Short Range Correlations in Nuclei

Hans Feldmeier

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt

Overview

A) NN-Interactions & Short Range Correlations (SRC)

- Visualize nucleon-nucleon potential V_{NN}
- Solve many-body problem exactly for A=2,3,4
- \bullet V_{NN} leaves telling "footprints" in densities
- Central and tensor correlations
- Universality of short range correlations
- Seeing all this, why does shell model work?

B) Similarity Transformation of Hamiltonian and Observables

- AV18/Chiral EFT $V_{NN} \rightarrow V_{\alpha}$ with SRG (Similarity Renormalization Group) transformation
- Solve many-body problem with NCSM (No Core Shell Model) for A=4,6,9,12 with soft V_α
- Recover short-range physics with SRG transformed observables
- Dominant role of deuteron-like S=1,T=0 pairs and tensor correlations at high relative momenta (dominance of pn over pp pairs, data)
- Many-body correlations leave traces in 2-body and 1-body densities
- Shell model works: SRC are only visible in appropriate observables

Nucleon-Nucleon Interactions

- Nucleons are not point-like, complicated quark and gluon sub-structure
- Nuclear interaction $V_{NN}+V_{NNN}$: residual interaction
- Calculation within QCD not possible yet
- Construct **realistic NN potentials** that describe two-nucleon properties (scattering, Deuteron) with high accuracy
- **•high-momentum and off-shell behavior not constrained by scattering data**
- e.g. Argonne V18, Chiral N3LO
- short-range repulsion, strong tensor force

↓

Nucleon-Nucleon Interactions

•N3LO

- potential derived using chiral EFT
- •includes full π dynamics
- power counting
- short-range behavior given by contactterms
- regulated by non-local cut-off (500 MeV) Entem, Machleidt, Phys. Rev. C **68**, 041001 (2003)

ongoing developments in chiral EFT ➜ lecture by J. W. Holt

•Argonne V18/V8'

- \bullet π -exchange, phenomenological shortrange
- •"as local as possible"
- fitted to phase shifts up to 350 MeV, but describes elastic phase shifts up to 1 GeV

Wiringa, Stoks, Schiavilla, Phys. Rev. C **51**, 38 (1995)

Bogner, Furnstahl, Schwenk, Prog. Part. Nucl. Phys. **65**, 94 (2010)

Nucleon-Nucleon Interaction AV18

Deuteron Wave Functions

- Suppression of the wave function at short distances due to repulsion
- D-wave admixture due to tensor force
- D-wave dominates high-momentum region around 2 fm-1
- . Short-range repulsion stronger for AV8',
	- 500 MeV cut-off in N3LO reflected in momentum space wave function
- . N3LO wave function shows "kinks" at large distances artifact of sudden cut-off

Argonne V8' Potential

•V8' in different spin-isospin channels as function of distance vector **r**=(x,y=0,z) • In S=1 channels total spin align with z-axis

Coordinate Space Two-Body Density

• Probability to find a nucleon-pair with S and T at distance **r** inside a nucleus

$$
\rho_{SM_S,TM_T}^{rel}(\mathbf{r}) = \langle \Psi | \sum_{i
$$

 $|\Psi\rangle$ nuclear many-body state

R is measured from center-of-mass

• coordinate space two-body densities will reveal correlation hole and tensor correlations

Two-body density for S=1, M_S=1, T=0 pairs

• Exact many-body calculations for $d = 2H$, $t = 3H$, $\alpha = 4He$, $\alpha^* = 4He^*$

x [fm] -4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4 x [fm] x [fm] x [fm]

• Potential leaves one-to-one imprint on 2-body density

Ħ

ŀ

Two-body density for ?

• Potential leaves one-to-one imprint on density

冒险

Ľ

Two-body density for S=0, T=1 pairs

• Potential leaves one-to-one imprint on density

Two-body density for S=1, Ms=1, T=1 pairs

• Potential leaves one-to-one imprint on density

HE

Ľ

Universality of short-range correlations

Exact solutions for A=2,3,4 nuclei with AV8' interaction

Feldmeier, Horiuchi, Neff, Suzuki, Phys. Rev. C **84**, 054003 (2011)

Thomas Neff | Polarized light ion physics with EIC | Feb 8, 2018 | Ghent, Belgium

One-Body Densities for *A***=2,3,4 Nuclei**

- One-body densities calculated from **exact wave functions** (Correlated Gaussian method) for AV8' interaction
- •coordinate space densities reflect different sizes and densities of 2H, 3H, 3He, 4He and the excited 0+ state in 4He
- •similar high-momentum tails in the onebody momentum distributions

14 Feldmeier, Horiuchi, Neff, Suzuki, Phys. Rev. C **84**, 054003 (2011)

E

L

Two-Body Coordinate Space Densities

- coordinate space two-body densities show correlation hole and tensor correlations
- **normalize** two-body density in coordinate space at *r***=1.0 fm**
- normalized two-body densities in coordinate space are **identical at short distances** for all nuclei
- also true for angular dependence in the deuteron channel

Two-Body Momentum Space Densities

$$
n_{SM_S,TM_T}^{\text{rel}}(\mathbf{k}) = \langle \Psi | \sum_{i
$$

- use normalization factors fixed in coordinate space
- •two-body densities in momentum space agree for momenta $k > 3$ fm⁻¹
- moderate nucleus dependence in momentum region 1.5 $\text{fm-1} < k < 3 \text{ fm-1}$

Many-Body Correlations show up in 2-Body Density

- $(ST)=(01)$ with L even gives away 0.428 pairs to (ST)=(01) with L odd. Why?
- odd channel is less attractive
- ^V*NN* does not scatter from even to odd

Many-Body Correlations show up in 2-Body Density

- $(ST)=(01)$ with L even gives away 0.428 pairs to $(ST)=(01)$ with L odd. Why?
- odd channel is less attractive
- ^V*NN* does not scatter from even to odd

Answer: 3-body correlations

- strong tensor breaks pair {2,3} with $(ST)=(01)$ and aligns spin of proton ${2}$ to get pair {1,2} in (ST)=(10)
- pair $\{2,3\}$ is left in $(ST)=(11)$
- energy paid by moving pair from $(ST)=(01)$ channel to $(ST)=(11)$, but more energy gained by pair in $(ST)=(10)$ channel
- 3-body correlations induced by the 2-body tensor force

Many-Body Correlations show up in 2-Body Density

number of pairs in ST channels

3 3 p p n $S=1$, T=0, L=0 $S=0$, T=1, L=0 p p n $S=1$, T=0, L=2 $S=1$, T=1, L=1 uncorrelated correlated $\left(\begin{array}{c} 1 \end{array} \right)$, $\left(\begin{array}{c} 1 \end{array} \right)$ 2 \mathbf{r} 2 \mathbf{r} 2

★Similar 3-body correlations in 3H, 3He, less pronounced in 4He* (3H+p,3He+n cluster structure)

Why does Nuclear Shell Model work?

★Apparent problem:

- Nuclear shell model with nucleons moving independently in mean-field works quite well (Goeppert-Mayer, Jensen Nobel price)
- Slater determinant $|$ Φ > can not describe the short range correlations we just saw.
- <Φ|V_{NN}| Φ > is positive and large, should be negative for self-bound system!

Why does Nuclear Shell Model work?

- Independent of nucleus or density two-body correlations are much alike for $r < 1$ fm
- when two nucleons come closer than 1 fm their pairwise interactions dominates

- probability to find 3rd nucleon in correlation volume is small $(D_{corr}/2)^3$ x ρ_0 = 0.125 fm³ x 0.16 fm⁻³ = 0.08 With respect to SRC nucleons form a dilute system, SRC essentially of 2-body nature
- ★ Idea: Universal Similarity transformation for pairs *k,l* schematic: $\Psi'(r_{kl})$ $V_{NN}(r_{kl})$ $\Psi(r_{kl}) \rightarrow \varphi'(r_{kl})$ $V_{eff}(r_{kl})$ $\varphi(r_{kl})$ for $r_{kl} < 1$ fm *V_{eff}(r_{kl})* shell model interaction φ*(rkl)* shell model states

Summary - 1

- NN-interaction causes tensor and central-repulsive short range correlations (SRC)
- For S=1, T=0 proton-neutron pairs align their distance vector *r* and spin *S* (tensor) (like regular bar magnets)
- For all S,T channels very strong repulsion for $0 < r < 0.5$ fm (central)
- One-to-one correspondence between NN potential and 2-body SRC correlations (like a cast and its molding form)
- For $r < 1$ fm two-body SRC are much alike, independent of nucleus or density
- For $r < 1$ fm their pairwise interactions dominates
- 1-body $n(k_1)$: 2-body SRC give raise to high momentum tails
- 1-body $\rho(\mathbf{r_1})$ insensitive to 2-body SRC
- 2-body $n^{rel}(k=(k_1-k_2)/2)$ and $\rho^{rel}(r=r_1-r_2)$ reveal details of SRC

Short-range correlations in nuclei using No-Core Shell Model and SRG

Neff, Feldmeier, Horiuchi, Phys. Rev. C **92**, 024003 (2015)

ii
U

Thomas Neff | Polarized light ion physics with EIC | Feb 8, 2018 | Ghent, Belgium

Unitary Transformations

- Many-body problem very hard to solve for bare interaction
- Unitary trafo of bare → soft Hamiltonian, evolution parameter *α*
- \hat{U}_α imprints correlations of $|\Psi\rangle$ into
mean-field like state $|\Phi\rangle$ mean-field like state $|\Phi_a\rangle$ α imprints correlations of $|\Psi>$
- Equivalent description, pre-diagonalization

$$
\hat{H}|\Psi\rangle = (\hat{T} + \hat{V}_{NN} + \hat{V}_{NN})|\Psi\rangle = E|\Psi\rangle
$$
\n
$$
\hat{H}_{\alpha} = \hat{U}_{\alpha}^{\dagger} \hat{H} \hat{U}_{\alpha} , \quad \hat{U}_{\alpha}^{\dagger} = \hat{U}_{\alpha}^{-1}
$$
\n
$$
|\Psi\rangle = \hat{U}_{\alpha} |\Phi_{\alpha}\rangle
$$

$$
\langle \Psi' | \hat{H} | \Psi \rangle = \langle \Phi_{\alpha}^{\prime} | \hat{H}_{\alpha} | \Phi_{\alpha} \rangle
$$

$$
\langle \Psi' | \hat{B} | \Psi \rangle = \langle \Phi_{\alpha}^{\prime} | \hat{B}_{\alpha} | \Phi_{\alpha} \rangle
$$

 \bigstar Goal: find \hat{U}_α such that $|\Phi_\alpha\rangle$ looses high momentum components with evolving α

- SRG provides a family of similarity transformations depending on a flow parameter α
- Evolve Hamiltonian and unitary transformation matrix (in momentum space)

$$
\frac{d\hat{H}_{\alpha}}{d\alpha} = [\hat{\eta}_{\alpha}, \hat{H}_{\alpha}]_{-} \qquad \qquad \frac{d\hat{U}_{\alpha}}{d\alpha} = -\hat{U}_{\alpha}\hat{\eta}_{\alpha}
$$

- generator for the evolution
	- $\hat{\eta}_{\alpha} = (2\mu)^2 [\hat{T}, \hat{H}_{\alpha}]$
- •Intrinsic kinetic energy as meta-generator (other choices possible, but that does the job)

soft Hamiltonian \hat{H}_{α} is now a A-body operator **!**

 $\hat{H}_{\alpha} = \hat{T} + \hat{V}_{\alpha}^{[2]} + \hat{V}_{\alpha}^{[3]} + \hat{V}_{\alpha}^{[4]} + \cdots + \hat{V}_{\alpha}^{[A]}$ *α*

> Bogner, Furnstahl, Perry, Phys. Rev. C, **75**, 061001 (2007) Roth, Neff, Feldmeier, Prog. Part. Nucl. Phys. **65**, 50 (2010)

★ Two-body approximation for many-body calculations used in following calculations

• Evolution is done only on the **2-body level** α-dependence can be used to investigate the role of missing higher-order contributions

$$
\frac{d\hat{H}_{\alpha}}{d\alpha} = [\hat{\eta}_{\alpha}, \hat{H}_{\alpha}]_{-} \qquad \frac{d\hat{U}_{\alpha}}{d\alpha} = -\hat{U}_{\alpha}\hat{\eta}_{\alpha}
$$

$$
\hat{\eta}_{\alpha} = (2\mu)^{2} [\hat{T}, \hat{H}_{\alpha}]_{-}
$$

- 1-body observables
- 2-body observables

$$
\hat{B}_{\alpha} = \hat{U}_{\alpha}^{\dagger} \hat{B} \hat{U}_{\alpha} = \hat{B} + \hat{B}_{\alpha}^{[2]}
$$

$$
\hat{C}_{\alpha} = \hat{U}_{\alpha}^{\dagger} \hat{C} \hat{U}_{\alpha} = \hat{C}_{\alpha}^{[2]}
$$

$$
\hat{H}_{\alpha} = \hat{U}_{\alpha}^{\dagger} \hat{H} \hat{U}_{\alpha} = \hat{T} + \hat{V}_{\alpha}^{[2]}
$$

• Hamiltonian evolution can nowadays be done on the 3-body level

(Jurgenson, Roth, Hebeler, . . .)

景师

Bogner, Furnstahl, Perry, Phys. Rev. C, **75**, 061001 (2007)

Roth, Neff, Feldmeier, Prog. Part. Nucl. Phys. **65**, 50 (2010)

 $V_{(LL'S)}(k, k') = \langle k(LS)j | \hat{V} | k'(L'S)j \rangle$

TEST

 α =0.00 fm⁴

 $V_{(LL'S)}(k, k') = \langle k(LS)j | \hat{V} | k'(L'S)j \rangle$

 α =0.01 fm⁴

 $V_{(LL'S)}(k, k') = \langle k(LS)j | \hat{V} | k'(L'S)j \rangle$

 α =0.04 fm⁴

 $V_{(LL'S)}(k, k') = \langle k(LS)j | \hat{V} | k'(L'S)j \rangle$

 α =0.20 fm⁴

Convergence in No-Core Shell Model

No-Core Shell Model (NCSM)

in
En

- Diagonalization of Hamiltonian in harmonic oscillator basis
- *Ν ħΩ* configuration: N oscillator quanta above 0 ħΩ configuration
- Model space sizes grow rapidly with *A* and *N*max

Contributions to the binding energy

- Energy depends slightly on flow parameter — indicates missing three-body terms in effective Hamiltonian
- Binding energy dominated by $(ST)=(10)$ channel, contribution from tensor part of effective Hamiltonian decreases with flow parameter
- Sizeable repulsive contribution from odd $(ST)=(11)$ channel related to many-body correlations — decreases with flow parameter

Neff, Feldmeier, Horiuchi, Phys. Rev. C **92**, 024003 (2015)

in
En

L

4He: ρrel(r) and *n***rel(k)**

- SRG softens interaction suppression at short distances and high-momentum components removed in wave function
- •these features are recovered with SRG transformed density operators
- small but noticeable dependence on flow parameter α

Neff, Feldmeier, Horiuchi, Phys. Rev. C **92**, 024003 (2015)

Ħ

h

L

4He: n^{rel} _{ST}(k)

- high-momentum components much stronger in (ST)=(10) channel
- flow dependence is weak in (ST)=(10) channel
- flow dependence is strong in (ST)=(01) and (11) channels, especially for momenta above Fermi momentum — signal of many-body correlations

Neff, Feldmeier, Horiuchi, Phys. Rev. C **92**, 024003 (2015)

4He: *n***ST(k, K=0)**

- Relative momentum distributions for *K*=0 pairs show a very weak dependence on flow parameter and therefore on many-body correlations — ideal to study two-body correlations
- Momentum distribution vanishes for relative momenta around 1.8 fm $^{-1}$ in the (ST)=(01) channel

Neff, Feldmeier, Horiuchi, Phys. Rev. C **92**, 024003 (2015)

Ħ

n

L

4He: Tensor Correlations

- In (ST)=(10) channel momentum distributions above Fermi momentum dominated by pairs with orbital angular momentum *L*=2
- •For *K*=0 pairs only *L*=0,2 relevant, for all pairs also higher orbital angular momenta contribute
- The 4He *K*=0 momentum distributions in (ST)=(10) channel above 1.5 fm-1 look like Deuteron momentum distributions

Neff, Feldmeier, Horiuchi, Phys. Rev. C **92**, 024003 (2015)

4He: Relative Probabilities

- Relative probabilities for K=0 pairs similar for AV8' and N3LO interactions
- For $K=k_1+k_2=0$ contribution from S=0,T=1 pairs goes to zero for **k** about 1.8 fm⁻¹
- This is not the case if we look at all pairs, here many-body correlations generate many pairs in the $(ST)=(11)$ channel

Neff, Feldmeier, Horiuchi, Phys. Rev. C **92**, 024003 (2015)

HE

Ľ

4He: Relative Probabilities

- For $K=0$ pairs ratio of pp/pn pairs goes to zero for relative momenta k of about 1.8 fm-1
- This is not the case if we look at all pairs, here many-body correlations generate many pairs in the $(ST)=(11)$ channel
- AV8' in good agreement with JLab data

Neff, Feldmeier, Horiuchi, Phys. Rev. C 92, 024003 (2015)

in
En

H

4He, 6He, 9Be, 12C: *nrel***(k, K=0)**

- Momentum distributions obtained in NCSM are well converged for larger flow parameters
- high-momentum **pn** (and total) momentum distributions very similar for all nuclei
- *^p*-shell nucleons fill up the node around 1.8 fm-1 for **pp/pn** pairs

Signs of Correlation already in One-Body Momentum Distribution

- Ratio of knocked out **n** to **p** with low **k1** proportional to *N/Z,* as expected
- But at high momenta k_1 as many **n** as **p**, ▶ 2-body correlations show up in 1-body distribution

CLAS collaboration, Nature 560, 617,(2018)

Signs of Correlation already in One-Body Momentum Distribution

High rel. momentum **np** and **pp** pairs in nuclei

ŀ

- **^K≈0** back to back **np** pairs with rel. mom. **k>2 fm-1** are predominant in all nuclei
- no dependence on N/Z

Shell Model works

- By unitary trafo **U**⍺ of **^H** [→] effective **H**⍺ and SM wave functions |Φ⍺> without SRC
- Universality of SRC below r<1fm and low saturation density → one **U**⍺ for all nuclei
- Energies are same because of unitarity
- Usual observables are 1-body and long ranged, R_{ms} radii, electromagnetic transitions $\mathbf{B}_{\alpha} = \mathbf{U}_{\alpha}^{-1} \mathbf{B} \mathbf{U}_{\alpha} \approx \mathbf{B}$
- But measured one-body momentum distributions show high momentum tails, not possible with $|\Phi_{\alpha}\rangle$
- Measured two-body correlations in momentum space clearly exhibit SRC, in particular tensor type
- Message: observables **B** blind to SRC can be described in SM by naively using **^B**
- observables that see SCR can not be described in SM, but SRC can be recovered by transforming the operator $\mathbf{B} \to \mathbf{B}_\alpha$

Summary

A) NN-Interactions & Short Range Correlations (SRC)

- Nucleons are complex many-body systems interaction approximated by 2- and 3-body forces analogue to van-der-Waals pot. between atoms, but depend on *S*, *T* and *p*, besides *r*
- Pion exchange dominates at large distance, source for tensor interaction
- mainly responsible for correlations above k_F and higher (SCR)
- strong central repulsion (SRC)
- NN interaction imprints corresponding correlations into many-body state, universal for r_{ik} < 1 fm
- shell model (independent particles in mean-field, no high momenta)?

B) Similarity Transformation of Hamiltonian and Observables

- SRC can not be represented in mean-field basis of shell model
- way out: similarity transformation of operators, soften **⁻¹ H** U_α,
- drawback: H_α contains induced many-body forces, approximation: neglect induced 4-body and higher-body terms
- do many-body calculations with H_α in Hilbert-space spanned by Slater determinants (shell model with configuration mixing)
- long-range observables (radius, BE2-transitions, spatial densities) are very little influenced by SRC
- when needed, retrieve SRC with $B_\alpha = U_\alpha^{-1}$ **B** U_α (momentum distributions, knock out of protons by high momentum electrons)
- shell model with configuration mixing works because of universality, same unitary transformation in all nuclei, same effective soft H_α

Thank You for Surviving 2 Hours

Many thanks to my collaborators **Wataru Horiuchi Thomas Neff Dennis Weber**

and many thanks to all the people discussing the subject with us **Yasuyuki Suzuki Robert Roth Heiko Hergert**

.

.

.

The Wigner Function of the Deuteron

A phase-space picture of short-range correlations

$$
W_{M_S,M_S'}(\mathbf{r},\mathbf{p})=\frac{1}{(2\pi)^3}\int d^3s\langle \mathbf{r}+\frac{1}{2}\mathbf{s};SM_S|\hat{\rho}|\mathbf{r}-\frac{1}{2}\mathbf{s};SM_S'\rangle e^{-i\mathbf{p}\cdot\mathbf{s}}\qquad \qquad \hat{\rho}=\frac{1}{3}\sum_{M}|\Psi;1M\rangle\langle\Psi;1M|
$$

 $\rho_{M_S}(\mathbf{r}) = \left\langle \mathbf{r}; SM_S \middle| \hat{\rho} \middle| \mathbf{r}; SM_S \right\rangle$ **=** $\sqrt{2}$ *d*³*p WMS,MS* **(r***,* **p)** $n_{M_S}(\mathbf{p}) = \left\langle \mathbf{p}; SM_S \middle| \hat{\rho} \middle| \mathbf{p}; SM_S \right\rangle$ **=** $\sqrt{2}$ *d*³*r WMS,MS* **(r***,* **p)** • Coordinate & momentum space densities

Neff, Feldmeier, arXiv:1610.04066

ă

Thomas Neff | Polarized light ion physics with EIC | Feb 8, 2018 | Ghent, Belgium

Deuteron Wave Functions

- Suppression of the wave function at short distances due to repulsion
- D-wave admixture due to tensor force
- D-wave dominates high-momentum region around 2 fm-1
- Short-range repulsion stronger for AV8', 500 MeV cut-off in N3LO reflected in momentum space wave function
- N3LO wave function shows "kinks" at large distances artefact of sudden cut-off

Wigner Function of the Deuteron

$$
W(\mathbf{r}, \mathbf{p}) = \frac{1}{(2\pi)^3} \int d^3s \langle \mathbf{r} + \frac{1}{2}\mathbf{s} | \hat{\rho} | \mathbf{r} - \frac{1}{2}\mathbf{s} \rangle e^{-i\mathbf{p}\cdot\mathbf{s}}
$$

=
$$
\frac{1}{(2\pi)^3} \int d^3s \Psi(\mathbf{r} + \frac{1}{2}\mathbf{s}) \Psi(\mathbf{r} - \frac{1}{2}\mathbf{s})^* e^{-i\mathbf{p}\cdot\mathbf{s}}
$$

• Integrate over angles

$$
e^{-i\mathbf{p}\cdot\mathbf{s}}
$$
 $W(r,p) = \int d\Omega_r \int d\Omega_p W(\mathbf{r}, \mathbf{p})$

- Wigner function not suppressed at small distances *^r*
- •short-range physics is encoded in high-momentum region

(Partial) Momentum Distributions

$$
n_{\leq}(p) = \int_{r \leq r_{sep}} dr r^2 W(r, p)
$$

- . Integrate Wigner function over small or large distance regions
- · not an observable but provides intuition

- small distance pairs determine high momentum part of momentum distribution
- · large distance pairs give momentum distributions in low momentum region

Thomas Neff | Polarized light ion physics with EIC | Feb 8, 2018 | Ghent, Belgium

(Partial) Coordinate Space Distributions

· density at large distances given by low-momentum pairs

前

L

• correlation hole at small distances is created by interference of low- and high-momentum pairs

Orientation dependence

- oscillations reflect uncertainty principle for non-commuting observables
- •three-dimensional problem, small angles correspond to small impact parameters, angles around 90o to circular motion around the core
- highest probability for angles around 90°

Spin dependence

- density and momentum distributions depend on orientation of the spin due to tensor force
- dumbbell $(M_S=\pm 1)$ and donut $(M_S=0)$ shapes in coordinate space
- dip in momentum distribution for momenta parallel to spin orientation
- tensor correlations strongest in mid-momentum region (1.5 fm-1 $\leq p \leq 2.5$ fm-1)

Wigner function of two-Gaussian toy model

Thomas Neff | Polarized light ion physics with EIC | Feb 8, 2018 | Ghent, Belgium