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Aim of this lecture

전반부

100 μm 0.1 nm 100 nm

후반부

본강의는, bridging the two part



➢ 1Q, 2Q gate

➢ Master equations in the Markov approximation 

➢ Quantum noise channels

Outline

Quantum control and decoherence

Quantum error correction

➢ Basic concepts : Bit-flip and Phase-flip error correction

➢ Quick summary of general quantum error correction

➢ Experimental examples

Introduction



Coherent Rabi pulse + Phase control = Single qubit rotation gates
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Single qubit gate : coherent rotation
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Control of quantum two level system

Rabi oscillation

Two level system, with

Apply harmonic radiation

0 1 0( ) /E E = −

0ˆ ( cos )
2

ˆ ˆ
MWz xH t


  = +

MW

On resonance, 0 MW =



Control of quantum two level system

Rotating frame: RWA approximation

0
ˆ ( )

2 2
ˆ ˆ

rot M xzWH 


  = − +

0 MW  = − | ۧ0

| ۧ1

| ۧ0

| ۧ1

0 의 intrinsic rot. 사라짐

ˆ ˆ,z x  성분의벡터합이도는
축을결정

Q : Hadamard Gate ? 낙서



Control of quantum two level system

Two qubit gate

Ex. Calibrated Rabi    pulse under two body interaction = CNOT

0
1 2 1 2

ˆ ˆ ˆ ˆ ˆ(2 ) ( )
2

z z z zH I I g


   =  +  + 

0

10

00

01

11

c t

0 1

1MW =

반도체스핀큐빗의예



Coherent time evolution : computation

...

ۧ𝛼|0 + ۧ𝛽|1

Inputs : Coherent superposition 

Output : Final projective 

measurement 
Computation = Quantum 

mechanical time evolution

Understanding / controlling system – environment 

interaction is crucial

𝑈

Interaction with 

environment

ۧ𝛼|0 + ۧ𝛽|1

ۧ𝛼|0 + ۧ𝛽|1



Quantum to classical transition

Decoherence Quantum noise = decoherence, control error, etc.

Trapped 

Ions/AtomsNMR

L.M.K. Vandersypen, et 

al., Nature 414, 883 (2001)

C. Monroe, et al.,

Nature 417, 709 (2002)

Optics

E. Knill, et al., 

Nature 409, 46 (2001)

Superconductor

Y. Nakamura, et al., 

Nature 398, 786 (1999)
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Open quantum system

Closed Open

1. State Ket vector Density Matrix

2. Dynamics Schrodinger Master eq.

3.  Measurement Projective
Generalized (weak)

Measurement

 ̂

From closed to open quantum system

Density matrix

ˆ
i i i

i

p =  

ip : probability to be in i th

quantum state.

†ˆ ˆ =

( ) 1Tr  =

2 = iff pure.

2( ) 1Tr  = iff pure.

Properties

2( )Tr  is called purity



Open quantum system: Two level system

Pauli representation

1
ˆ

2
ii

i

I m 
 

= + 
 



i : Pauli matrix spans           

space of 2x2 matrices

2 1
( ) ( 2 )

4
i ji i i jTr Tr I m m m   = + + 

21
(1 )

2
im= +

Purity in Pauli rep.

: By orthogonality

1
1 | | 1

2
purity m    Bloch Sphere rep.

| ۧ0

| ۧ1

𝜑

𝜃

Pure

Mixed
Completely mixed



Open quantum system

Closed Open

1. State Ket vector Density Matrix

2. Dynamics Schrodinger Master eq.

3.  Measurement Projective
Generalized (weak)

Measurement

 ̂

From closed to open quantum system

ˆ ˆ ˆ[H, ]
d i

dt


= −

: Liouville von-Neumann 

equation

: The master equation in the Lindblad form

† † †ˆ 1 1ˆ ˆ ˆ ˆ ˆ[H, ( )]
2 2

S
S S S S

d i
t L L L L L L

dt
     




   

 
= − + − − + 

 


Open: System + Environment 의전체 time evolution 중 system의상태만
보면어떻게변화하는가?

Closed : Unitary evolution



Examples of Quantum channel

Application of L form to two-level system

0

1

0

0
S

E
H

E

 
=  
 

†

1 1

1 0

0 0
L L   + −

 
= = =  

 

Pure dephasing channel

Fluctuating 

energy levels

In the Lab frame,This time scale is called,       pure dephasing time T



Examples of Quantum channel

Application of L form to two-level system

Amplitude damping (relaxation) channel

2

0 1

0 0
L  −

 
= =  

 
Energy relaxation

2 1

1 1 1

2T T T
= +

Total decoherence 

rate set by,

This time scale is called,       relaxation time 
1T

Also, depolarizing channel.. Etc.



Open quantum system

Closed Open

1. State Ket vector Density Matrix

2. Dynamics Schrodinger Master eq.

3.  Measurement Projective
Generalized (weak)

Measurement

 ̂

From closed to open quantum system

: The master equation in the Lindblad form

† † †ˆ 1 1ˆ ˆ ˆ ˆ ˆ[H, ( )]
2 2

S
S S S S

d i
t L L L L L L

dt
     




   

 
= − + − − + 

 


ˆ ˆ ˆ[H, ]
d i

dt


= −

: Liouville von-Neumann 

equation

Open: System + Environment 의전체 time evolution 중 system의상태만
보면어떻게변화하는가?

Closed : Unitary evolution



Dynamics of open quantum system

Time evolution: Kraus operators

SE S EH H H= 

SEUUnitary evolution:

Special proposition: ˆ ˆ ˆ ˆ( ) (0) (0) (0) 0 0SE S E S E E
t   =  = 

Environment orthonormal basis:  
E



†

ˆ ˆ( ) ( ) (0) ( )SE SESE SEt U t U t =

†

ˆ ˆ( ) ( ( ) (0) ( ))SE SES SEEt U t tTr U =

†

ˆ( ) 0 (0) 0 ( )SE SESE E E E
U t U t



  =
†ˆ ˆˆ( ) (0) ( )SM t M t 



= ˆ ( )M t : Kraus operators



Dynamics of open quantum system

Operator-sum representation

†

ˆ( ) ( ) (0) ( )s St M t M t 



 =

ˆ[ (0)]Sa = Unitary evolution? 

in general no.

( ) ( ) (0)s st M t 

Not unitary operator

Not diagonal rep.

Generally mixed state

Special case : pure state

†

( ) ( ) (0) (0) ( )s s st M t M t 



  =

( ) ( )s st t


 = ( )
( )

( )

s

s

s

t
t

t







( ) ( ) ( )s sp t t t



 =

action of unitary operator on 

quantum system in general create 

entanglement

낙서



General properties of quantum map

1. Linearity

: Physical state

2. Completely Positive (CP condition)

3. Trace preserving (TP condition)

1 2 1 2
ˆ ˆ ˆ ˆ[ (1 ) ] [ ] (1 ) [ ]a a a      + − = + −

ˆ ˆ[ ]out ina = †ˆ ˆ
out out =

†

ˆ[ [ ]] ( ( ) (0) ( ))S S S STr a p Tr M t M t 



= 
†

ˆ( ( ( ) ( )) (0))S STr M t M t 



= 

†

0 ( )( ) ( ) 0SE SE
E E E E
U t U t



 =
†

( ) ( )M t M t 




†

0 ( ) ( ) 0 SSE SE
E E
U t U t I= =

ˆ 0out  (                 non-negative eigenvalue)
†ˆ ˆ
out out 



Dynamics of open quantum system

Closed quantum system

[ , ]
d i

H
dt


= −

Open quantum system

: Liouville von-Neumann equation

( , ) ( )
i

U t dt t I H t dt+ = −

: generator of time-translation

2 1
ˆ ˆ( ) [ ( )]S St a t =

ˆ ˆ( ) ( , )[ ( )]S St dt a t dt t t + = +

†

ˆ( , ) ( ) ( , )SM t dt t t M t dt t 



= + +

what is generator of time-translation?

: Markov approx.

†

( ) ( , ) ( ) ( , )t dt U t dt t t U t dt t + = + +



Dynamics of open quantum system

Lindblad operator

CPTP condition

( , ) ( )M t dt t L t dt + 

0( , ) ( )M t dt t I G t dt+  +

†

M M I 



=

† † † †

0 0

0

( )M M M M I G G dt L L dt I   

 

 + = + + + = 
† †

G G L L 



 + = −

†1

2
eff

i i i
G K H H L L H 



  − = − −  −



Dynamics of open quantum system(Master eqn.)

: The master equation in the Lindblad form

† †

0 0

0

ˆ ˆ( ) ( ) ( )S S St dt M t M M t M 



  


+ = +
†

ˆ ˆ( ) ( )eff effS S

i i
I H dt t I H dt L t L dt 



 
   

= − − +   
   



†

ˆ ˆ[ , ( )] ( )S
eff S S

d i
H t L t L

dt
 




  = − +

expanding effective Hamiltonian

† † †1 1
ˆ ˆ ˆ ˆ[ , ( )]

2 2

S
S S S S

d i
H t L L L L L L

dt
     




   

 
= − + − − + 

 


The differential eqn. whose integral is CPTP map has to be this 

‘Lindblad form’



Composite systems

Hilbert Space of composite system

A BH H H= 

Two observable algebra A, B

,

, ,

A B

A A B Bwhere H H

 

 



 

Product State of composite systems

Q. All states are product state?

ˆ ˆ ˆ
A A B B A B      =  = 

Pure product states have 

density operators

States which aren’t products are 

correlated

ˆ 00 00 (1 ) 11 11p p = + −

Q. How to check if the state is 

product state or not?

Schmidt decomposition for pure state

1

d

i i j

n

p e f
=

=

1

,
d

A j j i

n

then p e e
=

=



Composite systems: Entanglement

Partial Trace

A B AB i i i i jB AB AB B
j

Tr p   = =  

‘Trace out’ environment -> information loss?

1
ˆ ( )( )

2
 =  −   − 

Ex) For singlet state

AB i i iAB AB
i

p =  

1
ˆ ( )( )

2

1
( )( )

2

A
B B

B B

 =   −   −  

+   −   −  

1 / 2 0

0 1 / 2

 
  

 
Completely Mixed state

Entropy: How much entangled?

p
logS p p 



= − : Schmidt coefficient



More on entanglement

1 2 12
1 2 1 2

ˆ ˆ ˆ ˆ ˆ( ) ( ) (( ) ( ))
2 2 2

z z z z

J J J
H I I I I   =  +  + −  −

+ +Initial state :

Qubit 1 (system) Qubit 2 (Env.)

Lab frame

Note : no decoherence as a whole (no L)



➢ 1Q, 2Q gate : Pulsed, Calibrated perturbation

➢ Master equations in the Markov approximation : Lindbald form 

➢ Quantum noise channels : T1 , T2 time, Entanglement, 

meaning of decoherence

Outline

Quantum control and decoherence

Quantum error correction

➢ Basic concepts

➢ Bit-flip and Phase-flip error correction 

➢ Experimental examples

Introduction



Quantum Errors

Quantum gate set is discrete, but quantum control generating a 

quantum gate is inherently analog.

| ۧ0

| ۧ1
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Quantum Errors

A general quantum error is a superoperator (Kraus operator):

†

kk
A A →

Examples of single-qubit errors:

Bit Flip X:

Phase Flip Z:

Complete dephasing:

(decoherence)

Rotation: 

0 0 , 1 1Z Z= = −

0 1 , 1 0X X= =

†1/ 2( )Z Z  → +

0 00 0 , 1 1iR R e = =



Classical Repetition Code

To correct a single bit-flip error for classical data, 

we can use the repetition code:

0

If there is a single bit flip error, we can correct the state 

by choosing the majority of the three bits, e.g. 010 → 0. 

When errors are rare, one error is more likely than two.

1

→

→

000

111



Barriers to Quantum Error Correction

1. Measurement of error destroys superpositions.

2. No-cloning theorem prevents repetition.

3. Must correct multiple types of errors (e.g., bit flip 

and phase errors).

4. How can we correct continuous errors and 

decoherence?



Measurement Destroys Superpositions?

Let us apply the classical repetition code to a 

quantum state to try to correct a bit flip error:

0 1 000 111   + → +

2nd qubit is now different from 1st and 3rd. We wish to 

measure that it is different without finding its actual 

value.

Bit flip error (𝑋) on 2nd qubit:

010 101 +



Measure the Error, Not the Data

Use this circuit:

0

1st bit of error syndrome says whether the first two bits of the state are 

the same or different.

2nd bit of error syndrome says whether the second two bits of the state 

are the same or different.

Encoded

state

Ancilla

qubits 0

Error

syndrome



Redundancy, Not Repetition

This encoding does not violate the no-cloning theorem:

0 1 000 111   + → +

We have repeated the state only in the computational 

basis; superposition states are spread out (redundant 

encoding), but not repeated (which would violate no-

cloning).

3( 0 1 )   +



Update on the Problems

1. Measurement of error destroys superpositions.

2. No-cloning theorem prevents repetition.

3. Must correct multiple types of errors (e.g., bit flip 

and phase errors).

4. How can we correct continuous errors and 

decoherence?



Hadamard transform 𝐻 exchanges bit flip and phase errors:

Correcting Just Phase Errors

( 0 1 )H    + = + + −

Repetition code corrects a bit flip error

(acts like phase flip),X X+ = + − = − −

,Z Z+ = − − = + (acts like bit flip)

Repetition code in Hadamard basis 

corrects a phase error.

   + + − → + + + + − − −



Nine-Qubit Code

To correct both bit flips and phase flips, use both codes at once:

0 1 + →

Repetition 000, 111 corrects a bit flip error,

repetition of phase +++, --- corrects a phase error

3 3( 000 111 ) ( 000 111 )  + + −

0 1 , 1 0Y i Y i= = −

Actually, this code corrects a bit flip and a phase, so it 

also corrects a 𝑌 error:

;Y iXZ=
(global phase 

irrelevant)



Nine-Qubit Code

Circuit for the nine-qubit code



Update on the Problems

1. Measurement of error destroys superpositions.

2. No-cloning theorem prevents repetition.

3. Must correct multiple types of errors (e.g., bit flip 

and phase errors).

4. How can we correct continuous errors and 

decoherence?



Correcting Continuous Rotation

Let us rewrite continuous rotation

0 0 , 1 1iR R e 

 = =

/2

/2

/2

1 0 0

0 0

cos( / 2) sin( / 2)

i

i

i i

e
R e

e e

I i Z




  

 

−  
= =   
   

= −

( )(  is  acting on the th qubit.)kR R k 

( ) ( )cos( / 2) sin( / 2)k kR i Z     = −



Correcting Continuous Rotations

How does error correction affect a state with a continuous rotation on it?

( ) ( )cos( / 2) sin( / 2)k kR i Z     = −

2Prob. cos ( / 2):  (no correction needed) 

( ) ( )cos( / 2) sin( / 2) k kI i Z Z   −

Error syndrome

Measuring the error syndrome collapses the state:

2 ( ) ( )Prob. sin ( / 2):  (corrected with )k kZ Z 



Correcting All Single-Qubit Errors

Theorem: If a quantum error-correcting code (QECC) corrects errors A 

and B, it also corrects 

.I X Y Z   + + +

Any QECC that corrects the single-qubit errors X, Y, and Z (plus I) 

corrects every single-qubit error.

.A B +

Any 2x2 matrix can be written as

A general single-qubit error
†

k kA A → acts like

a mixture of kA → , and is a 2x2 matrix. kA

Correcting all t-qubit X, Y, Z on t qubits (plus I) corrects all t-qubit errors.



Small Error on Every Qubit

Suppose we have a small error on every qubit in the QECC,

where

(1) ( ) 2( ... ) ( ).n nU E E O      = + + + +

If the code corrects one-qubit errors, it corrects the sum of the 

.U I E = +

Then

A code correcting t errors keeps the state correct to order

U

( )s.iE

Therefore it corrects the term, and the state remains correct to 

order

( )O 
2.

1.t +



QECC is Possible

1. Measurement of error destroys superpositions.

2. No-cloning theorem prevents repetition.

3. Must correct multiple types of errors (e.g., bit flip 

and phase errors).

4. How can we correct continuous errors and 

decoherence?

Formally, stabilizer formalism for constructing & designing error 

correction codes



Error correction example : Diamond NV center

No syndrome measurement, but proof-of-

principle

0.1 nm





질소핵스핀큐빗





13C 핵스핀큐빗

0T

T−

전자스핀큐빗



Error correction example : Transmon

• John Martinis – UCSB, 

Google

• 9 coupled linear

transmon array

• Surface code error 

correction demonstrated 

(X flip error)

• X,Z gate time ~ 10ns

• CPHASE gate time ~ 

100ns

• T2~ 10μs

• 1Q gate error < 0.2%

• 2Q gate error < 1%

• 2Q gate enabled by 

direct capacitive 

coupling

• Frequency multiplexed 

single-shot dispersive 

readout

State preservation by repetitive 

measurements 



➢ 1Q, 2Q gate : Pulsed, Calibrated perturbation

➢ Master equations in the Markov approximation : Lindbald form 

➢ Quantum noise channels : T1 , T2 time, Entanglement, 

meaning of decoherence

Outline

Quantum control and decoherence

Quantum error correction

➢ Basic concepts 

➢ Bit-flip and Phase-flip error correction 

➢ Experimental examples Quantum Error Correction is possible

Introduction

➢ 예고편 : 오늘저녁에는..

➢ Qubit dynamics calculation tutorial : QuTip

➢ Let’s use IBM machine online !


