Nuclear Many-Body Theories: Beyond the mean-field approaches

July 2019 APCTP - Pohang, Korea

Marcella Grasso

A beyond-mean-field description for nuclear excitation spectra: the subtracted Second RPA (SRPA)

A few words on the context… nuclear energydensity- functional (EDF) theories

- **Grasso, Effective density functionals beyond mean field, Prog. Part. Nucl. Phys. 106, 256 (2019)**
- **Bao-An Li, Bao-Jun Cai, Lie-wen Chen, and Jun Xu, Nucleon effective masses in neutron-rich matter, Prog. Part. Nucl. Phys. 99, 29 (2018)**
- **Roca-Maza and Paar, Nuclear equation of state from ground and collective excited state properties of nuclei, Prog. Part. Nucl. Phys. 101, 96 (2018)**
- **Garg, Colò, The compression-mode giant resonances and nuclear incompressibility, Prog. Part. Nucl. Phys. 101, 55 (2018)**
	- **Bracco, Lanza, Tamii, Isoscalar and isovector dipole ..., Prog. Part. Nucl. Phys. 106, 360 (2019)**

EDF models employ, in most cases, phenomenological effective interactions whose parameters are adjusted at the mean-field level => double counting of correlations when the mean-field approximation is overcome

Within the EDF theory: designing interactions adapted for beyond mean-field models (cancellation of double counting, regularization of divergences, …, possibly bridging with EFT/ab initio -> reducing the empirical nature)

Otherwise, specific solutions exist, for example a subtraction procedure, that we have applied within the second random-phase approximation (SRPA)

Tselyaev, PRC 75, 024306 (2007) Tselyaev, PRC 88, 054301 (2013)

Effective density functionals (EDFs). Several directions

SLy5 -> Chabanat et al. NPA 627, 710 (1997); 635, 231 (1998), 643, 441 (1998) Akmal et al. -> PRC 58, 1804 (1998)

Low-density regime

Neutron matter energy divided by the free gas energy

Dealing with the large value of the neutron-neutron scattering length

Resummation techniques

- -**Steele, arXiv: nucl-th/0010066v2**
- -**Kaiser, NPA 860, 41 (2011)**
- -**Schaefer, NPA 762, 82 (2005)**

Effective field theoriescapable of describing systems with anomalously large scattering lengths require summing an infinite number of Feynman diagrams at leading order …

Yang et al., PRC 94, 031301 (R) (2016)

Tuning the neutron-neutron scattering length imposing

 $|ak_F| < 1$

Grasso et al., PRC 96, 054327 (2017)

Collaborators(work on beyond mean-field)

SRPA-

models

Work on

functionals

density

based

- **J. Bonnard, A. Boulet (IPN Orsay), G. Colo' (Milano Univ.), U. van Kolck (IPN Orsay), D. Lacroix, (IPN Orsay), X. Roca-Maza (Milano Univ.), J. Yang (Chalmers) 1) Designed for beyond mean field 2) Reducing the phenomenological nature (constraints from the low-density regime)**

JRA TheoS (Theoretical Support for Nuclear Facilities in Europe) Task: Development of suitable effective interactions in mean-field and beyond-mean-field theories

International Laboratory LIA COLL-AGAIN (France-Italy collaborations)

Outline

• **Beyond RPA with the second RPA (SRPA) model employing EDFs**

SRPA model : formally established since several decades

$$
Q_{\nu}^{\dagger} = \sum_{ph} \left(X_{ph}^{\nu} a_{p}^{\dagger} a_{h} - Y_{ph}^{\nu} a_{h}^{\dagger} a_{p} \right)
$$

+
$$
\sum_{p < p', h < h'} \left(X_{php'h'}^{\nu} a_{p}^{\dagger} a_{h} a_{p'}^{\dagger} a_{h'} - Y_{php'h'}^{\nu} a_{h}^{\dagger} a_{p} a_{h'}^{\dagger} a_{p'} \right)
$$

- **Sawicki, Phys. Rev. 126, 2231 (1962) Hoshino and Arima, Phys. Rev. Lett. 37, 266 (1976)**
- **da Providencia, Nucl. Phys. 61, 87 (1965) Knupfer and Huber, Z. Phys. A 276, 99 (1976)**
- **Yannouleas, Phys. Rev. C 35, 1159 (1987) Adachi and Yoshida, Nucl. Phys. A 306, 53 (1978)**
- **Tohyama, Gong, Z. Phys.A 332, 269 (1989) Tohyama, Gong, Z. Phys.A 332, 269 (1989)**
- **Lacroix, Ayik, Chomaz, Prog. Part. Nucl. Lacroix, Ayik, Chomaz, Prog. Part. Nucl. Phys. 52, 497 (2004)**
- **Phys. 52, 497 (2004) Schwesinger, Wambach, Phys. Lett. B 134, 29 (1984)**
- **Different formal derivations Schwesinger, Wambach, Nucl. Phys. A 426, 253 (1984)**
- **Variational procedure Wambach, Rep. Prog. Phys. 51, 989 (1988)**
- - **Equations of motion method '***à la Rowe'* **(Rev. Mod. Drozdz, Nishizaki, Speth, Wambach, Phys. Rep. 197, 1 (1990)**
- **Phys. 40, 153 (1868)) Nishizaki and Wambach, Phys. Lett. B 349, 7 (1995)**
- \vec{c} and Wambach, Phys. Rev. C.57, 1515 (1998) **density matrix method - Nishizaki and Wambach, Phys. Rev. C 57, 1515 (1998)**

Excitation operators: 2p2h configurations are included, together with the RPA 1p1h configurations

> **Examples of first applications for the calculation offragmentation and spreading widths (strong cuts in the 2p2h space, Second Tamm-Dancoff, truncations andapproximations in the 2p2h sector of the matrix)**

In the last decade. No approximations in 2p2h matrix elements and large 2p2h cutoff values

- **Papakonstantinou and Roth, Phys. Lett. B 671, 356 (2009)**
- **Papakonstantinou and Roth, Phys. Rev. C 81, 024317 (2010)**
- **Gambacurta, Grasso, and Catara, Phys. Rev. C 81, 054312 (2010)**
- **Gambacurta, Grasso, and Catara, J. Phys. G 38, 035103 (2011)**
- **Gambacurta, Grasso, and Catara, Phys. Rev. C 84, 034301 (2011)**
- **Gambacurta, Grasso, De Donno, Co, and Catara, Phys. Rev. C 86, 021304(R) (2012)**

Microscopic interaction (derived from Argonne V18)

> **Phenomen.Skyrme and Gogny interactions**

SRPA model

$$
\begin{pmatrix} \mathcal{A} & \mathcal{B} \\ -\mathcal{B}^* & -\mathcal{A}^* \end{pmatrix} \begin{pmatrix} \mathcal{X}^{\nu} \\ \mathcal{Y}^{\nu} \end{pmatrix} = \omega_{\nu} \begin{pmatrix} \mathcal{X}^{\nu} \\ \mathcal{Y}^{\nu} \end{pmatrix}
$$

Schematically: same form as RPA equations

$$
\mathcal{A} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad \mathcal{B} = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix},
$$

$$
\mathcal{X}^{\nu} = \begin{pmatrix} X_{1}^{\nu} \\ X_{2}^{\nu} \end{pmatrix}, \quad \mathcal{Y}^{\nu} = \begin{pmatrix} Y_{1}^{\nu} \\ Y_{2}^{\nu} \end{pmatrix}.
$$

1 and 2: short-hand notation for 1p1h and 2p2h

A11 and B11: standard RPA matrices

A12, A21, B12 , and B21: coupling between 1p1h and 2p2h

A22 and B22: 2p2h sector

If the interaction does not depend on the density

- **B12 = B21 =B 22 = 0**
- **The beyond-RPA matrix elements for the matrix A are:**

Coupling 1p1h with 2p2h (matrix elements of theinteraction: hppp, phhh)

$$
A_{12} = A_{ph, p_1 p_2 h_1 h_2}
$$

= $\langle HF | [a_h^{\dagger} a_p, [H, a_{p_1}^{\dagger} a_{p_2} a_{h_2} a_{h_1}]] | HF \rangle$
= $\chi(h_1, h_2) \bar{V}_{h_1 pp_1 p_2} \delta_{h h_2} - \chi(p_1, p_2) \bar{V}_{h_1 h_1 p_1 h} \delta_{pp_2},$

Skyrme and Gogny interactions contain density-dependent terms. In RPA:

V is a density-dependent interaction in the Hamiltonian H. It produces a functional of the density ρ, the so-called Hamiltonian density E:

$$
=\int dr E[\rho]
$$

If h is the HF mean-field single-particle Hamiltonian, the residual interaction to be used in the computation of the matrices A and B of RPA is equal to the interaction V in the Hamiltonian plus the so-called rearrangement terms (derivation of RPA equations as small-amplitude limit of time-dependent HF equations)

$$
A_{ph,p'h'} = (\epsilon_p - \epsilon_h) \delta_{pp'} \delta_{hh'} + \frac{\partial h_{ph}}{\partial \rho_{p'h'}}
$$

$$
\frac{\partial h_{ac}}{\partial \rho_{db}} = \frac{\partial^2 E[\rho]}{\partial \rho_{ca} \partial \rho_{db}}
$$

$$
B_{ph,p'h'}=\frac{\partial h_{ph}}{\partial \rho _{h'p'}}
$$

New rearrangement terms derived for the residual

$$
\begin{pmatrix} A & B \\ -B^* & -A^* \end{pmatrix} \begin{pmatrix} \alpha^{\nu} \\ \mathcal{Y}^{\nu} \end{pmatrix} = \omega_{\nu} \begin{pmatrix} \mathcal{X}^{\nu} \\ \mathcal{Y}^{\nu} \end{pmatrix},
$$

where:

$$
\mathcal{A} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \mathcal{B} = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix},
$$

Inspired by the variational derivation of SRPA equations by da Providencia, Nucl. Phys. 61, 87 (1965) but with a density-dependent interaction

Gambacurta, Grasso, Catara, J. Phys. G: Nucl. and Part. Phys. 38, 035103 (2011)

Residual interaction. Rearrangement terms for SRPA matrix elements when the interaction is density dependent

Examples of previous studies in beyond-RPA frameworks:

- Waroquier et al., Phys. Rep. 148, 249 (1987)

- **Some matrix elements beyond standard RPA (however the procedure does not allow one to obtain the standard RPA rearrangement terms)**

Adachi and Yoshida, Phys. Lett. B 81, 98 (1979)

Variational procedure to derive the SRPA equation

da Providencia Nucl. Phys. 61, 87 (1965)

$$
|\Psi\rangle = e^{\hat{S}} |\Phi\rangle
$$
 HF state

$$
\hat{S} = \sum_{ph} C_{ph}(t) a_p^{\dagger} a_h + \frac{1}{2} \sum_{php'h'} \hat{C}_{pp'hh'}(t) a_p^{\dagger} a_{p'}^{\dagger} a_{h} a_{h'}
$$

$$
\hat{C}_{\alpha\beta\gamma\delta}=C_{\alpha\beta\gamma\delta}-C_{\alpha\beta\delta\gamma}
$$

-**The coefficients C are used as variational parameters (minimization of the expectation value of the Hamiltonian)**

-**The coefficients C are assumed very small => expansion of the expectation values of 1- and 2-body operators truncated at second order in C**

Expansion of the one-body density around the HF density (0)

$$
\rho_{\alpha\beta} = \langle \Psi | a_{\beta}^{\dagger} a_{\alpha} | \Psi \rangle = \langle \Phi | e^{S^{\dagger}} a_{\beta}^{\dagger} a_{\alpha} e^{S} | \Phi \rangle
$$

\n
$$
= \langle \Phi | (1 + S^{\dagger} + \frac{1}{2} S^{\dagger 2} + \cdots) a_{\beta}^{\dagger} a_{\alpha} (1 + S + \frac{1}{2} S^2 + \cdots) | \Phi \rangle
$$

\n
$$
\sim \rho_{\alpha\beta}^{(0)} + \langle \Phi | a_{\beta}^{\dagger} a_{\alpha} S + S^{\dagger} a_{\beta}^{\dagger} a_{\alpha} | \Phi \rangle + \langle \Phi | \frac{1}{2} a_{\beta}^{\dagger} a_{\alpha} S^2 + S^{\dagger} a_{\beta}^{\dagger} a_{\alpha} S
$$

\n
$$
+ \frac{1}{2} S^{\dagger 2} a_{\beta}^{\dagger} a_{\alpha} | \Phi \rangle = \rho_{\alpha\beta}^{(0)} + \delta \rho_{\alpha\beta}
$$

Linear
$$
\delta \rho_{\alpha\beta}^{(1)} = \langle \Phi | a_{\beta}^{\dagger} a_{\alpha} S + S^{\dagger} a_{\beta}^{\dagger} a_{\alpha} | \Phi \rangle,
$$

Quadratic
$$
\delta \rho_{\alpha\beta}^{(2)} = \langle \Phi | \frac{1}{2} a_{\beta}^{\dagger} a_{\alpha} S^2 + S^{\dagger} a_{\beta}^{\dagger} a_{\alpha} S + \frac{1}{2} S^{\dagger 2} a_{\beta}^{\dagger} a_{\alpha} | \Phi \rangle
$$

Expansion of the one-body density around the HF density

$$
\delta \rho_{hh'}^{(1)} = \delta \rho_{pp'}^{(1)} = 0; \qquad \delta \rho_{ph}^{(1)} = C_{ph}; \qquad \delta \rho_{hp}^{(1)} = C_{ph}^*;
$$

$$
\delta \rho_{ph}^{(2)} = \sum_{mi} C_{mi}^* \hat{C}_{pmhi}; \qquad \delta \rho_{hp}^{(2)} = \sum_{mi} C_{mi} \hat{C}_{pmhi}^*;
$$

$$
\delta \rho_{hh'}^{(2)} = - \sum_{m} C_{mh}^{*} C_{mh'} - \frac{1}{2} \sum_{mni} \hat{C}_{mnih}^{*} \hat{C}_{mnih'};
$$

$$
\delta \rho_{pp'}^{(2)} = \sum_i C_{p'i}^* C_{pi} + \frac{1}{2} \sum_{mij} \hat{C}_{p'mij}^* \hat{C}_{pmij}.
$$

Mean value of the Hamiltonian in the ground state:

$$
\langle H \rangle = \langle \Phi | H | \Phi \rangle + \sum_{mi} (C^*_{mi} \lambda_{mi}(\rho) + C_{mi} \lambda_{im}(\rho))
$$

+
$$
\sum_{i < j,m < n} (\hat{C}^*_{mnij} \hat{V}_{mnij}(\rho) + \hat{C}_{mnij} \hat{V}_{ijmn}(\rho)) + F^{(2)}
$$

For example:

$$
A_{mi,pk} = \left[\frac{\delta^2 \langle H \rangle}{\delta C_{mi}^* \delta C_{pk}}\right]_{C=C^*=0} \equiv A_{11},
$$

$$
A_{mi,pqkl} = \left[\frac{\delta^2 \langle H \rangle}{\delta C_{mi}^* \delta \hat{C}_{pqkl}}\right]_{C=C^*=0} \equiv A_{12},
$$

Da Providencia derivation of SRPA

But our interaction is density dependent. Expansion of the density-dependent interaction around the HF density:

$$
\hat{V}_{\alpha\beta\gamma\delta}(\rho) \sim \hat{V}_{\alpha\beta\gamma\delta}(\rho^{(0)}) + \sum_{ab} \left[\frac{\delta \hat{V}_{\alpha\beta\gamma\delta}}{\delta \rho_{ab}} \right]_{\rho=\rho^{(0)}} \delta \rho_{ab} + \frac{1}{2} \sum_{abcd} \left[\frac{\delta^2 \hat{V}_{\alpha\beta\gamma\delta}}{\delta \rho_{ab} \delta \rho_{cd}} \right]_{\rho=\rho^{(0)}} \delta \rho_{ab} \delta \rho_{cd},
$$
\nwhere\n
$$
\delta \rho_{\alpha\beta} = \delta \rho_{\alpha\beta}^{(1)} + \delta \rho_{\alpha\beta}^{(2)}.
$$

Adachi and Yoshida truncated at the linear term (the RPA rearrangement terms were not reproduced)

One can reproduce the RPA terms and may obtain the new ones

Drawbacks of the SRPA model (two are general –also found in metal clusters for example- and two are generated by the choice of specific interactions)

• **(Too) strong shift to lower energies with respect to the RPA spectrum General**

Dependence on the energy cutoff for the 2p2h configurations

EDFs

• **Instabilities (Thouless theorem)**

Recent studies about instabilities and double counting:

Double counting (parameters adjusted at the mean-field level)

- Tselyaev, Phys. Rev. C 88, 054301 (2013)

•

- Papakonstantinou, Phys. Rev. C 90, 024305 (2014)

With the Gogny force (density-dependent contact term in the construction of the residualinteraction) - 16O

Gambacurta, Grasso, et al., Phys. Rev. C 86, 021304 (R) (2012)

EDF and double counting for extensions of RPA (Tselyaev 2013)

• **Correlations implicitly included in the functional (because of the adjustment of the parameters at mean-field level to reproduce some observables). In the spirit of DFT: 'exact' functional to be used for mean-field-type calculations**

• **Thus, this functional must produce a static RPA response function which is the 'exact' zero-energy response function.**

 The RPA static polarizability should be regarded as the 'exact' one.

• **Any modification of the response function (to go beyond the mean field) should be zero in the static limit to avoid double counting of correlations**

SRPA equations may be written as RPA-type equations with energy dependent RPA matrices

$$
A_{11'}(\omega) = A_{11'} \sum_{2,2'} A_{12}(\omega + i\eta - A_{22'})^{-1} A_{2'1'} - \sum_{2,2'} B_{12}(\omega + i\eta + A_{22'})^{-1} B_{2'1'}
$$
\n
$$
B_{11'}(\omega) = B_{11'} \sum_{2,2'} A_{12}(\omega + i\eta - A_{22'})^{-1} B_{2'1'} - \sum_{2,2'} B_{12}(\omega + i\eta + A_{22'})^{-1} A_{2'1'}
$$
\n
$$
B_{11'}(\omega)
$$
\n
$$
A_{11'}(\omega) = B_{11'}(\omega) - A_{11'}(\omega)
$$
\n
$$
B_{11'}(\omega) = B_{11'}^{\star} - A_{11'}^{\star}
$$

For cases where the interaction is density independent and A22 diagonal the expressions are simplified

$$
\Omega^{\text{SPPA}} = \begin{array}{ccccc} & A_{11'}(\omega) & B_{11'} & & A_{11'} & B_{11'} \\ & & \Delta^{\text{SPPA}} & & & A_{11'} & B_{11'} \\ & & -B_{11'}^* & -A_{11'}^*(\omega) & & & & -B_{11'}^* & A_{11'}^* \end{array}
$$

where the energy-dependent matrix elements are

$$
A_{11'}(\omega) = A_{11'} + \sum_{2} A_{12}(\omega + i\eta - A_{22'})^{-1} A_{21'}
$$

Second-order energy-dependent self-energy insertion Σ(ω) -> leads to a beyond mean-field model and provides the description of spreading widths and fragmentation (in addition to the single-particle Landau damping) through de coupling with 2p2h

EDF and double counting for extensions of RPA (Tselyaev)

- **Correlations implicitly included in the functional (because of the adjustment of the parameters at mean-field level to reproduce some observables). In the spirit of DFT: 'exact' functional to be used for mean-field-type calculations**
- **Thus, this functional must produce a static RPA response function which is the 'exact' zero-energy response function.**

 The RPA static polarizability should be regarded as the 'exact' one.

- **Any modification of the response function (to go beyond the mean field) should be zero in the static limit to avoid double counting of correlations**
- **It is required that the inverse energy-weighted moments are equal:**

$$
\Pi^{SRPA}(0)=\Pi^{RPA}(0)=-2m^{RPA}_{-1}
$$

$$
\alpha^{RPA}=-\Pi(0)=2\sum_{\nu}\frac{|<\nu|F|0>|^2}{E_{\nu}-E_0}=2m^{RPA}_{-1}
$$

Adachi, Lipparini, NPA 489, 445 (1988)

This is achieved by subtracting the self-energy calculated at zero energy to the energydependent self-energy Σ(E) - Σ(0) (Tselayev 2013)

Stability condition in RPA (Thouless theorem, Nucl. Phys. 21, 225 (1960), Nucl. Phys. 22, 78 (1961))

> **If the HF state minimizes the expectation value of the Hamiltonian -> the RPA stability matrix is positive semi-definite (real eigenvalues and eigenvectors with positive eigenvalues have positive norm)**

Stability RPA matrix

$$
S^{RPA} = M^{RPA} \Omega^{RPA} = \begin{pmatrix} A & B \\ B^* & A^* \end{pmatrix}
$$

$$
M^{RPA} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
$$
trix is also positive semi-

This does not imply the SRP definite.

The theorem can be extended to extensions of RPA by applying the

subtraction procedure (Tselyaev 2013)

• **Double counting**

•**Instabilities (Thouless theorem)**

• **Strong shift downwards of energies (with respect to RPA) and divergences (with zero-range forces) ?**

Gambacurta, Grasso, Engel, PRC 92, 034303 (2015)

The second-order self-energy is responsible for the divergence. The subtraction removes it.

By following Tselayev 2013 ->

It is possible to rewrite the equations (after subtraction) in a non energy dependent SRPA form:

$$
\mathcal{A}_F^S = \begin{pmatrix} A_{11'} & \sum_2 A_{12}(A_{22'})^{-1} A_{21'} + \sum_2 B_{12}(A_{22'})^{-1} B_{21'} & A_{12} \\ A_{21} & A_{22'} \end{pmatrix}
$$
\n
$$
\mathcal{B}_F^S = \begin{pmatrix} B_{11'} + \sum_2 A_{12}(A_{22'})^{-1} B_{21'} + \sum_2 B_{12}(A_{22'})^{-1} A_{21'} & B_{12} \\ B_{21} & B_{22'} \end{pmatrix}
$$

S -> subtractedF -> full scheme (inversion of the matrix A22')

Gambacurta, Grasso, Engel, PRC 92, 034303 (2015)

Robust prediction. No cutoff dependence ISGMR for 16O. SGII parametrization

Gambacurta, Grasso, Engel, PRC 92, 034303 (2015)

Ratios of the moments of the strength with respect to RPA

Gambacurta, Grasso, Engel, PRC 92, 034303 (2015)

Quadrupole excitations. Spreading width (SGII) 16

Centroid: 20.73 MeVWidth: 2.42 MeV

O

Centroid: 20.21 MeVWidth: 4.05 MeV

PRC 64, 064308 (2001)

Gambacurta, Grasso, Engel, PRC 92, 034303 (2015)

Centroid: 19.76 MeVWidth: 5.11 MeV

SOME RECENT APPLICATIONS

 \blacklozenge **Dipole excitations and dipole polarizability in 48Ca Gambacurta, Grasso, Vasseur, PLB 777, 163 (2018)**

 \blacklozenge **Systematic study of GQRs Vasseur, Gambacurta, Grasso, PRC 98, 044313 (2018)**

 \blacklozenge **Beyond-mean -field effects on effective masses Grasso, Gambacurta, Vasseur, PRC 98, 051303(R) (2018)**

Electric dipole polarizability (important for constraining the symmetry energy -> key ingredient for predictions of neutron skin thickness, radius and proton fraction in neutron stars, …)

Gambacurta, Grasso, Vasseur, PLB 777, 163 (2018)

Isoscalar GQRs from 30Si to 208Pb

Centroids (folding with narrow Lorentzian distributions and adjusting on it a Lorentzian distribution)

Isoscalar GQRs. Widths (folding with narrow Lorentzian distributions and adjusting on it a Lorentzian distribution)

Vasseur, Gambacurta, Grasso, PRC 98, 044313 (2018)

High-resolution proton inelastic scattering (p,p') spectra measured at iThemba LABS

Exp. data: Shevchenko et al, PRL 93, 122501 (2004)

> **Vasseur, Gambacurta, Grasso, PRC 98, 044313 (2018)**

SSRPA: discrete spectra and folded spectra with a Lorentzian of width equal to 40 keV (equal to the experimental energy

resolution)

Effective masses m*/m

• **Landau's theory of Fermi liquids: the system of interacting particles is described through quasiparticles having an effective mass m***

- **Study of m* (relevant for the properties related to the propagation of particles in a medium): broad interest in many-body physics. Impact on, for example:**
- **Density of states in a many-body system**
- **Specific heat of a low-temperature Fermi gas**
- **Maximum mass of a neutron star**
- **Energies of axial compression or breathing modes in atomic gases**

Effective masses in Fermi liquids

First dynamic measurement of the polaron effective mass

PHYSICAL REVIEW LETTERS PRL 103, 170402 (2009)

week ending 23 OCTOBER 2009

Collective Oscillations of an Imbalanced Fermi Gas: Axial Compression Modes and Polaron Effective Mass

S. Nascimbène, N. Navon, K. J. Jiang, L. Tarruell,* M. Teichmann,[†] J. McKeever,[‡] F. Chevy, and C. Salomon Laboratoire Kastler Brossel, CNRS, UPMC, École Normale Supérieure, 24 rue Lhomond, 75231 Paris, France

The Fermi polaron is an impurity immersed in a Fermi sea (strongly imbalanced Fermi gases) *.

Based on the Landau theory of Fermi liquids, the energy spectrum of the polaron is similar to that of a free particle. Using the local-density approximation, the frequency ^ω* of the polaron is

$$
\frac{\omega^*}{\omega} = \sqrt{\frac{1-A}{m^*/m}}.
$$

^ω is the frequency of the trap (harmonic oscillator), A is a dimensionless quantity that characterizes the attraction of the impurity by the other atoms

Lobo, Recati, Giorgini, Stringari, PRL 97, 200404 (2006)

*** Analogous calculations for nuclear systems: Forbes et al., PRC 89, 041301 (R) (2014) Roggero et al., PRC 92, 054303 (2015)**

Effective masses in Fermi liquids

The axial breathing mode in nuclear physics corresponds to the isoscalar GQR.

Based on the Landau theory of Fermi liquids, relation between the centroid energy of the IS GQR and (m/m*)1/2 known and used

SSRPA extraction of the effective mass

Definition of effective mass:

$$
\frac{1}{m^*}=\frac{dE}{dk}\frac{1}{\hbar^2 k}
$$

for a particle of energy E and momentum k , with

$$
E = \frac{\hbar^2 k^2}{2m} + \Sigma_k + \Sigma_{k,E}.
$$

k-mass (leading order of the Dyson equation and E-mass -> beyond mean field, energy dependence of the self-energy)

$$
\frac{m^*}{m} = \left(1 - \frac{\partial \Sigma_{k,E}}{\partial E}\right) \cdot \left(1 + \frac{m}{\hbar^2 k} \frac{\partial \Sigma_k}{\partial k}\right)^{-1}
$$

$$
\equiv \frac{m_E^*}{m} \cdot \frac{m_k^*}{m},
$$

One may extract, for each nucleus and for each interaction, an estimation of the E-mass (equal to 1 at the mean-field level).

We have found an enhancement of the E-mass between 6 and 16% with SSRPA (nucleus and interaction dependence)

Beyond-mean-field effective masses. Theoretical error

Grasso, Gambacurta, Vasseur, PRC 98, 051303(R) (2018)

Mean field -> dispersion related to the used interaction Beyond-mean-field -> in addition, nucleus dependence. However, theoretical error not larger than for the meanfield case

Effect on the single-particle excitation spectrum

Diagonal matrix elements of the matrix A

$$
A_{1,1}^{RPA} \rightarrow A_{1,1}^{SSRPA}(E) = \left[\epsilon_p - \epsilon_h\right]_{MF} + \bar{V}_{phhp}
$$

+
$$
\sum_{2,2'} \frac{A_{ph,2}A_{2',ph}}{E + i\eta - A_{2,2'}} + \sum_{2,2'} \frac{A_{ph,2}A_{2',ph}}{A_{2,2'}}.
$$

These matrix elements may be computed for chosen ph configurations. For the energy-dependent self-energy, we use E=centroid of the isoscalar GQR

Beyond-mean-field effective masses. Effective compression of the single-particle spectrum

Grasso, Gambacurta, Vasseur, PRC 98, 051303(R) (2018)

Link with compressibility? Soft breathing modes in neutronrich systems are strongly driven by neutrons Link with asymmetric matter ?

Gambacurta, Grasso, Sorlin, in press arXiv:1906.07977

Gambacurta, Grasso, Sorlin, in press arXiv:1906.07977

Isospin asymmetry of the oscillating system

 Implementation of the SRPA model by a subtraction procedure: double counting, stability condition (correction of the shift with respect to the RPA), convergence with respect to the cutoff

Some recent applications:

! **Dipole excitations in 48Ca (width of the GDR: slope of the dipole polarizability. Low-lying modes)**

◆ Systematic study of GQRs (compared to RPA: centroids globally in better agreement with the **experimental data; enhancement of the widths owing to the description of the spreading width)**

 \bullet **Beyond-mean-field effect on the effective mass (extraction of an enhanced effective mass produced by beyond-mean-field effects)**

! **Low-lying breathing modes in neutron-rich nuclei (neutron-driven modes. Link with the compressibility defined for asymmetric infinite matter)**

Two examples of effective phenomenological interactions around 10 parameters adjusted with mean-field calculations

$$
V(\mathbf{r}_1, \mathbf{r}_2) =
$$

\n
$$
+ \frac{1}{2}t_1 (1 + x_1 P_\sigma) \left[\mathbf{P}^{'2} \delta(\mathbf{r}) + \delta(\mathbf{r}) \mathbf{P}^2 \right] + t_2 (1 + x_2 P_\sigma) \mathbf{P}' \cdot \delta(\mathbf{r}) \mathbf{P}
$$
\n
$$
+ \frac{1}{6}t_3 (1 + x_3 P_\sigma) \left[\rho(\mathbf{R}) \right]^\alpha \delta(\mathbf{r})
$$
\n
$$
+ iW_0 \sigma \cdot \left[\mathbf{P}' \times \delta(\mathbf{r}) \mathbf{P} \right]
$$
\n
$$
\mathbf{r} = \mathbf{r}_1 - \mathbf{r}_2, \quad \mathbf{R} = \frac{1}{2} (\mathbf{r}_1 + \mathbf{r}_2), \quad \mathbf{P} = \frac{1}{2i} (\nabla_1 - \nabla_2) \qquad \sigma = \sigma_1 + \sigma_2, \quad P_\sigma = \frac{1}{2} (1 + \sigma_1 \cdot \sigma_2)
$$
\n
$$
V(\mathbf{r}_1, \mathbf{r}_2) = \sum_{i=1,2} \left[W_i + B_i P_\sigma - H_i P_\tau - M_i P_\sigma P_\tau \right] e^{-r^2 / \mu_i^2}
$$
\n
$$
+ t_3 (1 + x_3 P_\sigma) \left[\rho(\mathbf{R}) \right]^\alpha \delta(\mathbf{r})
$$
\n**Groups**\n**Two gaussians plus zero-range density-dependent term and spin-orbit term**

+i $W_0 \sigma \cdot [\mathbf{P}' \times \delta(\mathbf{r}) \mathbf{P}]$