Nuclear many-body theory from microscopic chiral 2N and 3N forces

Jeremy Holt Texas A&M University, College Station

APCTP Focus Program in Nuclear Physics 2019 Nuclear Many-Body Theories: Beyond the Mean Field Approaches (7/1/2019) Matter under extreme conditions

How do stars explode? (Birthplace of neutron stars)

What is the nature of the densest observable matter in the universe?

> Where are the heavy elements synthesized?

What new insights can gravitational wave astronomy reveal?

Progress on many fronts

Observational campaigns of neutron stars

Neutron Star Interior Composition Explorer (NICER)

- **•** Neutron star radii: $\pm 5\%$
- Neutron star masses: $\pm 10\%$
- Combined timing and spectral resolution in the soft X-ray band
-

 PSR_J0437-4715 § First dedicated targets: PSR_J0030+0451 *{*

LIGO/VIRGO

- Late-inspiral gravitational waveform related to neutron star tidal deformability
- Poster-merger peak frequency sensitive to neutron star radius

Multidimensional numerical simulations

- Parameter studies too expensive: *incentive for improved microphysics modeling*
- **Nuclear equation of state:** $F = F(\rho, T, Y_p)$ (supernova shock wave energy, neutron star massradius relation, tidal deformability and gravitational waveforms,...)
- **Single-particle properties and response functions:**

 $\bar{\nu}_e + n \longrightarrow \bar{\nu}_e + n$

 $\nu_e + n \leftrightarrow e^- + p$

(supernova stalled shock wave revival, nucleosynthesis outcome, late-time supernova neutrino signal,…)

Melson et al., ApJ (2015)

Nuclear forces from chiral effective field theory

NATURAL SEPARATION OF SCALES

CHIRAL EFFECTIVE FIELD THEORY

Low-energy theory of nucleons and pions

Progress, but still open questions: RG invariance, power counting, explicit $\Delta's$ $...$

Nuclear forces from chiral effective field theory

NATURAL SEPARATION OF SCALES

CHIRAL EFFECTIVE FIELD THEORY

Low-energy theory of nucleons and pions

Progress, but still open questions: RG invariance, power counting, explicit $\Delta's$ $...$

Nuclear forces from chiral effective field theory

NATURAL SEPARATION OF SCALES

CHIRAL EFFECTIVE FIELD THEORY

Low-energy theory of nucleons and pions

Progress, but still open questions: RG invariance, power counting, explicit $\Delta's$ $...$

Choice of resolution scale

Variations in regulator

Estimate of theoretical uncertainty $\Lambda = 410 \,\mathrm{MeV} \, (\Delta x \sim 1.50 \,\mathrm{fm})$ $\Lambda = 450 \,\text{MeV} (\Delta x \sim 1.38 \,\text{fm})$ $\Lambda = 500 \,\text{MeV} (\Delta x \sim 1.25 \,\text{fm})$

$$
\langle \vec{p}'|V|\vec{p}\rangle \boxed{\exp[-(p/\Lambda)^{2n} - (p'/\Lambda)^{2n}]}
$$

sets resolution scale

Symmetric nuclear matter:

$$
k_f(2\rho_0)=330\,{\rm MeV}
$$

Pure neutron matter:

$$
k_f(2\rho_0) = 420 \,\mathrm{MeV}
$$

Coraggio, Holt, Itaco, Machleidt and Sammarruca, PRC (2013)

Many-body perturbation theory

$$
\begin{array}{lll}\n\text{OMO} & \rho E^{(1)} = \frac{1}{2} \sum_{12} n_1 n_2 \langle 12 | (\overline{V}_{NN} + \overline{V}_{NN}^{\text{med}} / 3) | 12 \rangle, \\
& \rho E^{(2)} = -\frac{1}{4} \sum_{1234} | \langle 12 | \overline{V}_{\text{eff}} | 34 \rangle |^2 \frac{n_1 n_2 \bar{n}_3 \bar{n}_4}{e_3 + e_4 - e_1 - e_2}, \\
& \rho E_{pp}^{(3)} = \frac{1}{8} \sum_{123456} \langle 12 | \overline{V}_{\text{eff}} | 34 \rangle \langle 34 | \overline{V}_{\text{eff}} | 56 \rangle \langle 56 | \overline{V}_{\text{eff}} | 12 \rangle \\
& \times \frac{n_1 n_2 \bar{n}_3 \bar{n}_4 \bar{n}_5 \bar{n}_6}{(e_3 + e_4 - e_1 - e_2)(e_5 + e_6 - e_1 - e_2)}, \\
& \rho E_{hh}^{(3)} = \frac{1}{8} \sum_{123456} \langle 12 | \overline{V}_{\text{eff}} | 34 \rangle \langle 34 | \overline{V}_{\text{eff}} | 56 \rangle \langle 56 | \overline{V}_{\text{eff}} | 12 \rangle \\
& \times \frac{\bar{n}_1 \bar{n}_2 n_3 n_4 n_5 n_6}{(e_1 + e_2 - e_3 - e_4)(e_1 + e_2 - e_5 - e_6)}, \\
& \rho E_{ph}^{(3)} = - \sum_{123456} \langle 12 | \overline{V}_{\text{eff}} | 34 \rangle \langle 54 | \overline{V}_{\text{eff}} | 16 \rangle \langle 36 | \overline{V}_{\text{eff}} | 52 \rangle \\
& \times \frac{n_1 n_2 \bar{n}_3 \bar{n}_4 n_5 \bar{n}_6}{(e_3 + e_4 - e_1 - e_2)(e_3 + e_6 - e_2 - e_5)},\n\end{array}
$$

Plus: consistent response functions, single-particle potentials, …

Symmetric nuclear matter equation of state

Several approximations give good saturation properties

Pure neutron matter equation of state

Sources of uncertainty

- Scale dependence
- **Convergence in many-body** perturbation theory

Convergence in the chiral expansion

Extension to finite temperature

Perturbation series of free-energy density in terms of grand canonical potential Ω

$$
F(\mu_0, T) = F_0(\mu_0, T) + \lambda \Omega_1(\mu_0, T) + \lambda^2 \left(\Omega_2(\mu_0, T) - \frac{1}{2} \frac{(\partial \Omega_1 / \partial \mu_0)^2}{\partial^2 \Omega_0 / \partial \mu_0^2} \right) + \mathcal{O}(\lambda^3)
$$

All thermodynamic quantities derived from free energy, e.g., $P(\rho,T) = \rho^2 \frac{\partial \bar{F}(\rho,T)}{\partial \rho}$

Benchmark: nuclear liquid-gas phase transition

Experiment (compound nucleus & multifragmentation) **[J. B. Elliott et al., PRC (2013)** $T_c = 17.9 \pm 0.4 \,\mathrm{MeV}$ $\rho_c = 0.06 \pm 0.02 \,\, \mathrm{fm}^{-3}$ $P_c = 0.31 \pm 0.07 \,\, \mathrm{MeV} \,\, \mathrm{fm}^{-3}$

Benchmark: virial EOS for hot and dilute neutron matter

Asymmetric nuclear matter

$$
E(\rho,\delta) = A_0(\rho) + A_2(\rho)\delta^2 + \mathcal{O}(\delta^4)
$$
\nWellenhofer, Holt and Kaiser, PRC (2015)
\n
$$
\delta = \frac{\rho_n - \rho_p}{\rho_n + \rho_p}
$$
\n
$$
\delta = \frac{\rho_n - \rho_p}{\rho_n + \rho_p}
$$
\n
$$
A_0(\rho) = E_0 + \frac{1}{6}K\left(\frac{\rho - \rho_0}{\rho_0}\right)^2 + \cdots
$$
\n
$$
A_2(\rho) = J + \frac{1}{3}L\left(\frac{\rho - \rho_0}{\rho_0}\right) + \frac{1}{6}K_{sym}\left(\frac{\rho - \rho_0}{\rho_0}\right)^2 + \cdots
$$
\n
$$
B_0 = \frac{1}{6}K_{sym}(\frac{\rho - \rho_0}{\rho_0})^2 + \cdots
$$
\n
$$
B_1 = \frac{1}{6}K_{sym}(\frac{\rho - \rho_0}{\rho_0})^2 + \cdots
$$
\n
$$
B_2 = \frac{1}{6}K_{sym}(\frac{\rho - \rho_0}{\rho_0})^2 + \cdots
$$
\n
$$
B_3 = \frac{1}{6}K_{sym}(\frac{\rho - \rho_0}{\rho_0})^2 + \cdots
$$
\n
$$
B_4 = \frac{1}{6}K_{sym}(\frac{\rho - \rho_0}{\rho_0})^2 + \cdots
$$

Crust-core transition density,…

Maclaurin series expansion in the isospin asymmetry

Nonanalytic terms arise beyond the mean field level

$$
F(T = 0, \rho, \delta) = A_0(T = 0, \rho) + A_2(T = 0, \rho) \delta^2
$$

$$
+ \sum_{n=2}^{\infty} A_{2n, \text{reg}}(\rho) \delta^{2n} \left(\sum_{n=2}^{\infty} A_{2n, \text{log}}(\rho) \delta^{2n} \ln |\delta| \right)
$$

\nLogarithmic but finite
\n
$$
\frac{\text{Wellenhoter, Holt and Kaiser, PRC (2016)}}{\sum_{\substack{n=2 \text{even } n \text{ even}}}^{\infty} \sum_{n=2}^{\infty} \frac{1}{n} \left(\sum_{\substack{n=1 \text{odd } n \text{ even}}}^{\infty} \frac{1}{n} \right)}
$$

\n
$$
= \frac{1}{n} \sum_{n=1}^{\infty} \frac{1}{n} \left(\sum_{\substack{n=1 \text{odd } n \text{ odd}}}^{\infty} \frac{1}{n} \right)
$$

Importance of nucleon single-particle potentials

R-process nucleosynthesis

- \triangleright Neutron-capture rates in cold r-process environments
- *Global optical potentials* from infinite matter calculations (update JLM)
- Charged-current reactions in the supernova neutrinosphere

Transport model simulations of heavy-ion collisions

- \triangleright Needed to extract equation of state at high density
- FRIB experimental program \triangleright

Global optical potentials

Isospin asymmetry dependence

Isovector part of optical potential linear in the isospin asymmetry

$$
U = U_0 - U_I \delta_{np} \tau_3 \qquad \delta_{np} = \frac{\rho_n - \rho_p}{\rho_n + \rho_p}
$$

Very little is known/predicted about **isovector imaginary part**

Optical potential in homogeneous matter

Identified with the on-shell nucleon self-energy $\Sigma(\vec{r}_1, \vec{r}_2, \omega)$

Hartree-Fock contribution (real, energy-independent):

$$
\Sigma^{(1)}_{2N}(q;k_f)=\sum_{1}\langle \vec{q}\vec{h}_1ss_1tt_1|\bar{V}_{2N}|\vec{q}\vec{h}_1ss_1tt_1\rangle n_1
$$

Second-order perturbative contibutions (complex, energy-dependent):

$$
\Sigma_{2N}^{(2a)}(q,\omega;k_f)=\frac{1}{2}\sum_{123}\frac{|\langle\vec{p_1}\vec{p_3}s_1s_3t_1t_3|\bar{V}|\vec{q}\,\vec{h_2}ss_2tt_2\rangle|^2}{\omega+\epsilon_2-\epsilon_1-\epsilon_3+i\eta}\bar{n}_1n_2\bar{n}_3(2\pi)^3\delta(\vec{p_1}+\vec{p_3}-\vec{q}-\vec{h_2})
$$

Benchmarks:

Depth and energy dependence of phenomenological volume parts (including isospin dependence)

Optical potential in symmetric nuclear matter

Density dependence of real and imaginary optical potentials

Convergence in perturbation theory

Isovector real optical potential

Chiral EFT prediction consistent with broad empirical constraints \triangleright

Calculated differential elastic scattering cross sections

Whitehead, Lim and Holt, PRC (2019)

Too strong microscopic absorptive imaginary part

Whitehead, Lim and Holt, PRC (2019)

Probing the nuclear equation of state in the lab

Observables: elliptic flow, transverse flow, fragment yields

Analyze with Boltzmann-like transport equation:

$$
\frac{\partial f}{\partial t} + \nabla_p \varepsilon \cdot \nabla_r f - \nabla_r \varepsilon \cdot \nabla_p f = I
$$

Probing the nuclear equation of state in the lab

Observables: elliptic flow, transverse flow, fragment yields

Analyze with Boltzmann-like transport equation:

$$
\frac{\partial f}{\partial t} + \nabla_p \varepsilon \cdot \nabla_r f - \nabla \varepsilon \sqrt{\nabla_p f} = I
$$

Probing the nuclear equation of state in the lab

Quadratic momentum dependence of nucleon single-particle potential

Effective mass in medium

$$
v = \frac{d}{dk} E(k) = \frac{k}{M^*}
$$

= $\frac{k}{M} - \frac{k}{M} \left(\frac{F_1}{3 + F_1} \right)$
Interaction & medium effects
 $-\frac{k}{M} \left(\frac{F_1}{3 + F_1} \right)$
 $0 < \frac{M^*}{M} > 1$ Medium "drag"
 $0 < \frac{M^*}{M} < 1$ Medium "backflow"
 $\frac{M^*}{M} < 0$ Total momentum opposite to velocity

Astrophysical applications: supernovae

Thermal properties and entropy generation in core-collapse supernovae

- Supernova composition and its evolution (electron capture processes)
- R-process nucleosynthesis and neutron-capture reactions

Astrophysical applications: neutron stars

$$
\Delta_k = -\frac{1}{2} \sum_{k'} \frac{V_{\text{eff}}(k, k') \Delta_{k'}}{\left(\frac{k^2}{2M^*} - \frac{k_F^2}{2M^*}\right)^2 + \Delta_{k'}^2}
$$

- **Superfluid entrainment:** sensitive to "isovector effective mass"
- *Enough angular momentum in the superfluid vortices to produce glitches??*

Isospin-asymmetric systems

Momentum-dependent proton and neutron effective masses

Uncertainty estimates from equal weighting of results from {n2lo450, n2lo500, n3lo410, n3lo450, n3lo500} chiral potentials

Beyond mean field contributions to response functions

- § Cross sections for neutrino scattering, production, and absorption needed in supernova simulation codes
- Neutron star cooling, spectral & temporal features of observable neutrino signal
- Need for improved estimation of strong-interaction physics uncertainties from realistic two-body and three-body forces

- Neutrino-nucleon scattering and absorption in the neutrinosphere
- § Updates to Fermi liquid theory from chiral nuclear potentials
- Mean field corrections to charged-current reactions
- Vertex corrections to density and spin response functions

Beyond mean field contributions to response functions

- § Cross sections for neutrino scattering, production, and absorption needed in supernova simulation codes
- § Neutron star cooling, spectral & temporal features of observable neutrino signal
- Need for improved estimation of strong-interaction physics uncertainties from realistic two-body and three-body forces

- Neutrino-nucleon scattering and absorption in the neutrinosphere
- § Updates to Fermi liquid theory from chiral nuclear potentials
- Mean field corrections to charged-current reactions
- Vertex corrections to density and spin response functions

Late-time supernova neutrinos

Neutrino opacity Anti-neutrino opacity
\n
$$
\nu_e + n \longleftrightarrow e^- + p \quad \bar{\nu}_e + n \longrightarrow \bar{\nu}_e + n
$$

Governs energy distribution of freestreaming neutrinos

Differential scattering cross sections

■ Neutrino-nucleon scattering (weak neutral-current reaction)

$$
\frac{1}{V}\frac{d^2\sigma}{d\cos\theta\,d\omega} = \frac{G_F^2}{4\pi^2}E_3^2\left[c_V^2(1+\cos\theta)S_V(\omega,q) + c_A^2(3-\cos\theta)S_A(\omega,q)\right]
$$

■ Neutrino absorption (weak charged-current reaction)

$$
\frac{1}{V}\frac{d^2\sigma}{d\cos\theta d\omega} = \frac{G_W^2}{4\pi^2}p_3E_3(1 - f_e(E_3))\left[g_V^2(1 + \cos\theta)S_V(\omega, q) + g_A^2(3 - \cos\theta)S_A(\omega, q)\right]
$$

 $\;\blacksquare\;$ Relation to response function $\chi\;$ (fluctuation-dissipation theorem):

$$
S(\omega, q) = \frac{-2}{n} \frac{1}{1 - e^{-\beta \omega}} \text{Im} \chi(q, \omega)
$$

Spin and density response functions

Challenges: consistency with EOS and consistency across different density/temperature domains!

Different theoretical approaches:

(1) Fermi liquid theory with chiral nuclear forces!

(2) Order-by-order perturbation theory, RPA,... with chiral nuclear forces!

(3) Mean field theory with pseudopotentials!

Structure of spectrum

Quasiparticle interaction (effective particle-hole interaction)

Extracted from functional derivatives of the ground state energy density

$$
\delta \mathcal{E}=\sum_{\vec{p}_1} \epsilon^{(0)}_{\vec{p}_1} \delta n(\vec{p}_1)+\frac{1}{2} \sum_{\vec{p}_1,\vec{p}_2} \mathcal{F}(\vec{p}_1,\vec{p}_2) \delta n(\vec{p}_1) \delta n(\vec{p}_2)+\cdots
$$

Quasiparticle energies $\epsilon_{\vec{p}} = \epsilon_{\vec{p}}^{(0)} + \sum_{\vec{p}'} \mathcal{F}(\vec{p}, \vec{p}') \delta n(\vec{p}') + \cdots$

Legendre polynomial decomposition

 $\mathcal{F}(\vec{p}_1,\vec{p}_2) = f(\vec{p}_1,\vec{p}_2) + f'(\vec{p}_1,\vec{p}_2) \vec{\tau}_1 \cdot \vec{\tau}_2 + [g(\vec{p}_1,\vec{p}_2) + g'(\vec{p}_1,\vec{p}_2) \vec{\tau}_1 \cdot \vec{\tau}_2] \vec{\sigma}_1 \cdot \vec{\sigma}_2$ $+$ noncentral components

$$
f(\vec{p}_1, \vec{p}_2) = \sum_L f_L P_L(\cos \theta)
$$

$$
g(\vec{p}_1, \vec{p}_2) = \sum_L g_L P_L(\cos \theta)
$$

Perturbation theory description

Fermi liquid parameters in symmetric matter (benchmarks)

$$
V_{\text{N3LO}}^{(1+2)} \quad \left(k_F=1.33 \text{ fm}^{-1}\right) \\ l \quad F_l \quad \quad G_l \quad \quad F'_l \quad \quad G'_l \\ \hline 0 \quad -1.64 \quad \, 0.35 \quad \, 1.39 \quad \, 1.59 \\ \hline 1 \quad -0.13 \quad \, 0.50 \quad \, 0.58 \quad \, 0.47 \\ \end{array}
$$

$V_{\rm N3LO}^{(1+2)}+V_{3N}^{(1)}\,\left(k_F=1.33\,\,{\rm fm}^{-1}\right)$				
	F_I	G_l		G'
0	-0.15	$\rm 0.35$	$1.36\,$	1.20
	-0.22	$0.21\,$	$0.28\,$	0.24

[Holt, Kaiser & Weise (2012)]

$$
\frac{M^*}{M_N} = 1 + \frac{F_1}{3} = 0.93
$$
\n
$$
\mathcal{K} = \frac{3\hbar^2 k_F^2}{M^*} (1 + F_0) = 200 \text{ MeV}
$$
\n
$$
\beta = \frac{\hbar^2 k_F^2}{6M^*} (1 + F_0') = 31 \text{ MeV}
$$
\n
$$
\delta g_l = \frac{F_1' - F_1}{3(1 + F_1/3)} = 0.09
$$

Non-central QP interaction in neutron matter

Exchange tensor interaction: $S_{12}(\hat{q})=3\vec{\sigma}_1\cdot\hat{q}\vec{\sigma}_2\cdot\hat{q}-\vec{\sigma}_1\cdot\vec{\sigma}_2\quad \vec{q}=\vec{p}_1-\vec{p}_2$ **[Haensel & Dabrowski (1975)]**

 \triangleright Presence of Fermi sea allows additional contributions to the effective interaction that are absent in free space **[Friman & Schwenk (2004)]**

Center of mass tensor: $S_{12}(\hat{P}) = 3\vec{\sigma}_1 \cdot \hat{P} \vec{\sigma}_2 \cdot \hat{P} - \vec{\sigma}_1 \cdot \vec{\sigma}_2$ $\vec{P} = \vec{p}_1 + \vec{p}_2$

Cross-vector: $A_{12}(\vec{q}, \vec{P}) = (\vec{\sigma}_1 \times \vec{\sigma}_2) \cdot (\vec{q} \times \vec{P})$

 \triangleright Pure neutron matter particle-hole interaction:

$$
\mathcal{F}(\vec{p}_1, \vec{p}_2) = f(\vec{p}_1, \vec{p}_2) + g(\vec{p}_1, \vec{p}_2) \vec{\sigma}_1 \cdot \vec{\sigma}_2 + h(\vec{p}_1, \vec{p}_2) S_{12}(\hat{q}) + k(\vec{p}_1, \vec{p}_2) S_{12}(\hat{P}) + l(\vec{p}_1, \vec{p}_2) (\vec{\sigma}_1 \times \vec{\sigma}_2) \cdot (\vec{q} \times \vec{P})
$$

Density dependence of three-nucleon force contributions

Density dependence of full Landau parameters

$$
\mathcal{F}(\vec{p}_1, \vec{p}_2) = f(\vec{p}_1, \vec{p}_2) + g(\vec{p}_1, \vec{p}_2) \vec{\sigma}_1 \cdot \vec{\sigma}_2 + h(\vec{p}_1, \vec{p}_2) S_{12}(\hat{q}) + k(\vec{p}_1, \vec{p}_2) S_{12}(\hat{P}) + l(\vec{p}_1, \vec{p}_2) (\vec{\sigma}_1 \times \vec{\sigma}_2) \cdot (\vec{q} \times \vec{P})
$$

Relation to response functions

Response functions in the Landau limit $(q \to 0, \ \omega/q \to \text{fixed})$

$$
\chi_{\sigma}(\vec{q},\omega) = \frac{N_0}{V} \frac{g(\lambda)}{1 + [G_0 + \lambda^2 G_1/(1 + G_1/3)]g(\lambda)}
$$

$$
g(\lambda) = 1 - \frac{\lambda}{2} \ln \left| \frac{\lambda + 1}{\lambda - 1} \right| + \frac{i\pi}{2} \lambda \theta (1 - |\lambda|) \qquad \lambda = \frac{\omega}{qv_F}
$$

Including noncentral interactions in RPA (static limit): \triangleright

$$
\frac{\chi_{HF}(0)}{\chi_{RPA}^{(S=0)}(0)} = 1 + F_0 \qquad \frac{\chi_{HF}(0)}{\chi_{RPA}^{(S=1)}(0)} = 1 + G_0 + \frac{T_1}{T_2}
$$
\n
$$
T_1 = -\frac{1}{8} (H_0 - H_1 + K_0 + K_1)^2
$$
\n
$$
T_2 = 1 + \frac{1}{5} G_2 - \frac{1}{4} H_0 - \frac{1}{4} H_1 + \frac{1}{10} H_2 - \frac{1}{4} K_0 + \frac{1}{4} K_1 + \frac{1}{10} K_2 + \frac{2}{5} \tilde{L}_1 - \frac{6}{35} \tilde{L}_3
$$

Results from chiral two- and three-body interactions

- Terms up to $l_{max}=3$ included!
- Only the exchange tensor contribution is relevant!
- Exchange tensor contributions smaller than in mean field models!

Davesne, Holt, Pastore & Navarro, PRC (2015)

Future efforts: extend to finite temperature and arbitrary isospin asymmetry!

Fermi liquid parameters in symmetric nuclear matter

Fermi liquid parameters and derived empirical quantities

Charged-current reactions in neutrinosphere

Neutrino-antineutrino spectral difference crucial for nucleosynthesis

Set proton fraction in region of r-process Determines nucleosynthesis outcome

Nuclear mean fields enhance neutrino absorption!

Skyrme & RMF calculations: Martinez-Pinedo et al, PRL (2012); Roberts et al. PRC (2012)

Resonant nucleon-nucleon interactions may enhance effect $\bm{(}a_{nn}=-18\,{\rm fm}\bm{)}$

Neutrino absorption cross section

$$
\frac{1}{V}\frac{d^2\sigma}{d\cos\theta\,dE_e} = \frac{G_F^2\cos^2\theta_C}{4\pi^2}\left|\vec{p_e}\right|E_e\left(1 - f_e(\xi_e)\right)\right]
$$
Electron phase space

$$
\times \left[(1 + \cos\theta)S_\tau(q_0, q) + g_A^2(3 - \cos\theta)S_{\sigma\tau}(q_0, q)\right]
$$
Nucleon response

Nuclear interactions attractive at low momenta and

 $|\langle np|V_{NN}|np\rangle| > |\langle nn|V_{NN}|nn\rangle|$

- Mean field effects widen the energy gap between protons and neutrons
- Q-value for neutrino absorption changes significantly

Neutrino absorption cross section

$$
\frac{1}{V}\frac{d^2\sigma}{d\cos\theta\,dE_e} = \frac{G_F^2\cos^2\theta_C}{4\pi^2}\Big|{\vec{p_e}}\Big|E_e\left(1 - f_e(\xi_e)\right)\Big|\,\text{Electron phase space}\\ \times\Big[(1+\cos\theta)S_\tau(q_0,q) + g_A^2(3-\cos\theta)S_{\sigma\tau}(q_0,q)\Big]\Big|\,\text{Nucleon response}
$$

Nuclear interactions attractive at low momenta and

 $|\langle np|V_{NN}|np\rangle| > |\langle nn|V_{NN}|nn\rangle|$

- \triangleright Mean field effects widen the energy gap between protons and neutrons
- Q-value for neutrino absorption change significantly

Interacting nucleons

$$
E_{n}(k) = \frac{k^{2}}{2M} + \Sigma_{n}(k)
$$
\n
$$
E_{p}(k) = \frac{k^{2}}{2M} + \Sigma_{p}(k)
$$
\n
$$
E_{p}(k) = \frac{k^{2}}{2M} + \Sigma_{p}(k)
$$
\nneutrons\n
$$
E_{p}(k) = \frac{k^{2}}{2M} + \Sigma_{p}(k)
$$
\n
$$
E_{p}(k) = \frac{k^{2}}{2M} + \Sigma_{p}(k)
$$

Neutrino absorption cross section

$$
\frac{1}{V}\frac{d^2\sigma}{d\cos\theta\,dE_e} = \frac{G_F^2\cos^2\theta_C}{4\pi^2}\Big|{\vec{p_e}}\Big|E_e\left(1 - f_e(\xi_e)\right)\Big|\,\text{Electron phase space}\\ \times\Big[(1+\cos\theta)S_\tau(q_0,q) + g_A^2(3-\cos\theta)S_{\sigma\tau}(q_0,q)\Big]\Big|\,\text{Nucleon response}
$$

Nuclear interactions attractive at low momenta and

 $|\langle np|V_{NN}|np\rangle| > |\langle nn|V_{NN}|nn\rangle|$

- \triangleright Mean field effects widen the energy gap between protons and neutrons
- Q-value for neutrino absorption change significantly

Interacting nucleons

$$
E_{n}(k) = \frac{k^{2}}{2M} + \Sigma_{n}(k)
$$
\n
$$
E_{p}(k) = \frac{k^{2}}{2M} + \Sigma_{p}(k)
$$
\n
$$
E_{p}(k) = \frac{k^{2}}{2M} + \Sigma_{p}(k)
$$
\nneutrons\n
$$
e^{-} \nleftrightarrow p
$$
\n
$$
e^{-} \nleftrightarrow p
$$
\nprotons

Phase space considerations

Charged-current reactions ($\nu_e n \rightarrow e^- p$) with $E_\nu = 10 \text{ MeV}, p_n = 100 \text{ MeV}$

Neutrino mean free path

(1) Pseudo-potential (reproduces **exact energy shift** when used at the mean field level)

$$
\langle p|V_{llSJ}^{pseudo}|p\rangle=-\frac{\delta_{lSJ}(p)}{pM_N}\quad \text{Fumi (1955),}\quad \text{Fumi (1955)}
$$

(2) Chiral NN potential at mean-field level

Comparison to common mean field models

Use of pseudopotential generally leads to enhancement of neutrino absorption

Extend to include vertex corrections to response function

Pseudopotential only defined for on-shell matrix elements:

$$
\langle p|V_{lISJ}^{pseudo}|p\rangle=-\frac{\delta_{lSJ}(p)}{pM_N}
$$

Vertex corrections require off-shell matrix elements:

$$
\chi_{\rho\rho}^{(1)}(\omega,\vec{q}) = \frac{M^2}{8\pi^4 q^2} \int dk_1 k_1 \int d\cos\theta_1 \left[\frac{n_{k_1} - n_{k_1+q}}{\cos\theta_1 - \frac{M\omega}{k_1 q} + \frac{q}{2k_1} - i\eta} \right] \int dk_2 k_2 \int d\cos\theta_2 \left[\frac{n_{k_2} - n_{k_2+q}}{\cos\theta_2 - \frac{M\omega}{k_2 q} + \frac{q}{2k_2} - i\eta} \right]
$$

$$
\int d\phi_2 \sum_{LSJ} (2J+1) P_L(\hat{q}_1 \cdot \hat{q}_2) (1 - (-1)^{L+S+1}) \underbrace{\langle q_1 LSJ|V| q_2 LSJ\rangle}_{\cdot}
$$

First-order vertex correction to density response

N3LO_500 chiral nucleon-nucleon potential

Effects from 3NF currently neglected

- Strong enhancement of low-frequency density response!
- Suppression of high-frequency density response!

SUMMARY

- Need for theoretical frameworks capable of computing consistent equations of state and response functions in hot/dense matter for astrophysical simulations
- Consistent single-particle potentials needed for transport simulations of medium-energy heavy-ion collisions for extracting equation of state
- Nucleon mean fields from resonant NN interactions in the neutrinosphere can strongly enhance electron neutrino absorption
- Inclusion of vertex corrections to density and spin response functions in progress