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Introduction

★ Method applied in atomic physics and quantum chemistry:  
 ↠ Multi-Configuration Hartree-Fock (MCHF), Multi-Configuration Self-Consistent Field (MCSCF) 

★ Based on the determination of a Configuration Interaction (CI) wave function ➡ allows: 

‣ explicit symmetry preservations (particle number, spherical symmetry, Pauli principle),  
‣ indiscriminate treatment of long-range correlations,  
‣ treatment of ground and excited states in even-even, odd-even & odd-odd nuclei  

on the same footing. 

★ The underlying mean-field and the single-particle states evolve with the correlations of the system 

                    ➡ fully self-consistent approach

Self-consistent Multiparticle-Multihole Configuration Mixing Method (MPMH):



✦  Formalism of the MPMH method  

→ role and interpretation of the orbital optimization 

✦  Applications with the Gogny D1S interaction 

✦ Numerical algorithm 
→ doubly iterative convergence process  

✦ Description of even-even sd-shell nuclei 
             → Effect of the orbital optimization on ground and excited states properties: Charge radii,  
                 excitation energies, transition probabilities, inelastic electron and proton scattering… 

✦  Towards an “ab-initio” theory 

→  implementation of a chiral interaction: preliminaries 
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 Variational principle applied to the energy of the system:

MPMH method: Formalism

Two coupled equations to solve:

�E [ ]/{'⇤
i } = 0

�E [ ]/{A⇤
↵} = 0{

Note: formalism shown here for a 2-body Hamiltonian 

derivations for 2-body density-dependent or 3-body interaction available 
in C.R., N. Pillet, D. Peña Arteaga & J.-F. Berger, PRC 93, 024302 (2016). 

E [ ] = h |Ĥ| i = 0



★ 1st variational equation: The mixing coefficients
Usual 

CI diagonalization

➡ introduces explicit correlations in restricted configuration space      P P Q

MPMH method: Formalism

All types of long-range correlations are treated at the same time: 

Interaction vertex           h�↵|V̂ |��i

RPA, pairing

Particle-vibration coupling 

RPA 

Pairing 
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★ 2nd variational equation: The single-particle states

MPMH method: Formalism

✦ variation of the single-particle states:

T = hermitian 1-body operator

✦ 1st order variation of the many-body wave function:

h
ĥ(⇢), ⇢̂

i
= Ĝ(�)

Generalized  
mean-field 
equation

�E [ ]/{'⇤
i } =h |

h
Ĥ, T̂

i
| i = 0

“Generalized Brillouin condition”

= |� iP + |� iQ

P Q

↠ Note:

the orbital optimization takes into account the coupling HPQ/HQP between P and Q spaces (however not HQQ)↠
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MPMH method: Formalism

General equation in physics:

Equation of motion for the one-body  
Green’s function (at equal times) ⇒

⇥
h(⇢), ⇢

⇤
= G(�) ⇒ Renormalization of the 

one-body propagator 
— 

equivalent to solving  
a Dyson equation

1-body GF G(1) Connected 2-body GF G(2)
C

⌃(t1 � t2) = ⌃(0)�(t1 � t2) + ⌃(dyn)(t1 � t2)Self-energy:

Static part Dynamical part

�ij(⇢) =
X

kl

hik|eV |jli⇢kl = ⌃(0)
ij

G(�) = lim
t2!t+1

Z
dt

h
G(1)(t� t2),⌃

(dyn)(t1 � t)
i

★ Interpretation of the orbital equation:  

➡ Consistency between correlations and single-particle picture
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★ Gogny D1S interaction (Dechargé, Gogny PRC 21, 1568 (1980)):

Application to sd-shell nuclei with the Gogny force

correlated density 

(many-body effects …)



Application to sd-shell nuclei with the Gogny force

➡ modified coupled equations to solve:
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Calculation of the densities 
and source term 

⇢ki = h |a†iak| i

�kiml = h |a†ia
†
malak| i

) G(�)

•  

•  
�(⇢ki⇢lm � ⇢km⇢li)

The full solution requires a doubly-iterative algorithm:

C.R., N. Pillet, D. Peña Arteaga & J.-F. Berger, PRC 93, 024302 (2016). 

starting point: 
Hartree-Fock 

orbitals

Solve 1st equation 

Solve 2nd equation 

… until convergence

MPMH method: Numerical algorithm

{'i}⇒ single-particle orbitals  

X
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{A↵}    ⇒ Mixing coefficients  
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• Even-even nuclei with 

• truncation scheme: core of 16O + valence space 

• 9 major oscillator shells

10 6 (Z,N) 6 18

Ex: 28Si → 12p-12h

Application to sd-shell nuclei with the Gogny force

Framework

Calculation of ground- and excited-state properties: 

‣ Binding and separation energies, charge radii 
‣ Excitation energies 
‣ Magnetic dipole moments and quadrupole spectroscopic moments 
‣ Transition probabilities B(E2), B(M1)… 

➡How are these observables impacted by the optimization of orbitals?

nndc.bnl.gov

C. Robin, N. Pillet, M. Dupuis, J. Le Bloas, D. Peña Arteaga and J.F. Berger, PRC 95 044315 (2017).
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quadruplet (ijkl)
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Symmetry-preserving scheme 
➡ The information about deformation is contained in the two-body correlation matrices σ :

HFB potential energies

Application to sd-shell nuclei with the Gogny force
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 Source term of the orbital equation:
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     Introduces couplings between the valence space 

     and the rest of the single-particle basis.
)

1d3/2

1d5/2

2s1/2

sp

sp

sd

sd

fp

sdg

fp sdg
single-particle state j

si
ng

le
-p

ar
tic

le
 s

ta
te

 i

{

At iteration #1:

Application to sd-shell nuclei with the Gogny force



1d3/2

1d5/2
2s1/2

sp
spsd

fp
sdg

fp sdg

 One-body density matrix (neutrons): Representation of in the HF basis:

Equation 1 - iteration 1 Equations 1&2 - iteration 1 
After convergence (iteration 22) 

�⇢ = |⇢� ⇢(0)HF |

Application to sd-shell nuclei with the Gogny force

➡ No more  
frozen states

20Ne

28Ne

⇢ij

= �ij if i, j 2 core

2 [0, 1] if i, j 2 valence
0 otherwise

{ [h(⇢), ⇢] = G(�) ) ⇢ij =
Gij(�)

"i � "j



Application to sd-shell nuclei

 Convergence of the one-body density matrix (neutrons):
20Ne
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 Effect on the many-body wave function:

1st equation only 1st+2nd equations 
Starting from HF orbitals

1st+2nd equations 
Starting from HO orbitals

nucleus Weight of P(i) Weight of Q(i) Weight of P(i) Weight of Q(i) Weight of P(i) Weight of Q(i)

20Ne 100% 0% 98% 2% 66% 34%
24Mg 100% 0% 97% 3% 61% 39%
28Si 100% 0% 95% 4% 55% 45%
32S 100% 0% 93% 7% 61% 39%

28Ne 100% 0% 85% 15% 78% 22%

Application to sd-shell nuclei with the Gogny force



 Effect on the many-body wave function:

1st equation only 1st+2nd equations 
Starting from HF orbitals

1st+2nd equations 
Starting from HO orbitals

nucleus Weight of P(i) Weight of Q(i) Weight of P(i) Weight of Q(i) Weight of P(i) Weight of Q(i)

20Ne 100% 0% 98% 2% 66% 34%
24Mg 100% 0% 97% 3% 61% 39%
28Si 100% 0% 95% 4% 55% 45%
32S 100% 0% 93% 7% 61% 39%

28Ne 100% 0% 85% 15% 78% 22%

Application to sd-shell nuclei with the Gogny force

The weight of the initial Q space increases when starting further from the final solution



Application to sd-shell nuclei with the Gogny force

➡ Pure HF component decreases: 
self-consistent procedure appears 
to fragment the wave function

Reference state built  
on optimized orbitals

➡ “better” than HF state

 Effect on the many-body wave function:

Pure Hartree-Fock component in correlated ground state
nucleus 1st equation only 1st + 2nd equations

26Ne 71% 62%
28Si 60% 24%
32S 58% 39%
34S 39% 17%

New reference-state component
1st + 2nd equations

69%
26%
47%
18%

➡ final reference state = superposition of mpmh excitations on the initial HF reference state = richer 



✦Charge radii:

Hartree-Fock orbitals

self-consistent natural orbitals

Ne S Si

Mg Ar

✦ Radial orbitals: 26Mg

p3/2

2s

p1/2

d3/2d5/2

1s

Application to sd-shell nuclei with the Gogny force



✦Charge radii:

Hartree-Fock orbitals

self-consistent natural orbitals

Ne S Si

Mg Ar

✦ Radial orbitals: 26Mg

p3/2

2s

p1/2

d3/2d5/2

1s

28Ne

Application to sd-shell nuclei with the Gogny force



✦ Excitation energies: 30S and 30Si: 
T=0 component of the Gogny force 

(lack of tensor term, Pillet et al. PRC 85, 044315 (2012))

Orbital 
optimization

{

Application to sd-shell nuclei with the Gogny force



✦ Transition probabilities B(E2)

‣ Trends overall well reproduced  

‣ But clear lack of collectivity due to 
the restricted valence space 

‣ Positive but small effect from the 
optimization of orbitals  
(factor 1.7 in 30Si, 1.3 in 28Si & 32S)

No effective charges

Application to sd-shell nuclei with the Gogny force

Hartree-Fock orbitals

self-consistent  
natural orbitals



 First implementation of the fully self-consistent multiparticle-multihole configuration mixing method


✦ Construction of a general mean-field and natural orbitals consistent with the correlation of the system,  
complete convergence reached.  

✦ Effect of orbital optimization always positive.  
   With single valence shell: large impact on the ground-state wave function, but small effect on the 
transition probabilities…  

➡ solve orbital equation for each many-body state 

➡ try truncation schemes involving larger single-particle spaces 
(excitation order, excitation energy, symmetry-constrained combinations etc.) 

Conclusion from the study with Gogny
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✦ The D1S Gogny interaction is in principle not  
adapted (double counting of correlations…), and 

✦ can lead to divergent behaviors when enlarging  
the valence space due to the zero-range spin-orbit 
and ρ-dependent terms. See e.g. study of 12C:
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 First implementation of the fully self-consistent multiparticle-multihole configuration mixing method


✦ Construction of a general mean-field and orbitals consistent with the correlation of the system,  
complete convergence reached.  

✦ Effect of orbital optimization always positive.  
   With single valence shell: large impact on the ground-state wave function, but small effect on the 
transition probabilities…  

➡ solve orbital equation for each state 

➡ try truncation schemes involving larger single-particle spaces 
(excitation order, excitation energy, symmetry-constrained combinations etc.) 

 But:  

✦ The D1S Gogny interaction is in principle not  
adapted (double counting of correlations…), and 

✦ can lead to divergent behaviors when enlarging  
the valence space due to the zero-range spin-orbit 
and ρ-dependent terms. See e.g. study of 12C:

Conclusion from the study with Gogny

(W
.u

.)

collectivity     , excitation energies      , overbinding ~ 60 MeV!

collectivity     ,excitation energies     , overbinding ~ 6 MeV

Need a better suited interaction

‣ fully finite-range, better constrained Gogny interaction 
with tensor 

or 

‣ interaction derived from chiral EFT (here)
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— in collaboration with I. Tews (LANL), R. Bernard (ENS Cachan) and G. Hupin (IPN Orsay)



Application of the MPMH method with a chiral interaction

✦ In MPMH, we have to do the CI diagonalization 
and calculation of the mean field/source term at 

each iteration  

↠ use matrix elements (e.g. in HO basis) as only 
input would be very inefficient  

↠ need potential in coordinate space  
and ideally Gaussians 



✦ Ingo Tews and collaborators have developed  
local chiral interactions  

with Gaussian regulators  
that can be written in coordinate space 

Application of the MPMH method with a chiral interaction

Chiral expansion:

See e.g. A. Gezerlis, I. Tews, E. Epelbaum et al.,  
Phys. Rev. C 90, 054323 (2014) 

At each order: 

contact terms 
+ 

long-range pion-exchange terms
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with Gaussian regulators  
that can be written in coordinate space 

Application of the MPMH method with a chiral interaction

Chiral expansion:

See e.g. A. Gezerlis, I. Tews, E. Epelbaum et al.,  
Phys. Rev. C 90, 054323 (2014) 

At each order: 

contact terms 
+ 

long-range pion-exchange terms

1st step: leading order

✦ In MPMH, we have to do the CI diagonalization 
and calculation of the mean field/source term at 

each iteration  

↠ use matrix elements (e.g. in HO basis) as only 
input would be very inefficient  

↠ need potential in coordinate space  
and ideally Gaussians 



V LO
OPE(r) =

⇣
W (0)

S (r)~⌧1 · ~⌧2 �1 · �2 +W (0)
T (r)~⌧1 · ~⌧2 S12

⌘
⇥
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V LO
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★ Chiral interaction at leading order with Gaussian regulators:

{

regulator

{

regulator

↠ purely gaussian

Application of the MPMH method with a chiral interaction

cut-off R0= 1 fm

✦ contact term:

✦ long-range one-pion exchange:

central spin-isospin term:

tensor isospin term:

↠ Yukawa or Yukawa-like x Gaussians



to use the machinery already developed in the original code for the Gogny interaction 

Application of the MPMH method with a chiral interaction

★ Strategy: fit the regularized Yukawa or Yukawa-like functions to a sum of Gaussians

Note:  
such fits of Yukawa to Gaussians already applied in J. Dobaczewski & J. Engel, Phys. Rev. Lett. 94, 232502 (2005),  

or more recently in e.g. R. Navarro Perez et al. PRC 97, 054304 (2018).
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true function

fit to 4 Gaussians

fit to 5 Gaussians

regularized central term

r (fm)

W (0)
S,reg,fit(r)

W (0)
S,reg,true(r)

ratio

fit to 4 Gaussians

fit to 5 Gaussians

r (fm)

↠ Central term:

Choose 5 Gaussians

Application of the MPMH method with a chiral interaction

Courtesy of I. Tews
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Very preliminary!



↠ Tensor term:

Application of the MPMH method with a chiral interaction

Courtesy of I. Tews

D =
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true function

fit to 5 Gaussians

regularized tensor term
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Very preliminary!



Application of the MPMH method with a chiral interaction

↠ Test for the central term:

e�M⇡r

r
(1� e�(r/R0)

2

)2 =
2p
⇡

Z 1

0
dX

⇣
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difference in interaction matrix elements   
(5 HO shells)

= 1.20⇥ 10�4 MeV

= 2.10⇥ 10�5 MeV

e�M⇡r

r
=

2p
⇡

Z 1

0
dXe�r2X2�M2

⇡/4X
2 (exact)

to do the exact integration of the central term and check the accuracy of the Gaussian fit

Use the relation

✴ Average difference: 

s =
q

h�eV 2i � h�eV i2

✴ standard deviation:

   
  

fit
[M
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]

↠ impact on observables to be investigated… 
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ijkl
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|

Very preliminary!



Application of the MPMH method with a chiral interaction

To do next:

★ Finish the implementation of the tensor term 

★ Implement the next orders: NLO, N2LO 

              ↠ finite range spin-orbit 
              ↠ three-body interaction 

★ Check convergence of the results with respect to the cut-off and the size of the single-particle basis …
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