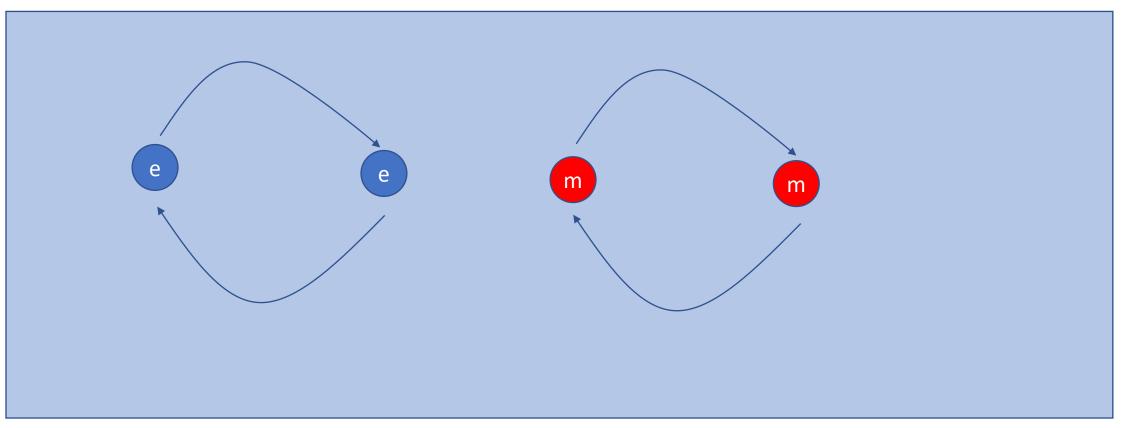


From [Nickerson and Delfosse(2018)]

Topological quantum error correction: Fault-tolerant gate

• Problem: Underlying anyon model is Abelian.

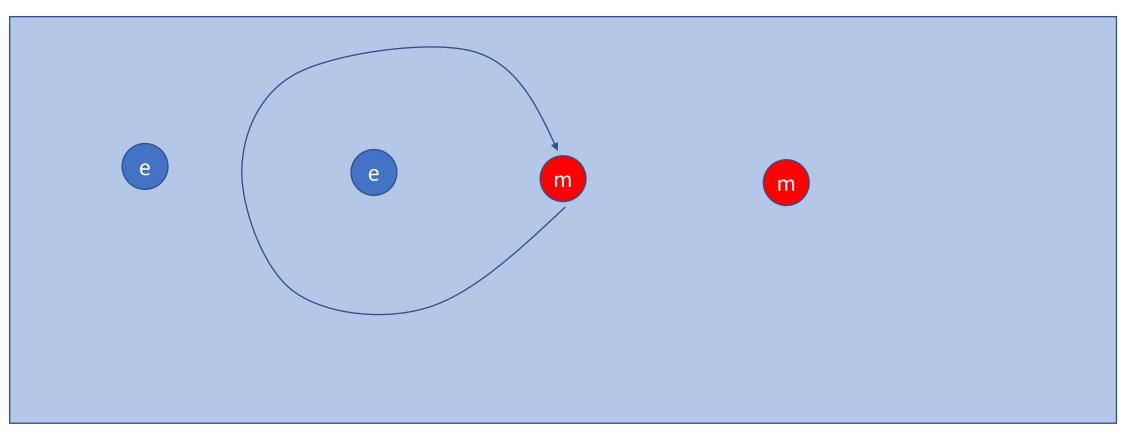
Nothing happens...



Topological quantum error correction: Fault-tolerant gate

• Problem: Underlying anyon model is Abelian.

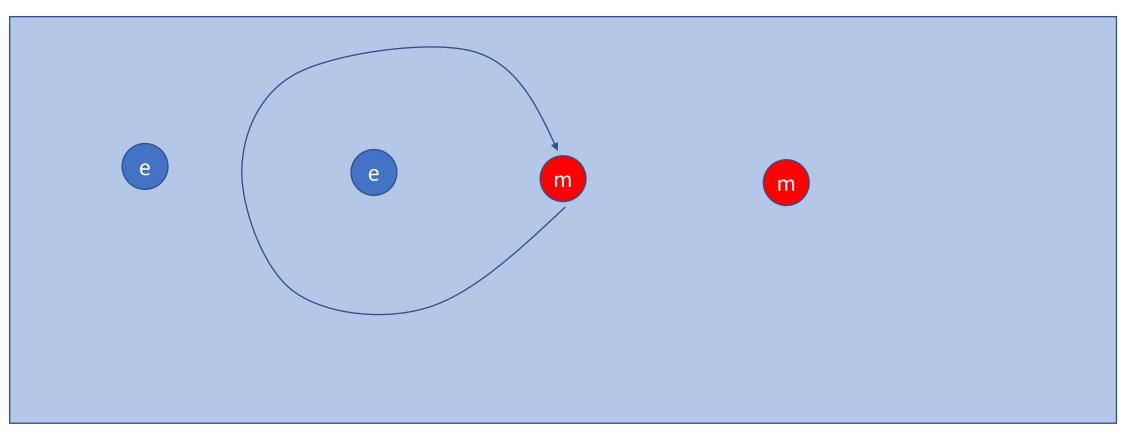
Phase of -1 is accumulated.



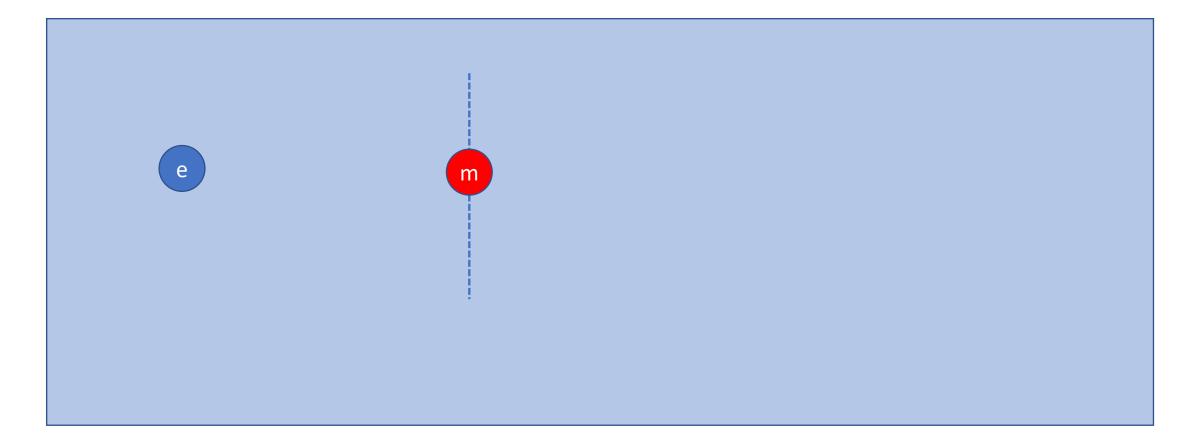
Topological quantum error correction: Fault-tolerant gate

• Problem: Underlying anyon model is Abelian.

Phase of -1 is accumulated.

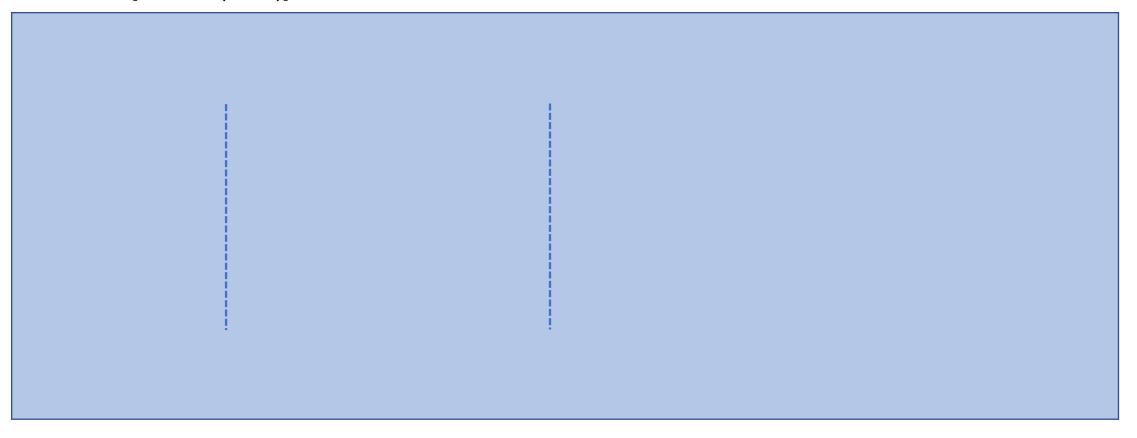


Topological quantum error correction: Defect



Topological quantum error correction: Defect

A pair of defect line encodes a qubit. Braiding the end of defect line realizes the entire Clifford group. [Bombin (2006)]



Summary

- 1. Topological quantum computation makes quantum gates robust by their physical nature.
- 2. While the gate sets are often not universal, there are schemes to complete the universal gate set.
- 3. Topological quantum computing approaches are often classified into two groups
 - 1. Original approach: Cool down the system in braid anyons.
 - 2. Active approach: Actively measure excitations and fuse them back.