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Unpack your tools:

H()|w(t)) = Ih—‘(/) )+

Calculate from no other information. ..

@ Energetics © Excitations @ Finite-size
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The equation of state
A closer look

@ Low densities: Pauli pressure
dominates — repulsive Fermi gas
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The equation of state
A closer look

@ Low densities: Pauli pressure
dominates — repulsive Fermi gas

@ Spinodal instabilities e
@ No homogeneous solution —
clustering
@ Many-body binding
@ Saturation o

@ Other phase transitions ?

Generica The equation of state
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The argument for parquet diagrams

@ Binding and saturation —- short-ranged structure:
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What physics tells us:
The argument for parquet diagrams

@ Binding and saturation —- short-ranged structure:
e “pbending” of the wave function at small interparticle distances;
o “local screening” or “local field corrections” in electron systems.
@ “No answers when mother nature does not have them”:

e Show correct instabilities;
o Deal properly with long-ranged correlations;

Translate this into the language of perturbation theory:

Short-ranged structure = Ladder diagrams
Long-ranged structure = Ring diagrams
Consistency = parquet diagrams
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Correlated wave functions (“Jastrow-Feenberg”):

“Quick and dirty” or “intuitive” ?

What looked like a “simple quick and dirty” method:
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Correlated wave functions (“Jastrow-Feenberg”):

“Quick and dirty” or “intuitive” ?

What looked like a “simple quick and dirty” method:
Vo(1,...,N) = exp= [2“1 r)+ > ua(ri, 1) ...]CDO(L...,N)

i<j
= F(,...,N)®(1,...,N)
do(1,...,N) “Model wave function” (Slater determinant)

@ An intuitive way to include inhomogeneity
core exclusion and statistics;
@ Diagram summati ethods from

Correlation- and
distribution functions

= _ classical statistics (HNC, BGY);
o * @ Optimization 6E /du, = 0 mak
= hE correlations unique;
< @ Express everything in terms of physical
observables.

6
r (A
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Parquet diagrams:

Summing rings, ladders, and self-energy contributions

7 A.D. Jackson et a., Variational and perturbation theories made planar
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Fig. 8. The parquet contributions to ., . in V. Here, hori the poten-
tal i icles. Note that selfenergy indicated.
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Local parquet diagrams: making parquet practical

Jackson, Lande, Smith: Physics Reports 86, 55 (1982)

(100 pages Physics Reports in a nutshell)
@ Begin with a local particle-hole interaction, sum the ring diagrams

X(9,w) = x0(q.w)/(1 = V(@) x0(q, w))
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(100 pages Physics Reports in a nutshell)
@ Begin with a local particle-hole interaction, sum the ring diagrams
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Local parquet diagrams: making parquet practical

Jackson, Lande, Smith: Physics Reports 86, 55 (1982)

(100 pages Physics Reports in a nutshell)
@ Begin with a local particle-hole interaction, sum the ring diagrams

X(9,w) = x0(q.@)/(1 = V(@) x0(q: w))
@ Define an energy—dependent particle—hole reducible interaction

W(g,w0) = Vn(@)/(1 = Von(@)xo(q,w))
X(qvw) = Xo(q,W)+Xo(q,w)V~VI(q7w)Xo(q,W)

@ Define an energy-independent particle—hole reducible interaction
by demanding that it gives the same observable S(q):

/O "~ dwSm xo(q.©) (g, w)x0(q. )

_ /O "~ dwSmxo(g. ) (g, 3(9))x0(gs )]
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Parquet diagrams: Ladder diagram summation

Jackson, Lande, Smith: Physics Reports 86, 55 (1982)

@ Sum the ladder diagrams with this local interaction

h2
m

VEy(r) = (v(r) + wi(r))u(r)
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Parquet diagrams: Ladder diagram summation

Jackson, Lande, Smith: Physics Reports 86, 55 (1982)

@ Sum the ladder diagrams with this local interaction

2
T 920r) = (v(r) + wa(r))
@ Note that

3 ,
o(r) = ()2 =1+ [ (;jr)’;p [S(k) — 1] €™
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Parquet diagrams: Ladder diagram summation

Jackson, Lande, Smith: Physics Reports 86, 55 (1982)

@ Sum the ladder diagrams with this local interaction

h2
m

VEy(r) = (v(r) + wi(r))u(r)

@ Note that
o) = () = 1+ [ s S0 ~ 1]

@ Construct a local particle—hole irreducible interaction
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Parquet diagrams: Ladder diagram summation

Jackson, Lande, Smith: Physics Reports 86, 55 (1982)

@ Sum the ladder diagrams with this local interaction

h2
m

V20(r) = (V) + w(r))i ()
@ Note that
3 .
o) = 10NE =1+ [ o S(h) — 1] e

@ Construct a local particle—hole irreducible interaction
@ Repeat the process to convergence
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Parquet diagrams: Ladder diagram summation

Jackson, Lande, Smith: Physics Reports 86, 55 (1982)

@ Sum the ladder diagrams with this local interaction

h2
m

V2U(r) = (v(r) + (1))
@ Note that
o) = () = 1+ [ s S0 ~ 1]

@ Construct a local particle—hole irreducible interaction
@ Repeat the process to convergence

At the end of all of this:

The local parquet-diagram summation leads, for
bosons, to equations that are identical to the
Euler equations of Jastrow—Feenberg theory.

Methods Parquet diagrams



Two-body Euler or local parquet equations for bosons

Summarizing its two faces

“RPA” face
, W
YA (g ) = x0(q:w)
1= Vou(@)xo(q, w)
S(@) = —= [dwImy(q.0)

_1
2

= |1+ 4mb(q)/1PeP
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Two-body Euler or local parquet equations for bosons

Summarizing its two faces

“RPA” face

XO(qa w)

(RPA) -
XV qw) = =
1 — Von(9)xo0(g, w)

s@ = — /dmmx(q,w)

2

= |1 +am¥u(a)/Re?)

“Bethe-GoIdstone” face
Vz VvV 9(r) = Vpp( g(r)
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Two-body Euler or local parquet equations for bosons

Summarizing its two faces

“RPA” face
, W
YA (g ) = x0(q:w)
1= Vou(@)xo(q, w)
S(@) = —= [dwImy(q.0)

2

= [1+4mV,(q)/R2¢]

“Bethe-GoIdstone” face

v2\/ = Vpp(r)v9(r)

“Parquet” face
Consistency between S(qg) and g(r)
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Parquet diagrams: Self-energy corrections

What is missing beyond rings and ladders ?

©

A.D. Jackson et al., Variational and perturbation theories made planar

approximate parquet equations, and the optimized JHNC scheme. When possible, rows are labelled by the related time-ordered diagrams

Approximate equations Optimized HNC equations
_sa [ Pk VB f a3 V‘(k)
ey e @y
_2 f #p Ek VRV VDR f Pp &k VAR VPV +k)
@ an? Kip? @ P Kp?

—af Fo $k VRIr@VED _a [Er &k VOVeVEeth
Q@n? @ap v @m?* @n? Kip?

Sifall BN

&Ep Bk V2RVIVp +E)
BA(p + b2k

_p f dp Bk VER V@V +E)
en®en®  plerhiR?

E

_32 _—=
[ o o

&¢p Ek Eg VOV VpERVETh) 1

- =3 53 e 2

Q@ (2m)? 2m? kp2q?

Bp Pk @ VP Vg prK) Vgt k)

@) (2m)3 (2r)3 k2plg?

S=a=linlE



Parquet diagrams: Self-energy corrections

Findings:

@ Combining all that is missing at that order is equivalent to
including three-body correlations

Es 1 [d®kd®pd®q S(p)S(k)S(q)|Vs(p. k.a)

N~ 24 (2n)52 =(K) + =(p) + =(q)
(PRB 55, 12925 (1997)).
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negligible in electrons
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Findings:

@ Combining all that is missing at that order is equivalent to
including three-body correlations

Es 1 [d®kd®pd®q S(p)S(k)S(q)|Vs(p. k.a)

N 24)  (2r)5? e(k) +(p) + =(q)

(PRB 55, 12925 (1997)).

@ Effect is about 10 percent of the binding energy in 3He and “He,
negligible in electrons

@ The individual terms are large, their sum is small (Jackson,
Lande, Guitink, Smith: PRB 31, 403-415 (1985).
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Parquet diagrams: Self-energy corrections

Findings:

@ Combining all that is missing at that order is equivalent to
including three-body correlations

Es 1 [d®kd®pd®q S(p)S(k)S(q)|Vs(p. k.a)

N 24)  (2r)5? e(k) +(p) + =(q)

(PRB 55, 12925 (1997)).

@ Effect is about 10 percent of the binding energy in 3He and “He,
negligible in electrons

@ The individual terms are large, their sum is small (Jackson,
Lande, Guitink, Smith: PRB 31, 403-415 (1985).

Coester's Commandment:

Thou shalt not split small quantities
into large pieces !
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Local parquet diagram for fermions
(1) Ring diagrams

S(q) = _/ % %mX(RPA)(qaw) = —/ % NXO(qaw)
o7 o ™ 1-Von(q)xo(q,w)
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Local parquet diagram for fermions
(1) Ring diagrams

S(q):_/ %\Sm (RPA)(q’ ) / % NXO(qaw)
o 7 o T 1= Vpon(@)xo(q,w)

@ Simplify if you care

w coll — 2t(q)
xol@@) =xgHae) = G e (s )/sF( )2
—\Sm/ XMqw) = —\Sm/ *Xo (g,w) = Sr(q)
~om [ C;“wxzi"”(q, w) = —Sm /O % o(a.) = ().

—1/2

2 ~
S@) = Sia) [1 n Zf{;;"’) 7,0(q)
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Local parquet diagram for fermions

(2) Ladder diagrams

@ Bethe Goldstone equation for the pair correlation function:

(k. K[y

hh) = (kK

h,h')
n(k)n(k’) ,
~ (k) = e(K') — e(h) — e(h) (k,K'| vy

h,h).
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Local parquet diagram for fermions

(2) Ladder diagrams

@ Bethe Goldstone equation for the pair correlation function:

(k. K[y

hh) = (kK

h,h')
n(k)n(k’) ,
~ (k) = e(K') — e(h) — e(h) (k,K'| vy

h,h).

@ Localization: If 1/ is a local function ¢(r) then
(k.K'[¢)|h,h') = fi(k — h) = (q) and
(k.K'|ve|h,h) = [v(r)u(n]” (a)
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Local parquet diagram for fermions

(2) Ladder diagrams

@ Bethe Goldstone equation for the pair correlation function:

(k. K[y

hh) = (kK

h,h’)
n(k)n(k’)
_e(k) + e(k') — e(h) — e(h’

k,K'|vy

h,h).

@ Localization: If 1/ is a local function ¢(r) then
(k,K'[vo]h,h") = J(k — h) = (q) and
(kK |ve[h,0) = [v(n)e(n]” (q)

@ =Energy coefficient must be somehow approximated by a
function of momentum transfer
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Local parquet diagram for fermions

(2) Ladder diagrams

@ Bethe Goldstone equation for the pair correlation function:

(k. K[y

hh) = (kK

h,h')
n(k)n(k’) ,
~ (k) + e(k') — e(h) — e(h’)<k’k |vap

h,h).

@ Localization: If 1/ is a local function ¢(r) then
(k,K'[vo]h,h") = J(k — h) = (q) and
(kK |ve[h,0) = [v(n)e(n]” (q)

@ =Energy coefficient must be somehow approximated by a
function of momentum transfer

@ Averaging procedure

_ 2nn(h+q)n(h)f(h +q, h)
2_n N(h +q)n(h)

Methods Parquet diagrams

(f(p,h)) (q)




Local parquet diagram for fermions

(3) Ladder rungs

@ As for bosons: Effective interaction

W(q,w) = Von(q)

a 1— Vp—h(q)XO(q7w)
Particle-hole reducible part

w(q.w) = W(q.w) - Vo(q) = 1 Yp;(f();)oij(,: | )
o , W
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Local parquet diagram for fermions

(3) Ladder rungs

@ As for bosons: Effective interaction

W(q,w) = Von(q)

a 1— Vp—h(q)XO(q7w)
Particle-hole reducible part

w(q.w) = W(q.w) - Vo(q) = 1 Yp;(f();)oij(,: )w) '
A ,

@ Localization procedure

S@ = - [ S2om [x0(.) + x0(6.) W(@ 3(0)o(@.)]

™

— Si(a) - W(@.3(@) [ % am(g.).
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Local parquet diagram for fermions

(3) Ladder rungs

@ As for bosons: Effective interaction

W(q,w) = Von(q)

a 1— Vp—h(q)XO(q7w)
Particle-hole reducible part

w(q.w) = W(q.w) - Vo(q) = 1 Yp;(f();)oij(,: | )
o , W

@ Localization procedure

S@ = - [ S2om [x0(.) + x0(6.) W(@ 3(0)o(@.)]

— Si(a) - W(@.3(@) [ % am(g.).

@ Carry this out for the full or the collective Lindhard function

Methods Parquet diagrams



Summarizing:

..connection of Jastrow-FHNC

“Localization” of the energy demoninator

>.n N(h +q)n(h)(eqh — en)
>_n N(h +q)n(h)

€q+h — €n — 8(q) =

Methods Parquet diagrams



Summarizing:
..connection of Jastrow-FHNC

“Localization” of the energy demoninator

€q+h — €n — &(Qq) = > h h(;::,g()hnfz()?(;h) — €h)

@ FHNC-EL or local parquet equations
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Summarizing:
..connection of Jastrow-FHNC

“Localization” of the energy demoninator

€q+h — €n — &(Qq) = > h h(;::,g()hnfz()?(;h) — €h)

@ FHNC-EL or local parquet equations

@ Of course, many more fermion diagrams due to exchange
structure
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Summarizing:
..connection of Jastrow-FHNC

“Localization” of the energy demoninator

€q+h — €n — 8(q) = 2h h(;j::()l'nngrz()?(;h) — én)

@ FHNC-EL or local parquet equations

@ Of course, many more fermion diagrams due to exchange
structure

@ The variational feature makes sure that the approximations are
the best one can do for the price.
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Summarizing:
..connection of Jastrow-FHNC

“Localization” of the energy demoninator

€q+h — €n — 8(q) = 2oh ’:’(;::I:I(L”E:‘L()?(;h) —én)

@ FHNC-EL or local parquet equations

@ Of course, many more fermion diagrams due to exchange
structure

@ The variational feature makes sure that the approximations are
the best one can do for the price.

The CBF strategy to do better:

@ Sum all parquet diagrams (and, if you care, add fully irreducible) in
local approximation

@ Correct specific sets of diagrams if needed.

Methods Parquet diagrams



Two-body Euler or local parquet equations for fermions

Summarizing its two faces

(Collective) “RPA” face
S(q) =

Sr(q)
2 ~
\/ 1+ 2207, (q)
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Two-body Euler or local parquet equations for fermions

Summarizing its two faces

(Collective) “RPA” face

S(q) = Sk(q)

4mS? &
1+ 9, ()

(Collective) “Bethe-Goldstone” face

f

] (F)6(r) = Vo (1)(7)

h2q2
[_ mSr(q)

Methods Parquet diagrams



Two-body Euler or local parquet equations for fermions

Summarizing its two faces

(Collective) “RPA” face

S(q) = Sk(q)

4mS? &
1+ 9, ()

(Collective) “Bethe-Goldstone” face

122 F
[_ mSF(Q)] (NY(r) = Vop(r)u(r)

“Parquet” face
Consistency between S(q) and (r)

Methods Parquet diagrams



Self-energy diagram summation

.for fermions

@ If you care to: Add self-energy

diagrams
They are called “cyclic chain” >—0 1 j?
diagrams in the language of

variational theory
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Self-energy diagram summation

.for fermions

@ If you care to: Add self-energy

diagrams
They are called “cyclic chain” >—0 1 j?
diagrams in the language of

variational theory
@ If so, please include exchange

diagrams
They are included in variational
theory
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Self-energy diagram summation

.for fermions

@ If you care to: Add self-energy

diagrams
They are called “cyclic chain” >—0 1 j?
diagrams in the language of

variational theory
@ If so, please include exchange

diagrams
They are included in variational
theory

@ and mind Coester’'s commandment !

Methods Parquet diagrams



Verification |: Lennard-Jones and square-well fluids

How well it works (Bragbook)

@ A family of Lennard-Jones and
square-well interactions

Viy(r) = 4% [<i>12_ <i>6] '

e [CA N (o .

VSC ( r) — —8@ (O- _ r) 00 05 1.07 :/3 20 25 30

Methods Parquet diagrams



Verification |: Lennard-Jones and square-well fluids

How well it works (Bragbook)

@ A family of Lennard-Jones and
square-well interactions

Vii(r) = 4V [(i)12_<i>6} ’
S [CA N ¢4 .

VSC(r) — _8@(0’ J— r) 7 00 0.:5 10 :{g 20 25 30
10 BEC
@ Adjust ¢ to obtain the desired '
scattering lenght ag (the cold gas . -
people want it that way); 0
’ BCs\ii BCS L

Methods Parquet diagrams



Verification |: Lennard-Jones and square-well fluids

How well it works (Bragbook)

@ A family of Lennard-Jones and
square-well interactions

Viy(r) = 4% [(i)m_ <i>6} '

e [CA N (o .

Vsc(r) = —8@(0—/’) 00

@ Adjust ¢ to obtain the desired
scattering lenght ag (the cold gas

people want it that way); o
@ First bound state appears at

BCS

BCS

¢ = 11.18 (4.33) = Divergence of
the vacuum scattering length.

Methods Parquet diagrams

10



Verification |: The Lennard-Jones liquid

How well it works (Bragbook)

@ Equation of state for Bosons 100 =5
80 | e=2
e=5
60} ecp
a0t =7
T e=10 P
g 20
0.0 =
=20 [ HNC-EL/54T — *
_40 | HNC-ELIO
PIGS-MC x S
-6.0
0.00 0.10 0.20 0.30 040
p (o)

Methods Parquet diagrams



Verification |: The Lennard-Jones liquid

How well it works (Bragbook)

@ Equation of state for Bosons 100
@ Equation of state for Fermions 60

E/N

©

=
600600
W
SN U —

=20 [ HNC-EL/54T — *
HNC-EL/0

PIGS-MC x o
-6.0
0.00 0.10 0.20 0.30 040

nuclear matter *He

12.0

FHNC-EL//0
FHNC-EL/5+T —

0.00 0.10 0.20 0.30 0.40

Methods Parquet diagrams



Verification |: The Lennard-Jones liquid

How well it works (Bragbook)

@ Equation of state for Bosons 100
@ Equation of state for Fermions 60

@ “Quick and dirty” version has _ )
percent accuracy below 00 fr
0.25*(saturation density). No Ll BTV —

_4,0 } HNC-EL/O

new physics is learned from Olmeswe . ]

6.0

doing a better calculation. 000010020 03000

nuclear matter *He

© 0000 o0
S L —

E/N
©
)

>

12.0

FHNC-EL//0
FHNC-EL/5+T —

0.00 0.10 0.20 0.30 0.40
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Verification |: The Lennard-Jones liquid

How well it works (Bragbook)

@ Equation of state for Bosons 100
@ Equation of state for Fermions 60

@ “Quick and dirty” version has _ )
percent accuracy below 00 fr
0.25*(saturation density). No 20 [ iNc-BsT

HNC-EL/0

new physics is learned from Olmeswe . ]

6.0

doing a better calculation. 000 ol em oo
nuclear matter 3He
@ Works the same in 2D 120

S L —

© 0000 o0
S

E/N
N
S

FHNC-EL//0
FHNC-EL/5+T —

0.00 0.10 0.20 0.30 0.40

Methods Parquet diagrams



Verification |: The Lennard-Jones liquid

How well it works (Bragbook)

. “He
@ Equation of state for Bosons 00 o ¥
80fFe=2 —— L
@ Equation of state for Fermions T Dbl F
e=7
@ “Quick and dirty” version has . ‘2‘2 0 — P
percent accuracy below 00 b e
0.25*(saturation density). No 20| uncpuser e
. . HNC-EL/0 -- - o T
new physics is learned from :Z R
doing a better calculation. w0 e
nuclear matter 3He
@ Works the same in 2D 2o !
00F
@ FHNC-EL (or parquet) has no 60 | HNCr e
solutions if “mother nature” 60
cannot make the system: The 5‘2‘2
equation of state ends at the 00 p=
spinodal points. 20 -
4‘.00.00 0.10 0.20 0.30 0.40
po)

Methods Parquet diagrams



Verification Il: Nuclear interactions
Argonne and Reid V4

@ Equation of state for Neutron
matter interacting via Argonne
and Reid V4 potentials

Reid Vg —— FHNC-EL  ——
AV} — FHNC-EL R

AFDMC
BHF

EN (MeV)
S

0
00 02 04 06 08 10 12 14 16 18
k. (fmh)
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Verification Il: Nuclear interactions
Argonne and Reid V4

@ Equation of state for Neutron
matter interacting via Argonne
and Reid V4 potentials

@ “Quick and dirty” version has e v, —FENOAEL «
15 AV% ——FHNC-EL [
percent accuracy below AV RN

BHF

0.2*(nuclear matter density)..

EN (MeV)
S

0
00 02 04 06 08 10 12 14 16 18
k. (fmh)
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Verification Il: Nuclear interactions
Argonne and Reid V4

@ Equation of state for Neutron
matter interacting via Argonne
and Reid V4 potentials

@ “Quick and dirty” version has Reld Ve — FHNGAOEL +
AV} — FHNC-EL _—
percent accuracy below ] Avi mavem-g
0.2*(nuclear matter density).. 2 0} P
@ This contains only central o
correlations. “Twisted chain®
dlagramS (beyond parquet) 00_0 02 04 06 k(:s(f"i;(l)) 12 14 16 18

may be very important !

Methods Parquet diagrams



Low-density calculations
— the many-body effects

@ Three (not two) range regimes
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Low-density calculations
— the many-body effects

@ Three {inot two) range regimes
@ Short-ranged correlatiocns

0 < r < Ao determined by 97 N
Interactlon - o1 T k[:UUAO
(Ao atypical interaction range) S ~
" > Square-well
fg 0.01
0.0001 s
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Low-density calculations
— the many-body effects

@ Three (not two) range regimes

@ Short-ranged correlations
0 < r < Ao determined by w e

1 k=0010

interactio . Sy Lo

=001

raction range) s

0.0001

1 10 100 1000 10000
il

Ao < r < 1/kg determine
vaccum properties, (r) o« ap/r

Square-well

1 10 100 1000 10000
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Low-density calculations
— the many-body effects

@ Three (not two) range regimes

@ Short-ranged correlations
0 < r < Ao determined by 0

interaction §
(Ao a typical interaction range) S o

@ Medium-range
Ao <r kg determined by
vac properties,

@ Long-ranged correlations :
1/ke < r < oo determined by

0.0001

many-body properties: T R

tla

w(r) o F3/(r?kg) ‘

0.001

00T

Square-well

Methods Parquet diagrams



Microscopic ground state calculations
What we expect —

BEC

@ For a5 > 0, n0 bound state
— repulsive Fermi gas; s —

BCs\ii BCS L —

Methods What we expect and what we get



Microscopic ground state calculations
What we expect —

@ Foray < 0 (“BCS” regime): :
BCS pairing; - ‘ W

2
BCs\ii BCS L] —
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Microscopic ground state calculations
What we expect —

BCS pairing;

@ For ay > 0 (“BEC” regime):
No homogeneous solution !
Dimerization ? Clustering ?

Methods What we expect and what we get



Microscopic ground state calculations
What we expect —

@ For gy > 0, no bound stat i X
— repulsive Fermi g ]
@ Foray < 0 (“B 2 ,s"‘ E
BCS pairing ”
° For ao > kg (arbitrary units) "’
No ho
Dim to
@ Fof ay < 0 (“BCS” regime): T
spinodal instabilites. (e

Methods What we expect and what we get



Microscopic ground state calculations
What we expect —

Schematic equation of state of a self~bound Fermi Fluid

@ For ag > 0, no bound state
— repulsive Fermi gas; v/

@ Foray < 0 (“BCS” regime):
BCS pairing;

@ Foray > 0 (“BEC” regime):
No homogeneous solution !
Dimerization ? Clustering ? 0

@ For ay < 0 (“BCS” regime):
spinodal instabilites.

o
5

clepkp)

E/N(kp) (arbitrary units)

me2(p)/me:

00
00001 0.001 001 01 1 10
° v

Methods What we expect and what we get



Microscopic ground state calculations
What we expect —

@ For gy > 0, no bound state . X
— repulsive Fermi gas; v/ Y |

@ For ag < 0 (“BCS” regime): NE
BCS pairing; v/ ’

@ Foray > 0 (“BEC” regime): e
No homogeneous solution !
Dimerization ? Clustering ? 10

@ For ag < 0 (“BCS” regime): 7.
spinodal instabilites. ¥
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Microscopic ground state calculations
What we expect —

@ For gy > 0, no bound state . X
— repulsive Fermi gas; v/ Y |

@ For ay < 0 (“BCS” regime): BE
BCS pairing; v/ ’

@ Foray > 0 (“BEC” regime): o
No homogeneous solution !
Dimerization ? Clustering ? v/ 0

@ For ay < 0 (“BCS” regime): 7.
spinodal instabilites. ¥
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Microscopic ground state calculations
What we expect —

@ For ag > 0, no bound state . X
— repulsive Fermi gas; v’ Y \ |

@ For ag < 0 (“BCS” regime): NE
BCS pairing; v/ ’

@ Foray > 0 (“BEC” regime): o
No homogeneous solution !
Dimerization ? Clustering ? v/ 10

@ Foray < 0 (“BCS” regime): 7.
spinodal instabilites. x ¥

Methods What we expect and what we get



Microscopic ground state calculations
What we got —

@ For SC potentials, there is no

hlgh-denSIty hOmOgeneOUS ?“c;]emanc equation of state of a self~bound Fermi Ft\vx;d
phase and no upper spinodal g
point
SE -0.1 06 =
;"701 04 %:
s -0.3 0.2 N

0.4 0.0

0.0 0.5 1.0 1.5 2.0

K (arbitrary units)

Methods What we expect and what we get



Microscopic ground state calculations
What we got —

@ For SC potentials, there is no

hlgh—den3|ty homogeneous ?“c;]emanc equation of state of a self-bound Fermi Ft\vx;d
phase and no upper spinodal 10 g
pOInt é 0.0 \\ 0.
£ o1 inodal point 06 =
@ |tis impossible to get close to s 3
the spinodal instability; 0
0 05 10 15 207"
kg (arbitrary units)
1.0
0.9
08
l;g 0.7
r\;} 0.6 ﬁ[rong—weqk
0.5
04 square-well potential
03
] 1e-08 1e-07 le-06 1&05:}).0(()2:()1.001 0.01 0.1 1 _
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Microscopic ground state calculations
What we got —

@ For SC potentials, there is no ‘
hlgh—den3|ty homogeneous Schematic equation of state of a self-bound Temn Fluid
phase and no upper spinodal
point

@ |tis impossible to get close to
the spinodal instability;

@ For LJ potentials, we have a R
repulsive high-density regime
and an upper spinodal point;

0.0

clep(ky)

pinodal points
/
\ |

E/N(kp) (arbitrary units)

0.0

V.

Methods What we expect and what we get




Microscopic ground state calculations
What we got —

@ For SC potentials, there is no

h |g h —de n S |ty h O m Og e n eo u S Schematic equation of state of a self-bound Fermi Fluid
phase and no upper spinodal /
point ]

e ltis |m.p035|blle to get close to 3 Y s
the spinodal instability;

@ For LJ potentials, we have a -
repulsive high-density regime
and an upper spinodal point;

@ ltis easy to get close to the
upper spinodal instability, L

0.0

-~ p (0

Methods What we expect and what we get



Microscopic ground state calculations
What we got —

@ For SC potentials, there is no
high-density homogeneous
phase and no upper spinodal
point

@ |tis impossible to get close to
the spinodal instability;

@ For LJ potentials, we have a o
repulsive high-density regime
and an upper spinodal point;

@ lItis easy to get close to the
upper spinodal instability, g

@ It is impossible to get close to w0
the lower spinodal instability;

Schematic equation of state of a self-bound Fermi Fluid

0.0 /
spinodal points

/

\ /

E/N(kp) (arbitrary units)
clep(ky)

0.0
1e-08 1e-07 le-06 1e-05 0.0001 0.001 0.01 0.1 1
- p (0

Methods What we expect and what we get



Summarizing the Lennard-Jones Liquid

Include exchanges and parquet

Consistency check:
Y d ,dE
mc? = me2 + V,_p(0+) = meP(1 + Fy) = a" chN
n2k

cf? = 51 speed of sound of the non-interacting Fermi gas with
effective mass m* (Never an exact relationship !)

Equation of state Fermi liquid paramater

6.0 2.00
Vo=100 —— V(=683 —— y
50| Vp=200 —— V(=700 —— 150 /
Vo=300 V=725 — . '/
40} Vo=400 V=751 /
V=500 V=775 1.00 /
30| Vo=600 —— Vo=801 /
z Vo =650 LN 25 o - /
20 /
/
10 /
0.0 — /
10 —
00 05 10 15 20 10 15 20
keo 4 . keo

Methods What we expect and what we get



Divergence of parquet-summations

What it means

@ Itis impossible to get close to the low-density spinodal point

Fermi liquid parameter

2.00 -
,/
150 /
100 /
/
© 050 - e y
_—— /
000 |
N N /
050 \ /
/
— -
1.00 -
00 05 10 15 20
keo
v

Methods What we expect and what we get



Divergence of parquet-summations

What it means

@ Itis impossible to get close to the low-density spinodal point
@ lItis easy to get to the high-density spinodal point

Fermi liquid parameter

200
150 /
9
1.00
/,/ /
© 050 s //
_—— /
000 [
N /|
-0.50 N / /
\\:\—————c//
-1.00 -
00 05 10 7 20
keo

v

Methods What we expect and what we get



Divergence of parquet-summations

What it means

@ Itis impossible to get close to the low-density spinodal point
@ lItis easy to get to the high-density spinodal point
@ Improved calculations of F; do not change this

Fermi liquid parameter

s
Fo

Methods What we expect and what we get



Divergence of parquet-summations

What it means

@ Itis impossible to get close to the low-density spinodal point
@ lItis easy to get to the high-density spinodal point

@ Improved calculations of F; do not change this

@ The in-medium scattering length diverges !

Fermi liquid parameter In-medium scattering length

200 Vo=683 —

-0.20

s
Fo

-0.30

-0.40

-0.50
0.0 01 0.2 03 04 0.5

keo

v o’
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Divergence of parquet-summations

What it means

@ Itis impossible to get close to the low-density spinodal point

@ lItis easy to get to the high-density spinodal point

@ Improved calculations of F; do not change this

@ The in-medium scattering length diverges !

@ This is a many-body effect (“phonon-exchange driven
dimerization”) !

Fermi liquid parameter In-medium scattering length

200 Vo=683 —

-0.20

s
Fo

-0.30

-0.40

-0.50
0.0 01 0.2 03 04 0.5

keo

v o’

Methods What we expect and what we get




BCS Theory with strong correlations

How to derive a BCS wave function with correlations

BCs) =[] [uk + vka,T(TaT_m] 0)

ICBCS) = % mFN‘m(N)><m(N)‘BCS>

@ EK and J. W. Clark, Nucl. Phys. A333, 77 (1980)

@ EK, R. A. Smith and A. D. Jackson: Phys Rev. B24, 6404 (1981)

@ H.-H. Fan, EK, T. Lichtenegger, D. Mateo and R. Zillich, Phys Rev.
A92, 023640, (2015)

Strategy: Expand in terms of the deviation of the Bogoliubov
amplitudes from their normal system values !

Pairing with strong correlations General strategy
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BCS Theory with strong correlations

How to derive a BCS wave function with correlations

BCs) =[] [uk + vka,T(TaT_m] 0)

ICBCS) = % mFN‘m(N)><m(N)‘BCS>

@ EK and J. W. Clark, Nucl. Phys. A333, 77 (1980)

@ EK, R. A. Smith and A. D. Jackson: Phys Rev. B24, 6404 (1981)

@ H.-H. Fan, EK, T. Lichtenegger, D. Mateo and R. Zillich, Phys Rev.
A92, 023640, (2015)

Strategy: Expand in terms of the deviation of the Bogoliubov
amplitudes from their normal system values !

At QFS 2018, Tokyo:, A. J. Leggett

We should not build the superfluid system by creating Cooper pairs
from the vacuum,
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BCS Theory with strong correlations

How to derive a BCS wave function with correlations

BCs) =[] {uk + vka,T(TaT_kJ 0)

ICBCS) = % mFN‘m(N)><m(N)‘BCS>

@ EK and J. W. Clark, Nucl. Phys. A333, 77 (1980)

@ EK, R. A. Smith and A. D. Jackson: Phys Rev. B24, 6404 (1981)

@ H.-H. Fan, EK, T. Lichtenegger, D. Mateo and R. Zillich, Phys Rev.
A92, 023640, (2015)

Strategy: Expand in terms of the deviation of the Bogoliubov
amplitudes from their normal system values !

At QFS 2018, Tokyo:, A. J. Leggett

We should not build the superfluid system by creating Cooper pairs
from the vacuum,
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BCS Theory with strong correlations

How to derive a BCS wave function with correlations

BCs) =[] [uk + vka,T(TaT_m] 0)

ICBCS) = % mFN‘m(N)><m(N)‘BCS>

@ EK and J. W. Clark, Nucl. Phys. A333, 77 (1980)

@ EK, R. A. Smith and A. D. Jackson: Phys Rev. B24, 6404 (1981)

@ H.-H. Fan, EK, T. Lichtenegger, D. Mateo and R. Zillich, Phys Rev.
A92, 023640, (2015)

Strategy: Expand in terms of the deviation of the Bogoliubov
amplitudes from their normal system values !

At QFS 2018, Tokyo:, A. J. Leggett

We should not build the superfluid system by creating Cooper pairs
from the vacuum, but rather generate Cooper pairs from normal
interacting system one at a time.

Pairing with strong correlations General strategy




BCS Theory with strong correlations

Analysis of the pairing interaction:

After lengthy calculations: An (almost) ordinary gap equation
Ak/

N N
At low densites, all operators become local

Pkk’ = <k Ta _k\l/‘W(172)‘k/ T7_k, \l/>a
+(|ek - M| + ‘ek’ - :u‘)<k T —k \L‘N(172)‘k/ T —K \l/>a

Wik —K) + (Jex — ul + lex — u)A(k —K)] -

o

@ The gap is (mostly) determined by the matrix element
<k T’ -k l,‘W(1 ) 2)“(/ Ta —k’ \L>a

Pairing with strong correlations Pairing interaction



BCS Theory with strong correlations

Analysis of the pairing interaction:
After lengthy calculations: An (almost) ordinary gap equation
Ak/

N N
At low densites, all operators become local

Pkk’ = <k Ta _k\L‘W(172)‘k/ T7_k, \l/>a
+(|ek - N| + ‘ek’ - :u‘)<k T —k \L‘N(172)‘k/ T —K ¢>a

Wik —K) + (lex — ul +ex — ul)NV(k —K)] .

1

-~ N

@ The gap is (mostly) determined by the matrix element
(k 1, -k L W(1,2)|[K 1,-K |),

@ The “energy numerator” term regularizes the integral for
zero-range interactions.

Pairing with strong correlations Pairing interaction



BCS Theory with strong correlations

Approximate solution of the gap equation
At low density, let
m

A = grpr2

A ~ 8 ex .
FNezeF P 2arkg '

Corrections: ap — ag for p — 0+
If ar = ap [1 + OéaOkF] then

8 « T
Afr eFexp( )exp <230k]2> .
Questions:
@ What influences the pre-factor (Gorkov-corrrections etc..):
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Approximate solution of the gap equation
At low density, let
m

A = grpr2

A ~ 8 ex .
FNezeF P 2arkg '

Corrections: ap — ag for p — 0+
If ar = ap [1 + OéaOkF] then

8 « T
Afr eFexp ( ) exp <230k]2> .
Questions:

@ What influences the pre-factor (Gorkov-corrrections etc..):
@ How accurate is the solution ?
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BCS Theory with strong correlations

Approximate solution of the gap equation
At low density, let
m

A = grpr2

A ~ 8 ex .
FNezeF P 2arkg '

Corrections: ap — ag for p — 0+
If ar = ap [1 + OéaOkF] then

8 « T
Afr eFexp( )exp <230k]2> .
Questions:
@ What influences the pre-factor (Gorkov-corrrections etc..):

@ How accurate is the solution ?
@ Are there non-universal effects ?

Pairing with strong correlations Pairing interaction



BCS Theory with strong correlations

What's new ?

The gap is determined by ar

Corrections:
@ Interaction corrections (“phonon exchange”)

2 2
4rph a— 4mph a [1 +a,aok1::|
m m ™

W(0+) =

Pairing with strong correlations Many-Body effects



BCS Theory with strong correlations

What's new ?

The gap is determined by ar

Corrections:
@ Interaction corrections (“phonon exchange”)
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BCS Theory with strong correlations
What's new ?

The gap is determined by ar

Corrections:
@ Interaction corrections (“phonon exchange”)

2 2
4rph a— 4mph a [1 +a,aok1::|
m m ™

W(0+4) =
@ Finite-range corrections: Note that

2kg N N
dkkW(k) # W(0+)

S

W= —=
= 2k2 )y

@ The value of W is influenced by the regime 0 < k < 2kg
@ The value of WF is influenced real space correlations in the
interaction regime r > 1/kg !
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BCS Theory with strong correlations

Finite-range effects

Pair correlations Pairing interaction
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Solution of the gap equation
and what approximations do
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Solution of the gap equation

. and what approximations do

full solution —

8 T
0 Ar= 26Fexp <2a0k1:>
Can be far off
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Solution of the gap equation

... and what approximations do

full solution —

@ Ar = E ex il
F= e? ©r eXp 2aoke
Can be far off

@ Ar = E ex T
F= g% exp 2arkp
Not too bad

@ Full solution
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Solution of the gap equation

... and what approximations do
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@ Exponential behavior becomes universal, prefactor not.
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Solution of the gap equation

... and what approximations do
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full solution—
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Can be far off
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Not too bad
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@ Full solution /1 SW Potential
10712 =
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@ Exponential behavior becomes universal, prefactor not.

@ Low density expansion valid only for physically uninteresting
cases.
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Neutron matter calculations
'Sy gap for Argonne and Reid V4

Gap in units of MeV Gap in units of the Fermi energy
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Neutron matter calculations
'Sy gap for Argonne and Reid V4
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@ Weak dependence on the effective mass (0.9 < m*/m < 1.1)
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Neutron matter calculations
'Sy gap for Argonne and Reid V4

Gap in units of MeV Gap in units of the Fermi energy
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@ Weak dependence on the effective mass (0.9 < m*/m < 1.1)

Is the “weak coupling approximation” justified ?

Pairing with strong correlations Results: Neutron matter



What'’s next ?
Jastrow-HNC and parquet for superfluid systems

@ Go back to

(cBCs) = S~ (m™|F2ImM)) 2 Fy ImM)) (mM)|BCS)
N,m
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What'’s next ?
Jastrow-HNC and parquet for superfluid systems

@ Go back to

(cBCs) = S~ (m™|F2ImM)) 2 Fy ImM)) (mM)|BCS)
N,m

@ Develop diagrammatic expansions at the FHNC or “parquet” level:
Looks practically the same as normal system FHNC replacing

(rike) = 0 Z n(k)e"rk =
by
1% it
() = ) > VA(k)e T = o——

k
and

Cu(ry) = QZ ek — o« 0.
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What'’s next ?
Jastrow-HNC and parquet for superfluid systems

@ Go back to
(cBCs) = S~ (m™|F2ImM)) 2 Fy ImM)) (mM)|BCS)
N,m

@ Develop diagrammatic expansions at the FHNC or “parquet” level:
Looks practically the same as normal system FHNC replacing

(rike) = 0 Z n(k)e"rk =
by
1% it
() = ) > VA(k)e T = o——

k
and

Cu(ry) = QZ ek — o« 0.

@ Derive FHNC and Euler equation

Strongly coupled superfluids Jastrow-HNC ?



Jastrow-HNC for superfluid systems

..just to impress you
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Jastrow-HNC for superfluid systems
Revealing a big problem

@ Recall the “collective RPA”

S(q) = Sr(q)

2 ~
\/ 1+ 2207, (a)
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Jastrow-HNC for superfluid systems
Revealing a big problem

@ Recall the “collective RPA”

S(q) = Sr(q)

2 ~
\/ 1+ 2207, (a)

@ But now
Si(a) = 1-1 [ dre [(n) - ()

>k U Vic
Se(0+) = 2="2%>0.
Sk Vi
@ FHNC-EL equations have no solution if \7p_h(q) x F§ <0
@ FHNC-EL equations have no sensible solution if Vp_h(q) >0
@ This applies to the “fixed-node approximation”

Strongly coupled superfluids Jastrow-HNC ?



Parquet for superfluid systems
The way out

@ Recall: )
VAR (g ) = x0(q.w)
1 — Vou(9)xo(q, w)
S(@) = -~ [dedmy(g.).

Strongly coupled superfluids Parquet for superfluids



Parquet for superfluid systems
The way out

@ Recall: , W
VAR (g ) = x0(q.w)
1= Von(@)xo(q.w)
S(@) = -~ [dedmy(g.).
@ “collective Lindhard function” causes problems
2t(q)

coll w) =
X0 (9,w) (hw + in)2 — (1(q)/Sr(q))?
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Parquet for superfluid systems
The way out

@ Recall: NG x0(q.w)
1= Von(9)x0(q; w)
S(@) = -~ [dedmy(g.).
@ “collective Lindhard function” causes problems
& (q,w) = 2t(q)

(he + in)? — (1(q)/Sr(q))*
@ Exact Lindhard function(s): & = t(k) — u, Ex = /&8 + A2

W kw) = Zb"“”[ o

(po)  _
bok ' = Vp U 1p = UpVpUicsp Vi »

Strongly coupled superfluids Parquet for superfluids



Parquet for superfluid systems

What does it do ?

@ Fixes the spurious
problem of
Jastrow-Feenberg
(fixed node)
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Parquet for superfluid systems

What does it do ?

0,0 —
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Parquet for superfluid systems

What does it do ?

2 =
@ Fixes the spurious w (q,w)»( o)
problem of B Vi (9)
Jastrow-Feenberg 9 X(p,a (q w)\"/(p}’f’)(q)
b p_

(fixed node)

@ Suppresses
polarization corrections
in the spin-channel

@ Take effective
interaction at w = 0.

v (@
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w@) [Mev]
IS
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Parquet for superfluid systems

Singlet pairing in neutron matter

@ Calculations of increasing

Reid V4 interaction
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rquet for superflwd systems

Singlet pairing in neutron matter

@ Calculations of increasing o
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Parquet for superfluid systems

Singlet pairing in neutron matter

@ Calculations of increasing o
complexity o5 FncEs —— ] °
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@ Equivalence of Jastrow-Feenberg theory and local parquet

@ FHNC-EL diverges for phase transitions:
in the particle-hole channel for spinodal decomposition,
in the particle-particle channel for dimer formation

@ Long-ranged properties are determined by many-body effects,
not by vacuum

@ Many-Body effects for long-ranged correlations r > 1/kg imply
Many-Body effects for long wavelengths k < kg

@ Non-universal behavior of the pairing matrix element.

@ The Jastrow-Feenberg wave function is not suitable for superfluid
systems

@ Superfluid parquet theory fixes the problems
@ Operator-dependent correlations are still a wide open field
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