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Some Examples:
• Nucleon momentum distributions

• Spectral functions

• Natural orbitals

• Overlap functions (one- and two- body)

• (p,d), (e,e’p), (e,e’pp) reactions

• Exotic nuclei (structure)

• Exotic nuclei (processes)

• Superscaling in electron- and neutrino(antineutrino)–nuclei scattering

• Information on the nucleon momentum distribution from the scaling function



Theoretical Correlation Methods Used:

• The Coherent Density Fluctuation Model (CDFM)  [Sofia, 1979-till now]

based on the delta-function approximation for the overlap and energy  
kernels of the Generator Coordinate Method

• The Generator Coordinate Method

• The Jastrow Correlation Method

• The Natural Orbital and Overlap Functions Representations

• The Nuclear Density Functional Theory 

…and others



Coherent Density Fluctuation Model (CDFM)

- A.N. Antonov, I.Zh. Petkov, V. Nikolaev, P.E. Hodgson (1979, 1980, 1982,
1985, 1988, 1993, ...)
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Nucleon momentum distribution for 4He: 
the black squares are the exp. data, the 
exp (S)-method (dotted line),

 

the 
correlation method of Akaishi (curve 1) 
and the CDFM

 

(curve 2). 
Normalization: ∫n(k)dk=1

Spectral functions for 40Ca in CDFM

Bulg. J. Phys. 13, 110 (1986)

Z. Phys. A 304, 239 (1982)



Natural Orbitals

- Löwdin (1955)

ρ(r, r′) =
∑
α

Nαψ
∗
α(r)ψα(r

′) (1)

0 ≤ Nα ≤ 1,
∑
α

Nα = A (2)

ρ(r) =
∑
α

Nα|ψα(r)|2 (3)

n(k) =
∑
α

Nα|ψα(k)|2 (4)

{ψα(r)}: complete orthonormal set∫
ρ(r, r′)ψα(r

′)dr′ = Nαψα(r) (5)∫
ρ(k,k′)ψα(k

′)dk′ = Nαψα(k) (6)



Phys. Rev. C 48, 74 (1993)



Overlap Functions

- One-body overlap functions

φα(r) = 〈Ψ(A−1)
α |a(r)|Ψ(A)〉 (1)

Spectroscopic factor:
Sα = 〈φα|φα〉 (2)

φ̃α(r) = S−1/2α φα(r) (3)

ρ(r, r′) =
∑
α

φ∗α(r)φα(r′) =
∑
α

Sαφ̃
∗
α(r)φ̃α(r′) (4)

D. Van Neck et al., Phys. Lett. B 314, 255 (1993):

φn0lj(r) =
ρlj(r, a)

Cn0lj exp(−kn0lj a)/a
(5)



Phys. Rev. C 53, 1254 (1996)

Phys. Rev. C 66, 064308 (2002)







Exotic Nuclei (Structure)

Phys. Rev C 72, 044307 (2005)

Phys. Rev. C 76, 044322 (2007)



Exotic Nuclei (processes)
Microscopic optical potential; elastic scattering; breakup reactions

Uopt(r) = NRV
F (r) + iNIW

H(r) (1)

1. Direct and exchange parts of the real OP (ReOP)
Folding:

V F (r) = V D(r) + V EX(r) (2)

V D
IS, V D

IV , V EX
IS , V EX

IV

vD(00)(01)(ρ, E), vEX(00)(01)(ρ, E) – M3Y effective interactions

2. Imaginary part of the OP (ImOP) within the high-energy approximation

WH(r) = − 1

2π2
E

k
σ̄NN

∫ ∞

0

j0(qr)ρp(q)ρt(q)fNN(q)q2dq (3)



M. Avrigeanu et al., Phys. Rev. C 62, 017001 (2000) Phys. Rev. C 80, 024609 (2009)



Phys. Rev. C 91, 034606 (2015) 

Eur. Phus J A 53, 31 (2017)



Superscaling in Electron- and Neutrino- Nuclei Scattering

PWIA; (e, e′N):
 dσ

dε′dΩ′dpNdΩN

PWIA

(e,e′N)
= KσeN(q, ω; p, E , φN)S(p, E) (1)

F (q, ω) ∼=
[dσ/dε′dΩ′](e,e′)

σeN(q, ω; p = |y|, E = 0)
(2)

RFG:
fRFG(ψ′) ' 3

4
(
1− ψ′2

)
θ
(
1− ψ′2

)
(3)

S(p, E) =
∑
i

2(2ji + 1)ni(p)LΓi
(E − Ei); (4)

LΓi
(E − Ei) = 1

π

Γi/2
(E − Ei)2 + (Γi/2)2 ; (5)

(Γ1p = 6 MeV and Γ1s = 20 MeV)

ρ(r, r′) =
∑
α
Nαϕ

∗
α(r)ϕα(r′); [0 ≤ Nα ≤ 1;

∑
α
Nα = A]; (6)
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Information on the nucleon momentum distributions from
the scaling function

– Amado, Woloshyn (1976–77):

n(k) −−−→
k→∞

ṼNN(k)
k2

2
(1)

(unknown if k or k/A must be large)

f (ψ′) = 0.12
1 + m

2 + m

 1
|ψ′|2+m (2)

n(k) ∼ 1
k4+m ; Results: m ' 4.5 (3)

For m = 4 VNN(r) ∼ 1
r

(at r → 0)

For m = 5 VNN(r) ∼ 1
r½ (at r → 0)

Phys. Rev. C 75, 034319 (2007)



ANTONOV, IVANOV, GAIDAROV, AND DE GUERRA PHYSICAL REVIEW C 75, 034319 (2007)

FIG. 4. Momentum distribution in HSDFG n(x) multiplied by
x4 = (k/kF )4.

Therefore, we look for the proper value of m. For k < kF ,

we use n(k) [Eq. (2)] from Ref. [44], but for k > kF , we use

n(k) = N
1

k4+m
for k > kF . (10)

The value of N is obtained by the total normalization of
n(k) and is equal to

N = 0.24

3
(1 + m)k4+m

F . (11)

The factor 0.24 corresponds to the result for the part of the
normalization (for k > kF ) from the total normalization
condition:

3

4πk3
F

∫
n(�k)d3�k = 1. (12)

Finally, from Eq. (8) one can obtain the following expres-
sion for the scaling function:

f (ψ ′) = 0.12

(
1 + m

2 + m

)
1

|ψ ′|2+m
. (13)

FIG. 5. Scaling function in a dilute Fermi gas calculated using
Eq. (13) for different values of m in the asymptotics of the momentum
distribution n(k) ∼ 1/k4+m given in comparison with the RFG result.
Grey area shows experimental data from Ref. [13].

In Fig. 5, we present the results for the scaling function
[Eq. (8)] for different values of m, compared with the RFG
model result. One can see that agreement with the experimental
QE scaling function is achieved when the value m ≈ 4.5 is
used in Eqs. (10), (11), and (13). This means that the power-law
decrease of n(k) which gives an optimal agreement with the
data is

n(k) ≈ 1

k8.5
. (14)

We should note that this particular form of the power-law
asymptotics is close to that obtained in the CDFM [25]

n(k) ∼ 1

k8
, (15)

i.e., it corresponds to n(k) ∼ 1/k4+m with m = 4. The inverse
Fourier transform of Ṽ NN(k) for m = 4 and m = 5 gives
VNN(r) ∼ 1/r and VNN(r) ∼ 1/r1/2, respectively.

We would like to emphasize the consistency of both the
optimal asymptotics of n(k) for the dilute Fermi gas found
in this work [Eq. (14)] with that in the CDFM [Eq. (15)].
As was shown in Refs. [15–18], the calculated QE scaling
function f (ψ ′) in the CDFM agrees well with the experimental
scaling function. This fact shows that the behavior of the QE
scaling function depends mainly on the particular form of the
power-law asymptotics of the nucleon momentum distribution.
This is proved in our work by the similarities of the result for
the case of an interacting dilute Fermi gas with that obtained
in the CDFM as a model accounting for NN correlations in
realistic finite nuclear systems.

III. CONCLUSIONS

The results of the present work can be summarized as
follows:

(i) The superscaling observed in inclusive electron scat-
tering from nuclei is considered within the model of
dilute Fermi gas with interactions between particles.
The latter gives an improvement over the results of the
relativistic noninteracting Fermi gas model, allowing one
to describe the QE scaling function for ψ ′<−1, whereas
the RFG model gives f (ψ ′) = 0 in this region.

(ii) It is established that the hard-sphere (with δ-forces
between nucleons) approximation for the dilute Fermi
gas is quite a rough one. The use of more realistic
NN forces leading to m � 4.5 instead of m = 0 (for
δ-force) in the well-known power-law asymptotics of
the momentum distribution n(k) ∼ 1/k4+m at large k

leads to a good explanation of the data for the ψ ′-scaling
function in inclusive electron scattering from a wide
range of nuclei.

(iii) The asymptotics of n(k) ∼ 1/k8.5 found in the dilute
Fermi gas by optimal fit to the data for f (ψ ′) is similar
to that in the CDFM (∼ 1/k8) [25] which, being a
theoretical correlation model, describes the superscaling
in the quasielastic part of the electron-nucleus scattering.
Thus, the momentum distribution in the dilute Fermi gas
model with realistic NN forces can serve as an “effective”

034319-4

f (ψ′) [n(k) ∼ 1/k4+m], (m = 1 . . . 5); Phys. Rev. C 75, 034319 (2007)





Thank you!
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