Examples of Nucleon Correlations Effects on Nuclear Structure and Reactions

Anton N. Antonov

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia 1784, Bulgaria

APCTP Focus Program in Nuclear Physic 2019, Pohang, Republic of Korea

Some Examples:

- Nucleon momentum distributions
- Spectral functions
- Natural orbitals
- Overlap functions (one- and two- body)
- (*p*,*d*), (*e*,*e'p*), (*e*,*e'pp*) reactions
- Exotic nuclei (structure)
- Exotic nuclei (processes)
- Superscaling in electron- and neutrino(antineutrino)-nuclei scattering
- Information on the nucleon momentum distribution from the scaling function

Theoretical Correlation Methods Used:

• The Coherent Density Fluctuation Model (CDFM) [Sofia, 1979-till now]

based on the delta-function approximation for the overlap and energy kernels of the Generator Coordinate Method

- The Generator Coordinate Method
- The Jastrow Correlation Method
- The Natural Orbital and Overlap Functions Representations
- The Nuclear Density Functional Theory

...and others

Coherent Density Fluctuation Model (CDFM)

- A.N. Antonov, I.Zh. Petkov, V. Nikolaev, P.E. Hodgson (1979, 1980, 1982, 1985, 1988, 1993, ...)

$$\rho(\mathbf{r}, \mathbf{r}') = \int_0^\infty dx |\mathcal{F}(x)|^2 \rho_x(\mathbf{r}, \mathbf{r}') \tag{1}$$

$$\rho_x(\mathbf{r}, \mathbf{r}') = 3\rho_0(x) \frac{j_1(k_F(x)|\mathbf{r} - \mathbf{r}'|)}{(k_F(x)|\mathbf{r} - \mathbf{r}'|)} \Theta\left(x - \frac{|\mathbf{r} + \mathbf{r}'|}{2}\right)$$
(2)

$$k_F(x) = \left(\frac{3\pi^2}{2}\rho_0(x)\right)^{1/3} \equiv \frac{\beta}{x}; \quad \rho_0(x) = \frac{3A}{4\pi x^3} \tag{3}$$

$$\beta = \left(\frac{9\pi A}{8}\right)^{1/3} \simeq 1.52A^{1/3} \tag{4}$$

$$\rho(\mathbf{r}) = \int_0^\infty dx |\mathcal{F}(x)|^2 \rho_0(x) \Theta(x - |\mathbf{r}|)$$
(5)

$$|\mathcal{F}(x)|^{2} = -\frac{1}{\rho_{0}(x)} \left. \frac{d\rho(r)}{dr} \right|_{r=x}; \quad \left(\frac{d\rho}{dr} \le 0 \right); \quad \int_{0}^{\infty} dx |\mathcal{F}(x)|^{2} = 1 \quad (6)$$

$$n(\mathbf{k}) = \int_0^\infty dx |\mathcal{F}(x)|^2 \frac{4}{3} \pi x^3 \Theta(k_F(x) - |\mathbf{k}|)$$
(7)

Nucleon momentum distribution for ⁴He: the black squares are the exp. data, the exp (S)-method (dotted line), the correlation method of Akaishi (curve 1) and the CDFM (curve 2). Normalization: $\int n(\mathbf{k})d\mathbf{k}=1$

Bulg. J. Phys. **13**, 110 (1986)

Spectral functions for ⁴⁰Ca in CDFM

Z. Phys. A 304, 239 (1982)

Natural Orbitals

- Löwdin (1955)

$$\rho(\mathbf{r}, \mathbf{r}') = \sum_{\alpha} N_{\alpha} \psi_{\alpha}^*(\mathbf{r}) \psi_{\alpha}(\mathbf{r}')$$
(1)

$$0 \le N_{\alpha} \le 1, \qquad \sum_{\alpha} N_{\alpha} = A$$
 (2)

$$\rho(\mathbf{r}) = \sum_{\alpha} N_{\alpha} |\psi_{\alpha}(\mathbf{r})|^2$$
(3)

$$n(\mathbf{k}) = \sum_{\alpha} N_{\alpha} |\psi_{\alpha}(\mathbf{k})|^2$$
(4)

 $\{\psi_{\alpha}(\mathbf{r})\}$: complete orthonormal set

$$\int \rho(\mathbf{r}, \mathbf{r}') \psi_{\alpha}(\mathbf{r}') d\mathbf{r}' = N_{\alpha} \psi_{\alpha}(\mathbf{r})$$
(5)

$$\int \rho(\mathbf{k}, \mathbf{k}') \psi_{\alpha}(\mathbf{k}') d\mathbf{k}' = N_{\alpha} \psi_{\alpha}(\mathbf{k})$$
(6)

Phys. Rev. C 48, 74 (1993)

Overlap Functions

- One-body overlap functions

$$\phi_{\alpha}(\mathbf{r}) = \langle \Psi_{\alpha}^{(A-1)} | a(\mathbf{r}) | \Psi^{(A)} \rangle \tag{1}$$

Spectroscopic factor:

$$S_{\alpha} = \langle \phi_{\alpha} | \phi_{\alpha} \rangle \tag{2}$$

$$\tilde{\phi}_{\alpha}(\mathbf{r}) = S_{\alpha}^{-1/2} \phi_{\alpha}(\mathbf{r})$$
(3)

$$\rho(\boldsymbol{r},\boldsymbol{r}') = \sum_{\alpha} \phi_{\alpha}^{*}(\boldsymbol{r})\phi_{\alpha}(\boldsymbol{r}') = \sum_{\alpha} S_{\alpha}\tilde{\phi}_{\alpha}^{*}(\boldsymbol{r})\tilde{\phi}_{\alpha}(\boldsymbol{r}')$$
(4)

D. Van Neck et al., Phys. Lett. B 314, 255 (1993):

$$\phi_{n_0 lj}(r) = \frac{\rho_{lj}(r, a)}{C_{n_0 lj} \, \exp(-k_{n_0 lj} \, a)/a} \tag{5}$$

FIG. 1. Overlap functions (solid line), self-consistent Hartree-Fock single-particle wave functions (dot-dashed line), and natural orbitals (dashed line) for the nucleus ^{40}Ca .

Phys. Rev. C 53, 1254 (1996)

$$\Phi_{\alpha_0 JSL lL_R}(r, R) = \frac{\rho_{JSL lL_R}^{(2)}(r, R; a, b)}{\Phi_{\alpha_0 JSL lL_R}(a, b)}$$
(25)
$$= \frac{\rho_{JSL lL_R}^{(2)}(r, R; a, b)}{Nexp\{-k\sqrt{[b^2 + (1/4)a^2]}\}[b^2 + (1/4)a^2]^{-5/2}}.$$
(26)

Phys. Rev. C 59, 722 (1999)

Removal of ${}^{1}S_{0}$ and ${}^{3}P_{1}$ (pp) pairs from ${}^{16}O(e,e'pp){}^{14}C_{g.s.}$ Partial waves: ${}^{2S+1}l_{L}$; $\overrightarrow{L} = \overrightarrow{l} + \overrightarrow{L_{R}}$

Phys. Rev. C 68, 014617 (2003)

FIG. 1. The ${}^{1}S_{0}$ two-proton overlap functions for the nucleus 16 O leading to the 0⁺ ground state of 14 C extracted from the JCM (left) and uncorrelated (right) two-body density matrices.

FIG. 2. The ${}^{3}P_{1}$ two-proton overlap functions for the nucleus 16 O leading to the 0⁺ ground state of 14 C extracted from the JCM (left) and uncorrelated (right) two-body density matrices.

Exotic Nuclei (Structure)

Phys. Rev. C 76, 044322 (2007)

Exotic Nuclei (processes)

Microscopic optical potential; elastic scattering; breakup reactions

$$U_{opt}(r) = N_R V^F(r) + i N_I W^H(r)$$
(1)

1. Direct and exchange parts of the real OP (ReOP) Folding:

$$V^{F}(r) = V^{D}(r) + V^{EX}(r)$$
 (2)

 $V_{IS}^{D}, V_{IV}^{D}, V_{IS}^{EX}, V_{IV}^{EX}$ $v_{(00)(01)}^{D}(\rho, E), v_{(00)(01)}^{EX}(\rho, E) - M3Y$ effective interactions

2. Imaginary part of the OP (ImOP) within the high-energy approximation

$$W^{H}(r) = -\frac{1}{2\pi^{2}} \frac{E}{k} \bar{\sigma}_{NN} \int_{0}^{\infty} j_{0}(qr) \rho_{p}(q) \rho_{t}(q) f_{NN}(q) q^{2} dq$$
(3)

M. Avrigeanu *et al.*, Phys. Rev. C **62**, 017001 (2000)

Phys. Rev. C 80, 024609 (2009)

Superscaling in Electron- and Neutrino- Nuclei Scattering PWIA; (e, etN):

$$\left[\frac{d\sigma}{d\epsilon' d\Omega' dp_N d\Omega_N}\right]_{(e,e'N)}^{PWIA} = K\sigma^{eN}(q,\omega;p,\mathcal{E},\phi_N)S(p,\mathcal{E})$$
(1)

$$F(q,\omega) \cong \frac{[d\sigma/d\epsilon' d\Omega']_{(e,e')}}{\overline{\sigma}^{eN}(q,\omega;p=|y|,\mathcal{E}=0)}$$
(2)

RFG:

$$f_{\rm RFG}(\psi') \simeq \frac{3}{4} \left(1 - {\psi'}^2\right) \theta \left(1 - {\psi'}^2\right) \tag{3}$$

$$S(p,\mathcal{E}) = \sum_{i} 2(2j_i + 1)n_i(p)L_{\Gamma_i}(\mathcal{E} - \mathcal{E}_i);$$
(4)

$$L_{\Gamma_i}(\mathcal{E} - \mathcal{E}_i) = \frac{1}{\pi} \frac{\Gamma_i/2}{(\mathcal{E} - \mathcal{E}_i)^2 + (\Gamma_i/2)^2};$$
(5)
($\Gamma_{1p} = 6 \text{ MeV and } \Gamma_{1s} = 20 \text{ MeV}$)

$$\rho(\mathbf{r}, \mathbf{r}') = \sum_{\alpha} N_{\alpha} \varphi_{\alpha}^*(\mathbf{r}) \varphi_{\alpha}(\mathbf{r}'); \ [0 \le N_{\alpha} \le 1; \sum_{\alpha} N_{\alpha} = A];$$
(6)

Phys. Rev. C 89, 014607 (2014)

Phys. Rev. C 91, 034607 (2015)

Phys. Rev. C 89, 014607 (2014)

Phys. Rev. C 89, 014607 (2014)

Information on the nucleon momentum distributions from the scaling function

- Amado, Woloshyn (1976–77):

$$n(k) \xrightarrow[k \to \infty]{} \left[\frac{\widetilde{V}_{\rm NN}(k)}{k^2} \right]^2 \tag{1}$$

(unknown if k or k/A must be large)

$$f(\psi') = 0.12 \left(\frac{1+m}{2+m}\right) \frac{1}{|\psi'|^{2+m}}$$
(2)

$$n(k) \sim \frac{1}{k^{4+m}};$$
 Results: $m \simeq 4.5$ (3)

For
$$m = 4$$
 $V_{NN}(r) \sim \frac{1}{r}$ (at $r \to 0$)
For $m = 5$ $V_{NN}(r) \sim \frac{1}{r^{\frac{1}{2}}}$ (at $r \to 0$)

Phys. Rev. C **75**, 034319 (2007)

 $f(\psi') [n(k) \sim 1/k^{4+m}], (m = 1...5);$ Phys. Rev. C **75**, 034319 (2007)

Thank you!