Effects of the tensor force on the properties of finite nuclei within Skyrme energy density functional

Li-Gang Cao North China Electric Power University

 Collaborators: H. Sagawa (Riken and Aizu) G. Colo, P. F. Bortignon (Milano)

APCTP Focus Program in Nuclear Physics 2019 Nuclear Many-Body Theories: Beyond the Mean Field Approaches July 1-10, Pohang, Korea

Contents

Part I. Effect of tensor force on the properties of excited states in finite nuclei

Part II. Study on the properties of singleparticle states within beyond mean field theory

Part I. Effect of tensor force on the properties of excited states in finite nuclei

1.Introduction

The Skyrme energy density functional(SEDF) is applied successfully to describe the properties of finite nuclei after the pioneer work of Vautherin and Brink.

The parameters of SEDF are fitted by using the bulk properties of infinite nuclear matter and finite nuclei, but most of them lose the tensor part.

Following the work of Otsuka, there are many works contribute to describle successfully the evolution of single-particle states based on Skyrme force with tensor.

Here we extend our calculations to excited states, and discuss the effects of tensor on the properties of excited states, we will foucs on the non-spin flip 2+ as well as on spin flip and charge exchange states.

2 Formula Skyrme Force

 $V(\vec{r}_1, \vec{r}_2) = t_0 (1 + x_0 P_\sigma) \delta(\vec{r})$ *central term* \overrightarrow{z} \overrightarrow{z} $(1 + \overline{R}) S/2$ $= t_0 (1 + x_0 P_\sigma) \delta$ $(1 + x_1 P_{\sigma}) [k^2 \delta(\vec{r}) + \delta(\vec{r}) k^2]$ $\frac{1}{2}$ ι_1 (1 \top λ_1) $\frac{1}{2}t_1(1+x_1P_{\sigma})(k^2\delta(\vec{r})+\delta(\vec{r})k^2)$ \overrightarrow{z} + \overrightarrow{C} \overrightarrow{z} $+\frac{1}{2}t_{1}(1+x_{1}P_{\sigma})[k^{\prime2}\delta(\vec{r})+\delta(\vec{r})]$ $t_2(1+x_2P_\sigma)k'\delta(\vec{r})k$ *nonlocal term* $\overrightarrow{ }$ $+t_2(1+x_2P_\sigma)k'\delta$ 1 $\frac{1}{6}t_3(1+x_3)$ P *density dependent term* \vec{p} $+\frac{1}{6}t_3(1+x_3P_{\sigma})[\rho(\vec{R})]^{\alpha}\delta$ iW_0 [*k*' (*r*)*k*] *spin orbit term* \rightarrow σ · [$k' \times \delta$

Skyrme Energy Density Functional:

$$
H = K + H_0 + H_3 + H_{\text{eff}} + H_{\text{fin}} + H_{\text{so}} + H_{\text{coul}} + H_{\text{sg}}
$$

E. Chabanat et al.,**NPA627(1997)710 NPA635(1998)231 NPA643(1998)441**

Tensor Force:

$$
V_{tensor} = \frac{T}{2} \{ [(\sigma_1 \cdot k')(\sigma_2 \cdot k') - \frac{1}{3}(\sigma_1 \cdot \sigma_2)k'^2] \delta(r_1 - r_2) + \delta(r_1 - r_2) [(\sigma_1 \cdot k)(\sigma_2 \cdot k) - \frac{1}{3}(\sigma_1 \cdot \sigma_2)k^2] \} + \frac{U}{2} [(\sigma_1 \cdot k') \delta(r_1 - r_2)(\sigma_2 \cdot k) + (\sigma_2 \cdot k') \delta(r_1 - r_2)(\sigma_1 \cdot k) - \frac{2}{3}(\sigma_1 \cdot \sigma_2) \delta(r_1 - r_2)(k' \cdot k)]
$$

The energy density founctional for centeral exchange and tensor part:

$$
H_{tensor} = \frac{5}{24} (T + U) J_n J_p + \frac{5}{24} U (J_n^2 + J_p^2)
$$

\n
$$
H_{sg} = -\frac{1}{16} (t_1 x_1 + t_2 x_2) J^2 + \frac{1}{16} (t_1 - t_2) [J_p^2 + J_n^2]
$$
 is the spin density
\n
$$
\Delta H = \frac{1}{2} \alpha (J_n^2 + J_p^2) + \beta J_n J_p
$$

\n
$$
\alpha = \frac{1}{8} (t_1 - t_2) - \frac{1}{8} (t_1 x_1 + t_2 x_2); \beta_c = -\frac{1}{8} (t_1 x_1 + t_2 x_2)
$$

\n
$$
\alpha_r = \frac{5}{12} U; \beta_r = \frac{5}{24} (T + U)
$$

$$
J_q(r) = \frac{1}{4\pi r^3} \sum_i (2j_i + 1) [j_i(j_i + 1) - l_i(l_i + 1) - \frac{3}{4}] R_i^2(r)
$$

$$
J_q(r) \sim 2l(l+1) > 0
$$
 for $j = l + \frac{1}{2}$
 $J_q(r) \sim -2l(l+1) < 0$ for $j = l - \frac{1}{2}$

For spin-saturated nuclear

is defined as:

 $J_q(r)$

$$
J_q(r) = 0
$$

The total spin-orbit potential:

$$
U_{s.o.}^{(q)} = \frac{W_0}{2r} \left(2 \frac{d\rho_q}{dr} + \frac{d\rho_{q'}}{dr} \right) + \left(\alpha \frac{J_q}{r} + \beta \frac{J_{q'}}{r} \right)
$$

For Excited states

RPA equation:

$$
\begin{pmatrix}\nA & B \\
B^* & A^* \n\end{pmatrix}\n\begin{pmatrix}\nX^{\nu} \\
Y^{\nu}\n\end{pmatrix} = E_{\nu} \begin{pmatrix}\nX^{\nu} \\
-Y^{\nu}\n\end{pmatrix}
$$
\n
$$
\begin{vmatrix}\nA_{\min j} = (\varepsilon_m - \varepsilon_i) \delta_{ij} \delta_{mn} + \langle mj | V_{res} | in \rangle \\
= (\varepsilon_m - \varepsilon_i) \delta_{ij} \delta_{mn} + V_{mjin}\n\end{vmatrix}
$$
\n
$$
B_{\min j} = \langle mn | V_{res} | ij \rangle = V_{mnij}
$$
\nivectors, spin-orbit, tensor force

\n
$$
\begin{array}{c}\n\text{Cao L. G. et.al, PRC 80, 064304(2009)} \\
\end{array}
$$

Vmjin includes:**central part of the Skyrme force, spin-orbit, tensor force**

Gamow-Teller:

Summary I

- **1. We have shown the effects of tensor on properties of finite nuclei both in ground states and excited states.**
- **2.The isotope dependence of energy splitting of proton states (ε(h11/2) − ε(g7/2)) in Sn isotopes is well reproduced by a parameter set of tensor interactions.**
- **3. Self-consistent HF+RPA calculations are performed for non-spin flip 2+ as well as for spin flip M1 and charge-exchange GT excitations for ²⁰⁸Pb. We found that the the effects of tensor on non-spin flip giant resonance is very small, tensor has weak effect on low-lying states, but the effect is mainly from mean field level. For spin-flip case, the tensor gives large effects, the ph residual interactions change drastically the properties of the spin-flip states.**

Part II. Study on the properties of single-particle states within beyond mean field theory

Motivation of this work

self-consistent mean field theory or the nuclear energy density functional theory starts from an effective NN interactions (properties of nuclear matter and finite nuclei)

 such as: zero-range Skyrme force finite-range Gogny force relativistic Lagrangian

very successful **bulk** properties Binding energy(0.581MeV), Radii(0.03fm) S. Goriely, N. Chamel, et. al., PRL 102(2009)152503 stable nuclei and exotic nuclei

Giant resonances(monopole, dipole, Pygmy dipole…)

limitations of NEDFT

- Widths of GRs.
- Single-particle states and their spectroscopic factors

Particle-vibration coupling (PVC) method for nuclei

In the Dyson equation

$$
G(\omega) = G_0(\omega) + G_0(\omega) \Sigma(\omega) G(\omega)
$$

$$
\fbox{2nd order PT:\n\epsilon + <\Sigma(\epsilon)>
$$

we assume the self-energy is given by the coupling with RPA vibrations

$$
\Sigma(\vec{r},\vec{r}';\omega) = \int d_3r_1 d_3r_2 \ v(\vec{r},\vec{r}_1) \Pi^{(\text{RPA})}(\vec{r}_1,\vec{r}_2;\omega) v(\vec{r}_2,\vec{r}')
$$

In a diagrammatic way

Density vibrations are the most prominent feature of the low-

•Pioneering Skyrme calculation by V. Bernard and N. Van Giai in the 80s (neglect of the velocity-dependent part of V_{eff} in the PVC vertex).

• Microscopic calculations are now feasible. One starts from Hartree or Hartree-Fock with V_{eff} and add PVC on top of it. All is calculated using the same Hamiltonian or EDF consistently.

Microscopic HF plus RPA

- After generating the HF mean-field, one is left with a residual force V_{res} . ٠
- The residual force acts as a restoring force, and sustains collective ٠ oscillations (like GRs). Its effect is included in the linear response theory $=$ RPA.

$$
\begin{pmatrix} A & B \\ -B^* & -A^* \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} = \hbar \omega \begin{pmatrix} X \\ Y \end{pmatrix}
$$

Our fully self-consistent implementation

The continuum is discretized. The basis must be large due to the zerorange character of the force. Parameters: R, E_C.

The energy-weighted sum rule should be equal to the doublecommutator value: well fulfilled !

G. Colò, L. Cao, N. Van Giai, L. Capelli Percentages m₁(RPA)/m₁(DC) [%] Comp. Phys. Comm. 184, 142 (2013). 2019/7/4

FIG. 1. The four diagrams associated with the single-nucleon self-energy. See the text for details.

$$
\Sigma_i(\omega) = \frac{1}{2j_i + 1} \left(\sum_{nL, p > F} \frac{|\langle i||V||p, nL\rangle|^2}{\omega - \varepsilon_p - \omega_{nL} + i\eta} + \sum_{nL, h < F} \frac{|\langle i||V||h, nL\rangle|^2}{\omega - \varepsilon_h + \omega_{nL} - i\eta} \right),
$$

2019/7/4

We have implemented a version of PVC in which the treatment of the coupling is exact, namely we do not wish to make any approximation in the vertex.

$$
\langle i||V||j,nL\rangle = \sqrt{2L+1} \sum_{\text{ph}} X_{\text{ph}}^{nL} V_L(ihjp) + (-)^{L+j_h-j_p} Y_{\text{ph}}^{nL} V_L(ipjh)
$$

The whole phonon wavefunction is considered, and all the terms of the Skyrme force enter the p-h matrix elements

$$
V_L(ihjp) = \sum_{\text{all } m} (-1)^{j_j - m_j + j_h - m_h} \langle j_i m_i j_j m_j | LM \rangle \langle j_p m_p j_h m_h | LM \rangle \langle j_i m_i, j_h m_h | V | j_j m_j, j_p m_p \rangle
$$

Cao LG, et.al., Phys.Rev. C89, 044314 (2014)

TABLE I. Energies and reduced transition probabilities of the low-lying states in ⁴⁰Ca and ²⁰⁸Pb obtained by HF+RPA with SLy5 and T44 parameter sets. The values in parentheses are the results obtained without the contribution of the tensor force. The experimental data are from Ref. [33].

	J^{π}		Theory					
			SLy5		T44	Experiment		
		Energy (MeV)	$B(EL,0 \rightarrow L)$ $(e^2 \text{ fm}^{2L})$	Energy (MeV)	$B(EL, 0 \rightarrow L)$ $(e^2 \, \text{fm}^{2L})$	Energy (MeV)	$B(EL,0 \rightarrow L)$ $(e^2 \text{ fm}^{2L})$	
^{40}Ca	$3-$	3.225(3.822)	$0.884(1.285) \times 10^4$	1.366(1.508)	$0.852(1.280) \times 10^4$	3.74	1.18×10^{4}	
208Pb	2^{+} $3-$ 4^+ $5-$	5.155(4.934) 3.585(3.671) 5.760(5.417) 4.022(4.560) 4.507(5.589)	$3.065(2.858) \times 10^3$ $4.928(6.374) \times 10^5$ $1.395(1.256) \times 10^7$ $2.881(4.898) \times 10^8$ $0.748(1.642) \times 10^8$	4.549(5.105) 3.337(3.629) 4.655(5.684) 3.977(4.092) 4.532(5.021)	$2.478(2.785) \times 10^3$ $5.739(5.523) \times 10^5$ $0.782(1.382) \times 10^7$ $3.796(2.443) \times 10^8$ $0.345(1.929) \times 10^8$	4.09 2.61 4.32 3.19 3.71	4.09×10^{3} 6.21×10^{5} 1.29×10^{7} 4.62×10^{8} 3.30×10^8	

Results and discussion

II. Effective mass

Cao LG, et.al., Phys.Rev. C89, 044314 (2014)

$$
\frac{m^*}{m} = \frac{\widetilde{m}}{m} \times \frac{\overline{m}}{m}
$$

$$
\frac{\widetilde{m}}{m} = \left(1 + \frac{m}{\hbar^2 k} \frac{\partial M}{\partial k}\right)^{-1} \qquad \qquad \frac{\overline{m}}{m} = \left(1 - \frac{\partial M}{\partial E}\right)
$$

TABLE V: The calculated effective mass for neutron states in ²⁰⁸Pb in various approximations. The results are obtained by using SLy5 and T44 parameter sets.

	ΗF		pvс		pvc		pvc		
			central		$central+S.O.$		full		
	m_k^*	m_e^*	m^*	m_e^*	m^*	m_e^*	m^*		
$\mathrm{SLy5}$	0.839	1.156	0.968	1.198	1.002	1.229	1.028		
T44	0.841	1.157	0.973	l.200	1.009	1.235	1.038		

III. Spectroscopic factor

$$
S_{\alpha}^{\lambda} = \left(1 - \frac{\partial \Sigma_{\alpha}}{\partial \varepsilon}\right)_{\varepsilon = \varepsilon_{\alpha}^{\lambda}}^{-1}
$$

TABLE IV: The energies and spectroscopic factors of the single-particle states in ²⁰⁸Pb in various approximations. The results are obtained by using SLy5 and T44 parameter sets. The experimental data are taken from Ref.[31, 32].

		HF	pvc		pvc		pvc			Spectroscopic	
			central		$central+S.O.$		full			factors	
		$\varepsilon^{(0)}$	$\Delta \varepsilon_i$	ε_i	$\Delta \varepsilon_i$	ε_i	$\Delta \varepsilon_i$	ε_i	ε_i^{exp}	S_i^{th}	S_i^{exp}
T44	$3d_{3/2}$	0.20	-0.55	-0.35	-0.44	-0.24	-0.44	-0.24	-1.40	0.895	1.09
	$2g_{7/2}$	0.14	-0.85	-0.71	-0.53	-0.39	-0.61	-0.47	-1.44	0.832	1.05
	$4s_{1/2}$	-0.35	-0.48	-0.83	-0.50	-0.85	-0.47	-0.82	-1.90	0.896	0.98
	$3d_{5/2}$	-0.88	-0.72	-1.60	-0.81	-1.69	-0.81	-1.69	-2.37	0.855	0.98
	$1j_{15/2}$	-0.30	-0.87	-1.17	-1.80	-2.10	-1.77	-2.07	-2.51	0.583	0.58
	$1i_{11/2}$	-2.19	-0.39	-2.58	-0.51	-2.70	-0.57	-2.76	-3.16	0.884	0.86
	$2g_{9/2}$	-3.28	-0.52	-3.80	-0.69	-3.97	-0.68	-3.96	-3.94	0.877	0.83
	$3p_{1/2}$	-7.91	-0.08	-7.99	0.04	-7.87	0.03	-7.88	-7.37	0.905	0.90 ₁
	$2f_{5/2}$	-8.92	0.03	-8.89	0.19	-8.72	0.18	-8.74	-7.94	0.888	0.60
	$3p_{3/2}$	-9.14	0.11	-9.03	0.19	-8.95	0.21	-8.93	-8.26	0.844	0.88
	$1i_{13/2}$	-9.18	0.17	-9.01	-0.01	-9.19	0.01	-9.17	-9.24	0.903	0.91
	$2f_{7/2}$	-12.10	0.54	-11.56	0.49	-11.61	0.68	-11.42	-9.81	0.580	0.95
	$1h_{9/2}$	-13.14	0.13	-13.01	0.43	-12.71	0.44	-12.70	-11.40	0.831	0.98

Cao LG, et.al., Phys.Rev. C89, 044314 (2014)

•Microscopic particle-vibration coupling calculations are now available - based on the self-consistent use of nonrelativistic functionals.

• Results for single-particle states are improved compared to mean-field results.

•The effective mass is enchanced by particle-vibration copuling calculations, so the level density is improved around the Fermi surface which is improtant for astrophysics study. The spectroscopic factor is quched by about 20%.

Thanks!