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Milestone toward the nuclear model

The discovery of neutron by Chadwick
which verified the composition of nucleus as
protons and neutrons

The meson-exchange theory for the
interaction between nucleons by Yukawa

During the hundred years’ struggling, in the development
of nuclear physics itself, there emerged a lot of significant
milestones, including

H. Euler, Z. Physik 105, 553 (1937)
Heisenberg's student who calculated the nuclear matter in 2nd order perturbation theory
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P. Ring Physica Scripta, T150, 014035 (2012)Why Covariant?
✓ Spin-orbit automatically included

Lorentz covariance restricts parameters

 Pseudo-spin Symmetry

Connection to QCD: big V/S ~ ±400 MeV

Consistent treatment of time-odd fields

Relativistic saturation mechanism

…

Hecht & Adler
NPA137(1969)129
Arima, Harvey & Shimizu
PLB 30(1969)517

 

Pseudospin symmetry

Ginocchio PRL 78, 436 Shen et al Chin. Phys. Lett. 33 (2016) 102103
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Electromagnetic force: The photon

CDFT��Relativistic quantum many-body theory based on DFT and effective

field theory for strong interaction

Brief introduction of CDFT

(Jp T)=(0+0)

s w r

(Jp T)=(1-0) (Jp T)=(1-1)

Sigma-meson:
attractive scalar field

Omega-meson:
Short-range repulsive

Rho-meson:
Isovector field

Strong force: Meson-exchange of the nuclear force



 

 



 

 

 

Brief introduction of CDFT
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Energy density functional:

Hartree

Foc

k



 

Equations of motion
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For system with time invariance:

Same footing for
 

➢ Deformation
➢ Rotation
➢ Pairing

(RHB,BCS,SLAP)

➢ …



 

Effective Point-Coupling interaction
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Equations of motion
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For system with time invariance:

Without Klein-Gordon
equation
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Covariant Density Functional Theory
Elementary building blocks

Isoscalar-scalar

Isoscalar-vector

Isovector-scalar

Isovector-vector

Densities and currents
Energy Density Functional



 

Covariant Density Functional
Theory and Applications in
Nuclear Physics, Nov. 05, 2015

10:44 15/206

Fermi sea

Dirac sea

2m* ≈ 1100 MeV

V+S ≈ 750 MeV

V-S ≈ 50 MeV

2m ≈ 1900 MeV

continuum

scalar potential: S(r) ≈ -400 MeV V(r) ≈ 350
MeV

vector potential:

 



 

In spherical cases:

Equation of motion in spherical nucleus



 

Example: double magic nucleus 208Pb 

17 2019/7/2

Sum of the scalar and vector potentials in the radial Dirac equation:
potentials for the nucleon.
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Difference of the scalar and vector potentials in the radial Dirac equation:
potentials for the anti-nucleon.

Example: double magic nucleus 208Pb 
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Shooting method
A fourth-order Runge-Kutta algorithm

1. For given energy E, numerical
integrated the Dirac equation from
r=0 outward and r=� � inwards to
r=rmatch.

2. Rescale the wave function F and
G, and GL( r match.)=GR( r
match.). If FL( r match.) �� FR( r
match.), change the energy E by
��E ~ ��F ( r match.) .

3. Repeating the process until ��E
satisfy the required accuracy.

4. Renormalize the wave function.
Radius [fm]

Example: double magic nucleus 208Pb 
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4-th iteration !

[fm]

Example: double magic nucleus 208Pb 
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6-th iteration !

Radius [fm]

Example: double magic nucleus 208Pb 
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Convergent wave function ~10 iteration !

 

[fm]

 

Example: double magic nucleus 208Pb 
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Example: double magic nucleus 208Pb 



 
A. Bohr, I. Hamamoto, and B. R. Mottelson, Phys. Scr. 26,267 198224 2019/7/2

Hecht & Adler
NPA137(1969)129

Arima, Harvey & Shimizu
PLB30(1969)517

Spin and pseudospin symmetry

Woods-Saxon
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Pseudo quantum numbers

Pseudo quantum numbers are nothing
but the quantum numbers of the lower component. Ginocchio

PRL78(97)436
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Nuclear matter
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Infinite nuclear matter:

➢  Neglecting the coulomb field

➢  Baryon wave function is the eigenstate of momentum k

➢  Source currents are independent of the spatial coordinate x

The equations of motion can be simplified as:
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The energy density and pressure of nuclear matter:

Ban, et al., Phys. Rev. C 69, 045805
(2004).

Nuclear matter

EOS of neutron stars


