# **Short Range Correlations in Nuclei**

# **Hans Feldmeier**

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt







#### **Overview**

#### A) NN-Interactions & Short Range Correlations (SRC)

- Visualize nucleon-nucleon potential V<sub>NN</sub>
- Solve many-body problem exactly for A=2,3,4
- V<sub>NN</sub> leaves telling "footprints" in densities
- Central and tensor correlations
- Universality of short range correlations
- Seeing all this, why does shell model work?

#### **B)** Similarity Transformation of Hamiltonian and Observables

- AV18/Chiral EFT  $V_{NN} \rightarrow V_{\alpha}$  with SRG (Similarity Renormalization Group) transformation
- Solve many-body problem with NCSM (No Core Shell Model) for A=4,6,9,12 with soft  $V_{\alpha}$
- Recover short-range physics with SRG transformed observables
- Dominant role of deuteron-like S=1,T=0 pairs and tensor correlations at high relative momenta (dominance of pn over pp pairs, data)
- Many-body correlations leave traces in 2-body and 1-body densities
- Shell model works: SRC are only visible in appropriate observables

#### **Nucleon-Nucleon Interactions**



- Nucleons are not point-like, complicated quark and gluon sub-structure
- Nuclear interaction  $V_{NN}+V_{NNN}$ : residual interaction
- Calculation within QCD not possible yet
- Construct realistic NN potentials that describe two-nucleon properties (scattering, Deuteron) with high accuracy
- high-momentum and off-shell behavior not constrained by scattering data
- e.g. Argonne V18, Chiral N3LO

short-range repulsion, strong tensor force



## **Nucleon-Nucleon Interactions**

#### • N<sup>3</sup>LO

- potential derived using chiral EFT
- includes full  $\pi$  dynamics
- power counting
- short-range behavior given by contactterms
- regulated by non-local cut-off (500 MeV) Entem, Machleidt, Phys. Rev. C 68, 041001 (2003)

ongoing developments in chiral EFT → lecture by J. W. Holt

#### • Argonne V18/V8'

- $\pi$ -exchange, phenomenological shortrange
- "as local as possible"
- fitted to phase shifts up to 350 MeV, but describes elastic phase shifts up to 1 GeV

Wiringa, Stoks, Schiavilla, Phys. Rev. C 51, 38 (1995)



Bogner, Furnstahl, Schwenk, Prog. Part. Nucl. Phys. 65, 94 (2010)

#### **Nucleon-Nucleon Interaction AV18**



## **Deuteron Wave Functions**



- Suppression of the wave function at short distances due to repulsion
- *D*-wave admixture due to tensor force
- D-wave dominates high-momentum region around 2 fm<sup>-1</sup>
- Short-range repulsion stronger for AV8',
  - 500 MeV cut-off in N3LO reflected in momentum space wave function
- N3LO wave function shows "kinks" at large distances artifact of sudden cut-off

## **Argonne V8' Potential**



V8' in different spin-isospin channels as function of distance vector r=(x,y=0,z)
In S=1 channels total spin align with z-axis

#### **Coordinate Space Two-Body Density**

Probability to find a nucleon-pair with S and T at distance r inside a nucleus



$$\mathcal{P}_{SM_S,TM_T}^{\text{rel}}(\mathbf{r}) = \left\langle \Psi \Big| \sum_{i < j}^{A} \hat{P}_{ij}^{SM_S} \hat{P}_{ij}^{TM_T} \delta^3 (\hat{\mathbf{r}}_i - \hat{\mathbf{r}}_j - \mathbf{r}) \Big| \Psi \right\rangle$$

 $|\Psi\rangle$  nuclear many-body state **R** is measured from center-of-mass

 coordinate space two-body densities will reveal correlation hole and tensor correlations

8

#### Two-body density for S=1,M<sub>S</sub>=1, T=0 pairs

• Exact many-body calculations for  $d = {}^{2}H$ ,  $t = {}^{3}H$ ,  $\alpha = {}^{4}He$ ,  $\alpha^{*} = {}^{4}He^{*}$ 



-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4 x [fm] x [fm] x [fm] x [fm]

Potential leaves one-to-one imprint on 2-body density

H

4



#### **Two-body density for ?**



Potential leaves one-to-one imprint on density

L



#### Two-body density for S=0, T=1 pairs

![](_page_10_Figure_1.jpeg)

Potential leaves one-to-one imprint on density

L

![](_page_10_Figure_3.jpeg)

#### Two-body density for S=1, M<sub>S</sub>=1, T=1 pairs

![](_page_11_Figure_1.jpeg)

Potential leaves one-to-one imprint on density

L

![](_page_11_Figure_3.jpeg)

12

# Universality of short-range correlations

#### Exact solutions for A=2,3,4 nuclei with AV8' interaction

Feldmeier, Horiuchi, Neff, Suzuki, Phys. Rev. C 84, 054003 (2011)

Thomas Neff | Polarized light ion physics with EIC | Feb 8, 2018 | Ghent, Belgium

#### **One-Body Densities for A=2,3,4 Nuclei**

![](_page_13_Figure_1.jpeg)

![](_page_13_Figure_2.jpeg)

- One-body densities calculated from exact wave functions (Correlated Gaussian method) for AV8' interaction
- coordinate space densities reflect different sizes and densities of <sup>2</sup>H, <sup>3</sup>H, <sup>3</sup>He, <sup>4</sup>He and the excited 0<sup>+</sup> state in <sup>4</sup>He
- similar high-momentum tails in the onebody momentum distributions

Feldmeier, Horiuchi, Neff, Suzuki, Phys. Rev. C 84, 054003 (2011)

H

#### **Two-Body Coordinate Space Densities**

![](_page_14_Figure_1.jpeg)

![](_page_14_Figure_2.jpeg)

- coordinate space two-body densities show correlation hole and tensor correlations
- normalize two-body density in coordinate space at r=1.0 fm
- normalized two-body densities in coordinate space are identical at short distances for all nuclei
- also true for angular dependence in the deuteron channel

#### **Two-Body Momentum Space Densities**

![](_page_15_Figure_1.jpeg)

![](_page_15_Figure_2.jpeg)

$$n_{SM_S,TM_T}^{\text{rel}}(\mathbf{k}) = \langle \Psi | \sum_{i < j}^{A} \hat{P}_{ij}^{SM_S} \hat{P}_{ij}^{TM_T} \delta^3 (\frac{1}{2} (\hat{\mathbf{k}}_i - \hat{\mathbf{k}}_j) - \mathbf{k}) | \Psi \rangle$$

- use normalization factors fixed in coordinate space
- two-body densities in momentum space agree for momenta k > 3 fm<sup>-1</sup>
- moderate nucleus dependence in momentum region 1.5 fm<sup>-1</sup> < k < 3 fm<sup>-1</sup>

## Many-Body Correlations show up in 2-Body Density

| ⁴He | number of pairs in ST channels |       |       |       |       |  |
|-----|--------------------------------|-------|-------|-------|-------|--|
|     | (ST)                           | (10)  | (01)  | (11)  | (00)  |  |
|     | L                              | even  | even  | odd   | odd   |  |
|     | exact<br>AV8'                  | 2.992 | 2.572 | 0.428 | 0.008 |  |
|     | (S <sub>1/2</sub> )4           | 3.000 | 3.000 | 0     | 0     |  |

- (ST)=(01) with L even gives away 0.428 pairs to (ST)=(01) with L odd. Why?
- odd channel is less attractive
- V<sub>NN</sub> does not scatter from even to odd

## Many-Body Correlations show up in 2-Body Density

| 4 <b>H</b> € | number of pairs in ST channels   |       |       |       |       |  |
|--------------|----------------------------------|-------|-------|-------|-------|--|
|              | (ST)                             | (10)  | (01)  | (11)  | (00)  |  |
|              | L                                | even  | even  | odd   | odd   |  |
|              | exact<br>AV8'                    | 2.992 | 2.572 | 0.428 | 0.008 |  |
|              | (S <sub>1/2</sub> ) <sup>4</sup> | 3.000 | 3.000 | 0     | 0     |  |

![](_page_17_Figure_2.jpeg)

- (ST)=(01) with L even gives away 0.428 pairs to (ST)=(01) with L odd. Why?
- odd channel is less attractive
- V<sub>NN</sub> does not scatter from even to odd

#### **Answer: 3-body correlations**

- strong tensor breaks pair {2,3} with (ST)=(01) and aligns spin of proton {2} to get pair {1,2} in (ST)=(10)
- pair {2,3} is left in (ST)=(11)
- energy paid by moving pair from (ST)=(01) channel to (ST)=(11), but more energy gained by pair in (ST)=(10) channel
- 3-body correlations induced by the 2-body tensor force

## Many-Body Correlations show up in 2-Body Density

#### number of pairs in ST channels

| (ST)       | (10)  | (01)  | (11)  | (00)  |
|------------|-------|-------|-------|-------|
| L          | even  | even  | odd   | odd   |
| d          | 1     | -     | -     | -     |
| t          | 1.490 | 1.361 | 0.139 | 0.010 |
| h          | 1.489 | 1.361 | 0.139 | 0.011 |
| α          | 2.992 | 2.572 | 0.428 | 0.008 |
| $\alpha^*$ | 2.966 | 2.714 | 0.286 | 0.034 |

Similar 3-body correlations in <sup>3</sup>H, <sup>3</sup>He, less pronounced in <sup>4</sup>He<sup>\*</sup> (<sup>3</sup>H+p,<sup>3</sup>He+n cluster structure)

#### Why does Nuclear Shell Model work?

#### **★** Apparent problem:

- Nuclear shell model with nucleons moving independently in mean-field works quite well (Goeppert-Mayer, Jensen Nobel price)
- Slater determinant  $|\Phi>$  can not describe the short range correlations we just saw.
- $<\Phi|V_{NN}|$   $\Phi>$  is positive and large, should be negative for self-bound system!

## Why does Nuclear Shell Model work?

- Independent of nucleus or density two-body correlations are much alike for r < 1 fm
- when two nucleons come closer than 1 fm their pairwise interactions dominates

| correlation<br>distance        | D <sub>corr</sub>     | 1 fm   |
|--------------------------------|-----------------------|--------|
| mean distance<br>at saturation | d <sub>mean</sub>     | 1.8 fm |
| diameter of proton             | 2 R <sub>proton</sub> | 1.6 fm |

- probability to find 3rd nucleon in correlation volume is small (D<sub>corr</sub>/2)<sup>3</sup> x ρ<sub>0</sub> = 0.125 fm<sup>3</sup> x 0.16 fm<sup>-3</sup> = 0.08 With respect to SRC nucleons form a dilute system, SRC essentially of 2-body nature
- ★ Idea: Universal Similarity transformation for pairs k,lschematic:  $\Psi'(r_{kl}) V_{NN}(r_{kl}) \Psi(r_{kl}) \rightarrow \varphi'(r_{kl}) V_{eff}(r_{kl}) \varphi(r_{kl})$  for  $r_{kl} < 1$  fm  $V_{eff}(r_{kl})$  shell model interaction  $\varphi(r_{kl})$  shell model states

## Summary - 1

- NN-interaction causes tensor and central-repulsive short range correlations (SRC)
- For S=1, T=0 proton-neutron pairs align their distance vector *r* and spin *S* (tensor) (like regular bar magnets)
- For all S,T channels very strong repulsion for 0 < r < 0.5 fm (central)
- One-to-one correspondence between NN potential and 2-body SRC correlations (like a cast and its molding form)
- For r < 1 fm two-body SRC are much alike, independent of nucleus or density
- For **r < 1** fm their pairwise interactions dominates
- 1-body *n(k<sub>1</sub>)* : 2-body SRC give raise to high momentum tails
- 1-body ρ(r<sub>1</sub>) insensitive to 2-body SRC
- 2-body  $n^{rel}(k=(k_1-k_2)/2)$  and  $\rho^{rel}(r=r_1-r_2)$  reveal details of SRC

# Short-range correlations in nuclei using No-Core Shell Model and SRG

Neff, Feldmeier, Horiuchi, Phys. Rev. C 92, 024003 (2015)

Thomas Neff | Polarized light ion physics with EIC | Feb 8, 2018 | Ghent, Belgium

#### **Unitary Transformations**

- Many-body problem very hard to solve for bare interaction
- Unitary trafo of bare  $\rightarrow$  soft Hamiltonian, evolution parameter  $\alpha$
- $\hat{U}_{\alpha}$  imprints correlations of  $|\Psi\rangle$  into mean-field like state  $|\Phi_{\alpha}\rangle$
- Equivalent description, pre-diagonalization

$$\begin{split} \hat{H} | \Psi \rangle &= ( \hat{T} + \hat{V}_{NN} + \hat{V}_{NN} ) | \Psi \rangle = E | \Psi \rangle \\ \hat{H}_{\alpha} &= \hat{U}_{\alpha}^{\dagger} \hat{H} \hat{U}_{\alpha} \ , \ \hat{U}_{\alpha}^{\dagger} = \hat{U}_{\alpha}^{-1} \end{split}$$

$$|\Psi > = \hat{U}_{\alpha} |\Phi_{\alpha} >$$

$$< \Psi' | \hat{H} | \Psi > = < \Phi'_{\alpha} | \hat{H}_{\alpha} | \Phi_{\alpha} >$$
$$< \Psi' | \hat{B} | \Psi > = < \Phi'_{\alpha} | \hat{B}_{\alpha} | \Phi_{\alpha} >$$

★ Goal: find  $\hat{U}_{\alpha}$  such that  $|\Phi_{\alpha}\rangle$  looses high momentum components with evolving  $\alpha$ 

- SRG provides a family of similarity transformations depending on a flow parameter  $\boldsymbol{\alpha}$
- Evolve Hamiltonian and unitary transformation matrix (in momentum space)

$$\frac{d\hat{H}_{\alpha}}{d\alpha} = [\hat{\eta}_{\alpha}, \hat{H}_{\alpha}]_{-} \qquad \qquad \frac{d\hat{U}_{\alpha}}{d\alpha} = -\hat{U}_{\alpha}\hat{\eta}_{\alpha}$$

generator for the evolution

 $\hat{\eta}_{\alpha} = (2\mu)^2 \ [\hat{T}, \hat{H}_{\alpha}]_{-}$ 

 Intrinsic kinetic energy as meta-generator (other choices possible, but that does the job)

![](_page_24_Figure_7.jpeg)

**\*** soft Hamiltonian  $\hat{H}_{\alpha}$  is now a A-body operator !

 $\hat{H}_{\alpha} = \hat{T} + \hat{V}_{\alpha}^{[2]} + \hat{V}_{\alpha}^{[3]} + \hat{V}_{\alpha}^{[4]} + \dots + \hat{V}_{\alpha}^{[A]}$ 

Bogner, Furnstahl, Perry, Phys. Rev. C, **75**, 061001 (2007) Roth, Neff, Feldmeier, Prog. Part. Nucl. Phys. **65**, 50 (2010)

**\*** <u>Two-body approximation for many-body calculations used in following calculations</u>

 Evolution is done only on the 2-body level α-dependence can be used to investigate the role of missing higher-order contributions

$$\frac{d\hat{H}_{\alpha}}{d\alpha} = [\hat{\eta}_{\alpha}, \hat{H}_{\alpha}]_{-} \quad \frac{d\hat{U}_{\alpha}}{d\alpha} = -\hat{U}_{\alpha}\,\hat{\eta}_{\alpha}$$
$$\hat{\eta}_{\alpha} = (2\mu)^{2} \,[\,\hat{T}, \hat{H}_{\alpha}]_{-}$$

- 1-body observables
- 2-body observables

$$\hat{B}_{\alpha} = \hat{U}_{\alpha}^{\dagger} \hat{B} \ \hat{U}_{\alpha} = \hat{B} + \hat{B}_{\alpha}^{[2]}$$

$$\begin{split} \hat{C}_{\alpha} &= \hat{U}_{\alpha}^{\dagger} \, \hat{C} \, \, \hat{U}_{\alpha} = \hat{C}_{\alpha}^{[2]} \\ \hat{H}_{\alpha} &= \hat{U}_{\alpha}^{\dagger} \, \hat{H} \, \, \hat{U}_{\alpha} = \hat{T} + \hat{V}_{\alpha}^{[2]} \end{split}$$

 Hamiltonian evolution can nowadays be done on the 3-body level

(Jurgenson, Roth, Hebeler, . . . )

Bogner, Furnstahl, Perry, Phys. Rev. C, **75**, 061001 (2007)

Roth, Neff, Feldmeier, Prog. Part. Nucl. Phys. 65, 50 (2010)

![](_page_26_Figure_1.jpeg)

 $V_{(LL'S)J}(k,k') = \left\langle k(LS)J \middle| \hat{V} \middle| k'(L'S)J \right\rangle$ 

 $\alpha = 0.00 \text{ fm}^4$ 

![](_page_27_Figure_1.jpeg)

 $V_{(LL'S)J}(k,k') = \langle k(LS)J | \hat{V} | k'(L'S)J \rangle$ 

 $\alpha = 0.01 \text{ fm}^4$ 

![](_page_28_Figure_1.jpeg)

 $V_{(LL'S)J}(k,k') = \langle k(LS)J | \hat{V} | k'(L'S)J \rangle$ 

 $\alpha = 0.04 \text{ fm}^4$ 

![](_page_29_Figure_1.jpeg)

 $V_{(LL'S)J}(k,k') = \langle k(LS)J | \hat{V} | k'(L'S)J \rangle$ 

 $\alpha = 0.20 \text{ fm}^4$ 

## **Convergence in No-Core Shell Model**

![](_page_30_Figure_1.jpeg)

#### **No-Core Shell Model (NCSM)**

- Diagonalization of Hamiltonian in harmonic oscillator basis
- N  $\hbar\Omega$  configuration: N oscillator quanta above 0  $\hbar\Omega$  configuration
- Model space sizes grow rapidly with A and N<sub>max</sub>

![](_page_30_Figure_6.jpeg)

#### **Contributions to the binding energy**

10 0  $ilde{E}_{\mathrm{ST}}$  [MeV] S=1,T=1 -10 S=0,T=0 S=0,T=1 -20 S=1,T=0 -30 0.10 0.15 0.05 0.00 0.2  $\alpha$  [fm<sup>4</sup>]

solid: AV8', dashed: N3LO

- Energy depends slightly on flow parameter — indicates missing three-body terms in effective Hamiltonian
- Binding energy dominated by (ST)=(10) channel, contribution from tensor part of effective Hamiltonian decreases with flow parameter
- Sizeable repulsive contribution from odd (ST)=(11) channel related to many-body correlations — decreases with flow parameter

Neff, Feldmeier, Horiuchi, Phys. Rev. C 92, 024003 (2015)

#### <sup>4</sup>He: ρ<sup>rel</sup>(r) and n<sup>rel</sup>(k)

![](_page_32_Figure_1.jpeg)

- SRG softens interaction suppression at short distances and high-momentum components removed in wave function
- these features are recovered with SRG transformed density operators
- small but noticeable dependence on flow parameter  $\alpha$

Neff, Feldmeier, Horiuchi, Phys. Rev. C 92, 024003 (2015)

## 4He: *n*<sup>rel</sup><sub>ST</sub>(k)

![](_page_33_Figure_1.jpeg)

- high-momentum components much stronger in (ST)=(10) channel
- flow dependence is weak in (ST)=(10) channel
- flow dependence is strong in (ST)=(01) and (11) channels, especially for momenta above Fermi momentum — signal of many-body correlations

Neff, Feldmeier, Horiuchi, Phys. Rev. C 92, 024003 (2015)

## <sup>4</sup>He: *n*<sub>ST</sub>(k, K=0)

![](_page_34_Figure_1.jpeg)

- Relative momentum distributions for K=0 pairs show a very weak dependence on flow parameter and therefore on many-body correlations — ideal to study two-body correlations
- Momentum distribution vanishes for relative momenta around 1.8 fm<sup>-1</sup> in the (ST)=(01) channel

Neff, Feldmeier, Horiuchi, Phys. Rev. C 92, 024003 (2015)

H

4

L

## **4He: Tensor Correlations**

![](_page_35_Figure_1.jpeg)

- In (ST)=(10) channel momentum distributions above Fermi momentum dominated by pairs with orbital angular momentum L=2
- For K=0 pairs only L=0,2 relevant, for all pairs also higher orbital angular momenta contribute
- The <sup>4</sup>He K=0 momentum distributions in (ST)=(10) channel above 1.5 fm<sup>-1</sup> look like Deuteron momentum distributions

Neff, Feldmeier, Horiuchi, Phys. Rev. C 92, 024003 (2015)

#### **4He: Relative Probabilities**

![](_page_36_Figure_1.jpeg)

- Relative probabilities for K=0 pairs similar for AV8' and N3LO interactions
- For  $\mathbf{K} = \mathbf{k_1} + \mathbf{k_2} = \mathbf{0}$  contribution from S=0,T=1 pairs goes to zero for  $\mathbf{k}$  about 1.8 fm<sup>-1</sup>
- This is not the case if we look at all pairs, here many-body correlations generate many pairs in the (ST)=(11) channel

Neff, Feldmeier, Horiuchi, Phys. Rev. C 92, 024003 (2015)

L

#### **4He: Relative Probabilities**

![](_page_37_Figure_1.jpeg)

- For **K=0** pairs ratio of pp/pn pairs goes to zero for relative momenta **k** of about 1.8 fm<sup>-1</sup>
- This is not the case if we look at all pairs, here many-body correlations generate many pairs in the (ST)=(11) channel
- AV8' in good agreement with JLab data

Neff, Feldmeier, Horiuchi, Phys. Rev. C 92, 024003 (2015)

L

## <sup>4</sup>He, <sup>6</sup>He, <sup>9</sup>Be, <sup>12</sup>C: *n<sup>rel</sup>*(k, K=0)

![](_page_38_Figure_1.jpeg)

- Momentum distributions obtained in NCSM are well converged for larger flow parameters
- high-momentum pn (and total) momentum distributions very similar for all nuclei
- p-shell nucleons fill up the node around 1.8 fm<sup>-1</sup> for pp/pn pairs

#### Signs of Correlation already in One-Body Momentum Distribution

![](_page_39_Figure_1.jpeg)

- Ratio of knocked out n to p with low k<sub>1</sub> proportional to N/Z, as expected
- But at high momenta k<sub>1</sub> as many n as p,
  2-body correlations show up in 1-body distribution

CLAS collaboration, Nature 560, 617, (2018)

#### Signs of Correlation already in One-Body Momentum Distribution

![](_page_40_Figure_1.jpeg)

41

#### High rel. momentum **np** and **pp** pairs in nuclei

![](_page_40_Figure_3.jpeg)

4

- K≈0 back to back np pairs with rel. mom.
   k>2 fm<sup>-1</sup> are predominant in all nuclei
- no dependence on N/Z

## **Shell Model works**

- By unitary trafe  $\mathbf{U}_{\alpha}$  of  $\mathbf{H} \rightarrow$  effective  $\mathbf{H}_{\alpha}$  and SM wave functions  $|\Phi_{\alpha}\rangle$  without SRC
- Universality of SRC below r<1fm and low saturation density  $\rightarrow$  one **U**<sub> $\alpha$ </sub> for all nuclei
- Energies are same because of unitarity
- Usual observables are 1-body and long ranged, R<sub>ms</sub> radii, electromagnetic transitions
   B<sub>α</sub>=U<sub>α</sub><sup>-1</sup> B U<sub>α</sub> ≈ B
- But measured one-body momentum distributions show high momentum tails, not possible with  $|\Phi_{\alpha}>$
- Measured two-body correlations in momentum space clearly exhibit SRC, in particular tensor type
- Message: observables **B** blind to SRC can be described in SM by naively using **B**
- observables that see SCR can not be described in SM, but SRC can be recovered by transforming the operator  ${f B} o {f B}_{\alpha}$

## Summary

#### A) NN-Interactions & Short Range Correlations (SRC)

- Nucleons are complex many-body systems interaction approximated by 2- and 3-body forces analogue to van-der-Waals pot. between atoms, but depend on S, T and p, besides r
- Pion exchange dominates at large distance, source for tensor interaction
- mainly responsible for correlations above  $\mathbf{k}_{\mathbf{F}}$  and higher (SCR)
- strong central repulsion (SRC)
- NN interaction imprints corresponding correlations into many-body state, universal for  $r_{ik}$  < 1 fm
- shell model (independent particles in mean-field, no high momenta)?

#### **B)** Similarity Transformation of Hamiltonian and Observables

- SRC can not be represented in mean-field basis of shell model
- way out: similarity transformation of operators, soften  $\mathbf{H} \rightarrow \mathbf{H}_{\alpha} = \mathbf{U}_{\alpha}^{-1} \mathbf{H} \mathbf{U}_{\alpha}$ ,
- drawback: H<sub>α</sub> contains induced many-body forces, approximation: neglect induced 4-body and higher-body terms
- do many-body calculations with  $\mathbf{H}_{\alpha}$  in Hilbert-space spanned by Slater determinants (shell model with configuration mixing)
- long-range observables (radius, BE2-transitions, spatial densities) are very little influenced by SRC
- when needed, retrieve SRC with B<sub>α</sub>=U<sub>α</sub><sup>-1</sup> B U<sub>α</sub> (momentum distributions, knock out of protons by high momentum electrons)
- shell model with configuration mixing works because of universality, same unitary transformation in all nuclei, same effective soft  $H_{\alpha}$

#### **Thank You for Surviving 2 Hours**

Many thanks to my collaborators Wataru Horiuchi Thomas Neff Dennis Weber

and many thanks to all the people discussing the subject with us Yasuyuki Suzuki Robert Roth Heiko Hergert

# **The Wigner Function of the Deuteron**

A phase-space picture of short-range correlations

$$W_{M_S,M_S'}(\mathbf{r},\mathbf{p}) = \frac{1}{(2\pi)^3} \int d^3s \left\langle \mathbf{r} + \frac{1}{2}\mathbf{s}; SM_S \middle| \hat{\rho} \middle| \mathbf{r} - \frac{1}{2}\mathbf{s}; SM_S' \right\rangle e^{-i\mathbf{p}\cdot\mathbf{s}} \qquad \hat{\rho} = \frac{1}{3} \sum_M \left| \Psi; 1M \right\rangle \langle \Psi; 1M \middle|$$

• Coordinate & momentum space densities  $\rho_{M_S}(\mathbf{r}) = \langle \mathbf{r}; SM_S | \hat{\rho} | \mathbf{r}; SM_S \rangle = \int d^3 p \, W_{M_S,M_S}(\mathbf{r},\mathbf{p})$   $n_{M_S}(\mathbf{p}) = \langle \mathbf{p}; SM_S | \hat{\rho} | \mathbf{p}; SM_S \rangle = \int d^3 r \, W_{M_S,M_S}(\mathbf{r},\mathbf{p})$ 

Neff, Feldmeier, arXiv:1610.04066

Thomas Neff | Polarized light ion physics with EIC | Feb 8, 2018 | Ghent, Belgium

![](_page_45_Figure_0.jpeg)

## **Deuteron Wave Functions**

![](_page_46_Figure_1.jpeg)

- Suppression of the wave function at short distances due to repulsion
- *D*-wave admixture due to tensor force
- D-wave dominates high-momentum region around 2 fm<sup>-1</sup>
- Short-range repulsion stronger for AV8', 500 MeV cut-off in N3LO reflected in momentum space wave function
- N3LO wave function shows "kinks" at large distances artefact of sudden cut-off

#### **Wigner Function of the Deuteron**

$$W(\mathbf{r}, \mathbf{p}) = \frac{1}{(2\pi)^3} \int d^3 s \, \langle \mathbf{r} + \frac{1}{2} \mathbf{s} | \hat{\rho} | \mathbf{r} - \frac{1}{2} \mathbf{s} \rangle e^{-i\mathbf{p} \cdot \mathbf{s}}$$
$$= \frac{1}{(2\pi)^3} \int d^3 s \, \Psi(\mathbf{r} + \frac{1}{2} \mathbf{s}) \Psi(\mathbf{r} - \frac{1}{2} \mathbf{s})^* e^{-i\mathbf{p} \cdot \mathbf{s}}$$

• Integrate over angles

$$W(r,p) = \int d\Omega_r \int d\Omega_p W(\mathbf{r},\mathbf{p})$$

![](_page_47_Figure_4.jpeg)

- Wigner function not suppressed at small distances *r*
- short-range physics is encoded in high-momentum region

# (Partial) Momentum Distributions

![](_page_48_Figure_1.jpeg)

$$n_{\lessgtr}(p) = \int_{r \lessgtr r_{sep}} dr \, r^2 W(r, p)$$

- Integrate Wigner function over small or large distance regions
- not an observable but provides intuition

- small distance pairs determine high momentum part of momentum distribution
- large distance pairs give momentum distributions in low momentum region

Thomas Neff | Polarized light ion physics with EIC | Feb 8, 2018 | Ghent, Belgium

# (Partial) Coordinate Space Distributions

![](_page_49_Figure_1.jpeg)

$$\rho_{\leq}(r) = \int_{p \leq p_{sep}}^{r} dp \, p^2 W(r, p)$$

 Integrate Wigner function over regions of low and high momenta

- density at large distances given by low-momentum pairs
- correlation hole at small distances is created by interference of low- and high-momentum pairs

# **Orientation dependence**

![](_page_50_Figure_1.jpeg)

![](_page_50_Figure_2.jpeg)

- oscillations reflect uncertainty principle for non-commuting observables
- three-dimensional problem, small angles correspond to small impact parameters, angles around 90° to circular motion around the core
- highest probability for angles around 90°

# Spin dependence

![](_page_51_Figure_1.jpeg)

- density and momentum distributions depend on orientation of the spin due to tensor force
- dumbbell ( $M_s = \pm 1$ ) and donut ( $M_s = 0$ ) shapes in coordinate space
- dip in momentum distribution for momenta parallel to spin orientation
- tensor correlations strongest in mid-momentum region (1.5 fm<sup>-1</sup>  $\leq$  p  $\leq$  2.5 fm<sup>-1</sup>)

# Wigner function of two-Gaussian toy model

![](_page_52_Figure_1.jpeg)

Thomas Neff | Polarized light ion physics with EIC | Feb 8, 2018 | Ghent, Belgium