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Topological soliton models

Why topological models?

At fundamental level we may have
~ fermions -> bosons are trivial fermion systems
© bosons -> fermions are nontrivial topological structures
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Topological soliton models

Stabilisation mechanism

~ Soliton has the finite size and the finite
energy

~ One needs at least two counter terms
in the effective (mesonic) Lagrangian

Prototype: Skyrme model
[T.H.R. Skyrme, Pros.Roy.Soc.Lond. A260 (1961)]

~ Nonlinear chiral effective meson (pionic) theory

Fﬁ v 2
T (8, UT0"U) + 262Tr[UT8MU, UTo"U|

e D—

Shrinking term Swelling term




Skyrme Model

Simple scaling analysis r — A\

Lambda is a characteristics scale length, e.g. parameter defining the soliton size

The energy of the static configuration (classical soliton mass) changes as

E = /d3 { T Tr (0;UT0'U) +

F :
= /d% {Al—gTr (O;UT0'U) + A7t

Tr[UT0;U, UT 97 U)?
62

s Tr[UT9,U, UWUP}

2e

Energy-momentum tensor form factors’ analysis gives the more detailed information



Skyrme Model

Hedgehog solution (nontrivial mapping)

Directions in isotopic space are

related to the directions in ordinary U = ex T T = ex {j{ ﬁF(r)}
3D configuration space P 2F P

TT

Rotations in isotopic and

configuration spaces may .
compensate each other SU(2) < O(3) mapping

U=U =AUA" = exp{iA?ATﬁF(T)} = exp{iT;D;j(A)n; F(r)}

As a result the energy of the system E—F
does not change (rotational zero N
mode fluctuations)

S? T*
Nucleons appear after the zero H=M, +—=M,+_—,
: 21 21
mode gquantuzations

1S =T,s,t >=(=1)""J2T +1D>7 (4)



Skyrme Model (Summary)

The free space Lagrangian (was widely in use)
[G.S.Adkins et al. Nucl.Phys. B228 (1983)]

2
T [Uta,U,UT0,U]? + a0

t_
= T T(U+U 2)

L=-ZTr(0,Ud"U") —

Nontrivial structure: U =exp{it T /2F } =exp{it nF(r)}

topologically stable B _ 1 Wb T T T I U9 U
solitons with the S rilyLoLy) “ *
corresponding conserved
topological number . A= fd3rB°
(baryon number) A

§2 T2
Nucleon is quantized H=M,+_— 27 =M, MY

state of the classical
soliton-skyrmion 1S =T,s,t>= (_1)f+T1/2T + 1Df:ST (A)



Soliton in a magnetic field

Deformation of the soliton

~ Soliton in a static magnetic field in
z-direction has a deformed shape

~ Spheroidal solitons due to the
charged (nonlinearly interacting)
pions in a magnetic field

~ One should take into account the
deformation effects




Soliton in a magnetic field

“Fully” deformed ansatz

The most general form U(m — €XP {27? . N('F)P(F)}
- Three profile functions
- Spatial extent P = P(’l“, 97 90)
Non-spherical symmetry in . sin ©(r, 0, p) cos ®(r, 0, p)
isotopic space intermsof N = | sin ©(r, 0, ) sin ®(r, 6, @)
the two functions COS @(7“7 6’, ‘P)

Axial symmetry for EM |2

Only two profile functions P=P(r,0) and © = 0O(r,0)

Third one is in trivial form O = @

9



EM interactions in a Soliton Picture

Gauging the theory

Introducing the standard _ :
covariant derivative with U(1) D“U - auU + quA“ [Q’ U]
field

. 1 1
The charge operator in SU(2) Q S| - T3
framework has the form 0 2

Axial symmetry for B),||Z" gives
Gauge field A, is an external

field

1 1
AP = (07 _gyBMa §CUBM, O)

In a symmetrically fixed gauge
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Variational approach to the problem

Classical soliton energy (mass)

- The functional of two functions FE|P, O] = /d37“/\/l (P(r,0),0(r,0))

~ Integrand has the form

M(P,0) = M(P(r,0),0(r,0)) + AM(P(r,0),0(r,0), Byr)

|

Second order polynomial form on the magnetic field

-~ If the magnetic field is zero

M(P,0) = M(P(r),0) + AM(=0)

|

Gives spherically symmetric hedgehog’s functional
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Variational approach to the problem

Classical equations of motion

The variation of func’FionaI g.ives { g(PrT'y Pyg, P, Py, 0O, Oy, P, @) —0
h

the coupled partial differential
equations (technically a difficult (@rm @99, @7“7 @0, Pr, Pe, @, P) =0

task)

Should satisfy “the baryon
number equals to one”
condition
7T

_l/dr/ (PO — Py©,)sin? P = 1
78
0
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Variational approach to the problem

Simplification of the problem

~ Considering the functional

Mspherical(P) — M(P(T)) AM(P(T)7 BM)

~ One gets an ordinary differential
equation (nonlinear form)

f(P". P, P,r,By) =0

- At the linear approximation “Confining nature” - big values of magnetic field

2 2 2 l

P'(r)+ 2P () = 2P0 — (m2 + auBar ) PO) = 0. Bar)*P() =

1

“The pion mass modification” - small values of magnetic field
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Variational approach to the problem

Solutions of linear equation

- At the small values of magnetic field (Yukawa type)

1+ Ar 4. 2 1/2
P(r)~ — e ™, A= (m+ ZaBu) "

- At the large values of magnetic field (gaussian type)

1 quMfr 3—1—\/ \/ m 1 2 5
o1/ap2 { }U( T —quW)

P(r) ~
( ) 8quM 2 ’ 15
The confluent hypergeometric function of the second type
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Variational approach to the problem

Parametrisation of solutions
2

P(r,0) = 2 arctan { :—g(l + Ar)[1 + u(@)]} exp {—BoAr — queBMTQ)}

u(0) = qe By Z Y, cOS™ 0

n=1

O(r,0) =0+ ((r,0)

C(r,0) = geBprre %" Z dp, Sin(2n6)

n=1

ro, Bi, Vi, 0; are variational parameters

- Properly reproduces the asymptotic solutions
 Properly reproduces the solution at origin
- Nicely interpolates in between of these solutions
- Accuracy is very good (the deviations from the exact solutions at the spherical case
within the 1%)
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Soliton mass & baryon charge redistribution in a magnetic field

Dependence of the classical soliton mass on the magnetic field
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UY, H.-Ch.Kim & M.Oka, PRD 99 (2019)
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Soliton mass & baryon charge redistribution in a magnetic field

Analysing the regions (table from the Wikipedia)

o 10~°-10-8 gauss — the magnetic field of the human brain

« 1076-10~3 gauss — the magnetic field of Galactic molecular clouds

o 0.25-0.60 gauss — the Earth's magnetic field at its surface

e 25 gauss — the Earth's magnetic field in its corel®!

e 50 gauss — a typical refrigerator magnet

e 100 gauss — an iron magnet

1500 gauss - within a sun spot 7]

10000 to 13000 gauss — remanence of a neodymium-iron-boron (NIB) magnet/€!
« 16000 to 22000 gauss - saturation of high permeability iron alloys used in transformers!®!
o 3000-70,000 gauss — a medical magnetic resonance imaging machine

« 10121013 gauss — the surface of a neutron starl1?!

o 4x1013 gauss — the quantum electrodynamic threshold

« 10'° gauss — the magnetic field of some newly created magnetars!!!]

« 107 gauss — the upper limit to neutron star magnetisml!1]

and 10719 gauss during the heavy ion collisions (very short time interval)
17



Soliton mass & baryon charge redistribution in a magnetic field

Analysing the regions

© Linearised equation

P/(r) + 2P'(r) ~ 3 P(r) - (m n zquM) P(r) — 2 (q:Bur)?P(r) = 0

LI | 1

The three terms for comparing

- Region 1 (Yukawa type asymptotic)
r?(ge x 107 G)* ~ 10MeV? < (m? + 2¢.Bar/3) ~ m2 ~ 0.18 GeV?

> Region 2 (quadratic term is more important - gaussian asymptotic)

m721- < 2QeBM/3
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Soliton mass & baryon charge redistribution in a magnetic field

TABLE I. Variational parameters for the profile functions P
and © at some selected values of the external magnetic field

B]\.[.

B 0 10 G e 10 G
ro, fm? 0.95646 0.95641 0.95200 0.97324
Bo 1.31568 1.31554 1.30447 0.93320
B1 0 0 0 0.21958
o, fm? 0 —0.64430 0.12305 0.33700
~v4, fm? 0 0.30370 0.21985 0.08227
v6, fm? 0 —0.10019  —0.14775 0.21615
5o, fm ™2 4.23604 3.90049 2.84256 3.21149
51, fm 0 0.13997 0.09016 0.9366
5o, fm 0 0.24411 0.00207 0.00174

P(r,0) = 2arctan { ﬁ(l + Ar)[1 + u(@)]} exp {—ﬂoAr — ﬂlquMTQ)}

r2

UY, H.-Ch.Kim & M.Oka, PRD 99 (2019)
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Soliton mass & baryon charge redistribution in a magnetic field

Baryon charge density

Bo(’f’, 9) = —

Pr@g — Pg@f,« (Sln@) Sin2 p

Q22 sin 6
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Soliton mass & baryon charge redistribution in a magnetic field

Baryon charge density distribution of solitonat B); = (0

1.00 1.00
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0.50 0.50

0.25 0.25

Baryon charge density By(y, z) (left panel) and By(z,y) (right panel) planes
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Soliton mass & baryon charge redistribution in a magnetic field

Baryon charge density distribution of soliton at B,; = 10" G
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Baryon charge density By(y, z) (left panel) and By(z,y) (right panel) planes
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Soliton mass & baryon charge redistribution in a magnetic field

Equivibaryon charge contour linesat Bjp; =0

— 1 — 1

— 08 — 038

Baryon charge density By(y, z) (left panel) and By(z,y) (right panel) planes
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Soliton mass & baryon charge redistribution in a magnetic field

Equivibaryon charge contour linesat B;; = 10" G
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Baryon charge density By(y, z) (left panel) and By(z,y) (right panel) planes
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Soliton mass & baryon charge redistribution in a magnetic field
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FIG. 2. (Color online) Results of the baryon charge distributions along the z direction (left panel) and in the perpendicular
plane to the z axis (right panel), respectively. The solid curves depict the results with By = 10'? G, the dashed ones draw
those with By; = 107 G, and the dotted ones correspond to the case of By = 0, respectively.

UY, H.-Ch.Kim & M.Oka, PRD 99 (2019)
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Soliton mass & baryon charge redistribution in a magnetic field

ABy(r) = By(r,7/2) — By(r,0)
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FIG. 3. (Color online) The left panel draws the results of the anisotropy ABy(r) defined in Eq. (17) as functions of r, whereas
the right panel shows the result of ABy(0.2fm) fixed at » = 0.2fm as a function of the magnetic field. Notations in the left
panel are the same as in Fig. 2.

UY, H.-Ch.Kim & M.Oka, PRD 99 (2019)
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Soliton mass & baryon charge redistribution in a magnetic field

Baryon charge localization

1 fm
B(l fm) = 7°2d7°/dQ BQ
0
B(l fm) = 0.9014 for BM — O,
B(1 tm) = 0.9024 for By, = 10'" G

and B(j 1) = 0.9665 for By = 107 G

UY, H.-Ch.Kim & M.Oka, PRD 99 (2019)
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Quantisation of spheroidal solitons

Global time independent rotations

Performing separately SO(3) rotations in isotopic and configuration spaces
_ . T). . . —1
U = exp{iT;D;; (A)N;(r)P(R™'r)}
And defining the new vectors in a body-fixed (primed) frame
U = exp{i7N'P(7')}

One has the same energy of the classical static configuration

E[P(r), 0(r)] = E'[P(r"), ()]

28



Quantisation of spheroidal solitons

Time dependent slow rotations

Performing separately SO(3) rotations in isotopic and configuration spaces and

U = exp{ir; Di; (A(t))N;(F) P(R™'(t)7)}
using the following relations
8OU fl z( , H,)((?ON,( )+f2 Z( ,7 _',)807“
0oN;(t) = Dyj(t)N; = Dy; D7, Dy Ny = D;; D' Ny,
Oori(t) = R;;'(t)r; = R;;' Rjp Ry, 'ri = Ry Rjyry,
one generates the angular velocities in isotopic and configuration spaces

. 1 . 1 .
Dz’ijk — 1€ k1 W] and Rz’j Rjk — —ze,,;lel

29



Quantisation of spheroidal solitons

Time dependent Lagrangian and canonical conjugate variables

Lagrangian has form

2 2
wit+w
L=—M+— : 2 A 12 — (W11 +wao) Ay 10
02 +02 w3 —3)2
+ "2 Aga.12 + (w5 —$ks) Awq 33
2 2
Canonical conjugate variables
OL OL
T; = d J;, =
' 8(4),,; a ’ 8QZ
Hamiltonian of the system
A T% (ThJ1 + Tod2)Apa12

H=M+
20033 Aww,12M00,12 — Aig,lg

(T12 + TQQ)AQQ,12 + (j12 + j22)Aww,12

2(Aww,12A00,12 — A?ug,lg)
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Quantisation of spheroidal solitons

Eigenstates and eigenenergies
Eigenstates in a body-fixed reference frame
T, T5; J, J3)
- The grand spin zero low energy configuration
K=T+J=0

Eigenenergies

Apw12 + Aaa,12 — 2A00,12 Aaa 1275 + Apw 1273

E=M T(T +1) —

2(Aww,12h00,12 — Alq 1)

1 Aua 12
— + ’ T5J
<2Aw§2,33 Avw12Mqa,12 — Aig,u) 509

2(Aww,12M00,12 — Af)a,lz)
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Quantisation of spheroidal solitons

Eigenstates and eigenenergies

Limiting considerations

m Avwi2 + Moo 12 — 2A 40 12
By —0, ©(r,0)—0, P(r0)—P(r) 2(Aww12800,12 — A2q 1o)

— him m lim Apw.12 + Aaa,12 — 2A 012 B
AwQ,12—>A AQQ,12—>AwQ,12 By —0, Aww,12—>AQQ,12 Q(Aww,12AQQ,12 - A?uQ,lQ) 2A

- Only T3 = —J; states are allowed

Aaa 12TZ + Apw,12J2 1 n Awa 12 T 7
— — 3J3
2(Aww,12A00,12 — Aig,lg) 2M0,33  Aww,12M00,12 — AiQ)lQ
B _AQQ,12T32 + Aww.12J% + 2A 0, 12T3J3 -1 T 7
2(~/\(,uu),12AQQ,12 — AiQ,lg) 2AwQ,33 59
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Quantisation of spheroidal solitons

Eigenstates and eigenenergies

Finally, we have
2

T
E=M+ ——°
2N 033

Aao 12 + Aww 12 — 2A 40 12
2(Aww,12800,12 — Adg 15)

(T(T +1) - T3)

Degeneracy of Delta energy states are partially lifted

mp = My

MA++ — TNA- # maA+ — TNAO
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Baryons in a magnetic field
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FIG. 4. (Color online) The changes of the baryon masses
as a function of the magnetic field. The solid curve depicts
mao, wWhereas the dashed one draws m,-. The dotted one
represents m,,, respectively.

UY, H.-Ch.Kim & M.Oka, PRD 99 (2019)
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Baryons in a magnetic field

The mass splittings

Amo,-)(Bum)
Amo.n)(Bar)

Am(_,n) (B]\[)
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Baryons in a magnetic field

>1OOE— :;
= S0 i
< 60F IE
2 4oF i
< 20F S
3 o ——=t

14 15 16 17 18 19
logio(Bur), G

FIG. 5. (Color online) The change of the baryon mass split-
tings in the presence of the magnetic field. The solid curve
draws the result of Am,_)(Bar), whereas the dashed one de-
picts Am (g n)(By)- Lhe dotted one shows Am_ ,y(Bar). For
the definitions of Am, ), see Eqgs. (25)-(26).

UY, H.-Ch.Kim & M.Oka, PRD 99 (2019)
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Summary

- Within the present approach
- Baryons are deformed in a magnetic field

» The changes are marginal up to the values of
magnetic field existing in neutron stars

> The changes are large at the large values of
magnetic field corresponding to heavy-ion collision
experiments

Thank you very much for your attention!
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