

Inha University, Republic of Korea

Baryon properties in a strong magnetic field

Ulugbek Yakhshiev

Nuclear Many-Body Theories: Beyond the Mean Field Approach July 05, 2019, APCTP (Pohang), Korea

Content

- Topological soliton models
- Skyrme model
- Soliton in a magnetic field
- EM interactions in a Soliton Picture \bigcirc
- Variational approach to the problem
- Soliton mass and Baryon charge \bigcirc redistribution in a magnetic field
- Quantisation of spheroidal solitons
- Baryons in a magnetic field
- Summary

Topological soliton models

Why topological models?

At fundamental level we may have

- \bullet fermions -> bosons are trivial fermion systems
- bosons -> fermions are *nontrivial topological structures*

Structure

From what made a nucleon and, in particular, its core?

- The structure treatment depends on an energy scale
- At the limit of large number colours the core still has the mesonic content

Shell is made from the meson cloud

Topological soliton models

- Soliton has the finite size and the finite \bigcirc energy
- One needs at least two counter terms \bigcirc in the effective (mesonic) Lagrangian

Prototype: Skyrme model

[T.H.R. Skyrme, Pros.Roy.Soc.Lond. A260 (1961)]

Nonlinear chiral effective meson (pionic) theory \bigcirc

$$
\mathcal{L} = \frac{F_{\pi}^2}{16} \text{Tr} (\partial_{\mu} U^{\dagger} \partial^{\mu} U) + \frac{1}{32e^2} \text{Tr} [U^{\dagger} \partial_{\mu} U, U^{\dagger} \partial^{\nu} U]^2
$$

\nShrihking term
\nSwelling term

Simple scaling analysis $\vec{r} \rightarrow \lambda \vec{r}$

- Lambda is a characteristics scale length, e.g. parameter defining the soliton size \bigcirc
- The energy of the static configuration (classical soliton mass) changes as \bigcirc

$$
E = \int d^3r \left\{ \frac{F_{\pi}^2}{16} \text{Tr} (\partial_i U^{\dagger} \partial^i U) + \frac{1}{32e^2} \text{Tr} [U^{\dagger} \partial_i U, U^{\dagger} \partial^j U]^2 \right\}
$$

\n
$$
\Rightarrow \int d^3r \left\{ \lambda \frac{F_{\pi}^2}{16} \text{Tr} (\partial_i U^{\dagger} \partial^i U) + \lambda^{-1} \frac{1}{32e^2} \text{Tr} [U^{\dagger} \partial_i U, U^{\dagger} \partial^j U]^2 \right\}
$$

Energy-momentum tensor form factors' analysis gives the more detailed information \bigcirc

Skyrme Model

Hedgehog solution (nontrivial mapping)

- Directions in isotopic space are \bigcirc related to the directions in ordinary 3D configuration space
- Rotations in isotopic and \bigcirc configuration spaces may compensate each other

 $\exp\left\{\frac{i\mathbf{r} \cdot \mathbf{r}}{2F_{\pi}}\right\}$ = $\exp\left\{i\bar{\tau} \cdot \overline{n}F(r)\right\}$ *F* $U = \exp\left\{\frac{i\overline{\tau} \cdot \overline{\pi}}{2E}\right\} = \exp\left\{i\overline{\tau}\right\}$ π = \int $\left\{ \right\}$ $\begin{matrix} \end{matrix}$ \lfloor **く** \int =

 $SU(2) \Leftrightarrow O(3)$ mapping

$$
U \Rightarrow U' = AUA^{\dagger} = \exp\{i\vec{A}\vec{\tau}\vec{A}^{\dagger}\vec{n}F(r)\} = \exp\{i\tau_iD_{ij}(A)n_jF(r)\}
$$

- As a result the energy of the system does not change (rotational zero mode fluctuations)
- Nucleons appear after the zero \bigcirc mode quantuzations

$$
E=E'
$$

$$
H = M_{cl} + \frac{\overline{S}^{2}}{2I} = M_{cl} + \frac{\overline{T}^{2}}{2I},
$$

\n
$$
| S = T, s, t \rangle = (-1)^{t+T} \sqrt{2T + 1} D_{-t,s}^{S=T}(A)
$$

The free space Lagrangian (was widely in use)

[G.S.Adkins et al. Nucl.Phys. B228 (1983)]

$$
\mathcal{L} = \frac{F_{\pi}^2}{16} \operatorname{Tr} \left(\partial_{\mu} U \partial^{\mu} U^{\dagger} \right) - \frac{1}{16e^2} \operatorname{Tr} \left[U^{\dagger} \partial_{\mu} U, U^{\dagger} \partial_{\nu} U \right]^2 + \frac{F_{\pi}^2 m_{\pi}^2}{16} \operatorname{Tr} \left(U + U^{\dagger} - 2 \right)
$$

Nontrivial structure: \bigcirc topologically stable solitons with the corresponding conserved topological number (baryon number) *A*

Nucleon is quantized

state of the classical

soliton-skyrmion

 \bigcirc

$$
U = \exp\{i\overline{\tau} \pi / 2F_{\pi}\} = \exp\{i\overline{\tau} \overline{n}F(r)\}
$$

\n
$$
B^{\mu} = \frac{1}{24\pi^{2}} \varepsilon^{\mu\nu\alpha\beta} Tr(L_{\nu}L_{\alpha}L_{\beta}) \qquad L_{\alpha} = U^{+}\partial_{\alpha}U
$$

\n
$$
A = \int d^{3}rB^{0}
$$

\n
$$
H = M_{cl} + \frac{\overline{S}^{2}}{2I} = M_{cl} + \frac{\overline{T}^{2}}{2I},
$$

\n
$$
S = T, s, t \geq (-1)^{t+T}\sqrt{2T+1}D_{-t,s}^{S-T}(A)
$$

Soliton in a magnetic field

Deformation of the soliton

- Soliton in a static magnetic field in \bigcirc z-direction has a deformed shape
- Spheroidal solitons due to the \bigcirc charged (nonlinearly interacting) pions in a magnetic field
- One should take into account the \bigcirc deformation effects

Soliton in a magnetic field

"Fully" deformed ansatz

The most general form \bigcirc

$$
U(\vec{r}) = \exp\left\{i\vec{\tau}\cdot\vec{N}(\vec{r})P(\vec{r})\right\}
$$

Three profile functions \bigcirc

● Spatial extent

$$
P=P(r,\theta,\varphi)
$$

Non-spherical symmetry in \bigcirc isotopic space in terms of the two functions

$$
\vec{N} = \left(\begin{array}{c} \sin \Theta(r, \theta, \varphi) \cos \Phi(r, \theta, \varphi) \\ \sin \Theta(r, \theta, \varphi) \sin \Phi(r, \theta, \varphi) \\ \cos \Theta(r, \theta, \varphi) \end{array} \right)
$$

Axial symmetry for $\vec{B}_M || \vec{z}$

- Only two profile functions \bigcirc
- Third one is in trivial form \bigcirc

 $P = P(r, \theta)$ and $\Theta = \Theta(r, \theta)$ $\Phi=\varphi$

Gauging the theory

Introducing the standard \bigcirc covariant derivative with U(1) field

$$
D_\mu U = \partial_\mu U + i q_e A_\mu [Q,U]
$$

The charge operator in SU(2) \bigcirc framework has the form

$$
Q=\frac{1}{6}\operatorname{\mathbb{I}}+\frac{1}{2}\,\tau_3
$$

Axial symmetry for $\;\vec{B}_M || \vec{z}\;$ gives

Gauge field A_μ is an external \bigcirc field

$$
A^\mu=\left(0,-\frac{1}{2}yB_M,\frac{1}{2}xB_M,0\right)
$$

In a symmetrically fixed gauge \bigcirc

Classical soliton energy (mass)

- \bullet The functional of two functions $E[P,\Theta] = \int \mathrm{d}^3 r \mathcal{M}(P(r,\theta),\Theta(r,\theta))$
- Integrand has the form

$$
\mathcal{M}(P,\Theta) = \mathcal{M}(P(r,\theta),\Theta(r,\theta)) + \Delta \mathcal{M}(P(r,\theta),\Theta(r,\theta),B_M)
$$

Second order polynomial form on the magnetic field

• If the magnetic field is zero

$$
\mathcal{M}(P,\Theta) = \mathcal{M}(P(r),\theta) + \Delta \mathcal{M}(=0)
$$

Given spherically symmetric hedgehog's functional

Variational approach to the problem

Classical equations of motion

The variation of functional gives \bigcirc the coupled partial differential equations (technically a difficult task)

$$
\left\{\begin{array}{c}g(P_{rr},P_{\theta\theta},P_r,P_\theta,\Theta_r,\Theta_\theta,P,\Theta)=0\\ h(\Theta_{rr},\Theta_{\theta\theta},\Theta_r,\Theta_\theta,P_r,P_\theta,\Theta,P)=0\end{array}\right.
$$

Should satisfy "the baryon \bigcirc number equals to one" condition

$$
B = -\frac{1}{\pi} \int_{0}^{\infty} dr \int_{0}^{\pi} d\theta (P_r \Theta_{\theta} - P_{\theta} \Theta_r) \sin^2 P = 1
$$

Simplification of the problem

Considering the functional \bigcirc

$$
\mathcal{M}_{\rm spherical}(P) = \mathcal{M}(P(r)) + \Delta \mathcal{M}(P(r), B_M)
$$

One gets an ordinary differential \bigcirc equation (nonlinear form)

$$
f(P'',P',P,r,B_M)=0
$$

At the linear approximation \bigcirc

"Confining nature" - big values of magnetic field

$$
P''(r) + \frac{2}{r}P'(r) - \frac{2}{r^2}P(r) - \left(m_{\pi}^2 + \frac{2}{3}q_eB_M\right)P(r) - \frac{2}{15}(q_eB_Mr)^2P(r) = 0
$$

Solutions of linear equation

At the small values of magnetic field (Yukawa type) \bigcirc

$$
P(r) \sim \frac{1+Ar}{r^2}\,e^{-Ar}, \quad A = \big(m_\pi^2 + \frac{2}{3}q_e B_M\big)^{1/2}
$$

At the large values of magnetic field (gaussian type) \bigcirc

$$
P(r) \sim \frac{1}{2^{1/4}r^2} \exp\left\{-\frac{q_e B_M r^2}{\sqrt{30}}\right\} U\left(\frac{-3 + \sqrt{30}}{12} + \frac{\sqrt{30}m_\pi^2}{8q_e B_M}, -\frac{1}{2}; \sqrt{\frac{2}{15}}q_e B_M r^2\right)
$$

The confluent hypergeometric function of the second type

Parametrisation of solutions

$$
P(r,\theta) = 2 \arctan\left\{\frac{r_0^2}{r^2}(1+Ar)[1+u(\theta)]\right\} \exp\left\{-\beta_0 Ar - \beta_1 q_e B_M r^2\right\}
$$

$$
u(\theta) = q_e B_M \sum_{n=1}^{\infty} \gamma_n \cos^n \theta
$$

$$
\Theta(r,\theta) = \theta + \zeta(r,\theta)
$$

$$
\zeta(r,\theta) = q_e B_M r e^{-\delta_0^2 r^2} \sum_{n=1}^{\infty} \delta_n \sin(2n\theta)
$$

$$
r_0, \beta_i, \gamma_i, \delta_i \text{ are variational parameters}
$$

- Properly reproduces the asymptotic solutions
- Properly reproduces the solution at origin
- Nicely interpolates in between of these solutions
- Accuracy is very good (the deviations from the exact solutions at the spherical case within the 1%)

Dependence of the classical soliton mass on the magnetic field

Analysing the regions (table from the Wikipedia)

- 10^{-9} –10⁻⁸ gauss the magnetic field of the human brain
- 10^{-6} –10⁻³ gauss the magnetic field of Galactic molecular clouds
- 0.25-0.60 gauss the Earth's magnetic field at its surface
- 25 gauss the Earth's magnetic field in its core^[6]
- \bullet 50 gauss a typical refrigerator magnet
- \bullet 100 gauss an iron magnet
- 1500 gauss within a sun spot $[7]$
- 10000 to 13000 gauss remanence of a neodymium-iron-boron (NIB) magnet^[8]
- 16000 to 22000 gauss saturation of high permeability iron alloys used in transformers^[9]
- 3000-70,000 gauss a medical magnetic resonance imaging machine
- 10^{12} –10¹³ gauss the surface of a neutron star^[10]
- 4×10^{13} gauss the quantum electrodynamic threshold
- 10¹⁵ gauss the magnetic field of some newly created magnetars^[11]
- 10¹⁷ gauss the upper limit to neutron star magnetism^[11]

and **10^19 gauss** during the heavy ion collisions (very short time interval)

Analysing the regions

Linearised equation \bigcirc

$$
P''(r) + \frac{2}{r}P'(r) - \frac{2}{r^2}P(r) - \left(m_{\pi}^2 + \frac{2}{3}q_eB_M\right)P(r) - \frac{2}{15}(q_eB_Mr)^2P(r) = 0
$$

The three terms for comparing

Region 1 (Yukawa type asymptotic) \bigcirc

 $r^2(q_e \times 10^{17} \text{ G})^2 \sim 10 \text{ MeV}^2 \ll (m_\pi^2 + 2q_e B_M/3) \approx m_\pi^2 \sim 0.18 \text{ GeV}^2$

Region 2 (quadratic term is more important - gaussian asymptotic) \bigcirc

$$
m_\pi^2 \leq 2q_e B_M/3
$$

TABLE I. Variational parameters for the profile functions P and Θ at some selected values of the external magnetic field $B_M.$

B_M	\mathbf{O}	10^{15} G	$10^{17} G$	10^{19} G
$r_0, \, \mathrm{fm}^2$	0.95646	0.95641	0.95200	0.97324
β_0	1.31568	1.31554	1.30447	0.93320
β_1	Ω	$\mathbf{0}$	Ω	0.21958
$\gamma_2,\,{\rm fm}^2$	Ω	-0.64430	0.12305	0.33700
γ_4 , fm ²	0	0.30370	0.21985	0.08227
γ_6 , fm ²	0	-0.10019	-0.14775	0.21615
$\delta_0, \,\mathrm{fm}^{-2}$	4.23604	3.90049	2.84256	3.21149
δ_1 , fm	Ω	0.13997	0.09016	0.9366
δ_2 , fm	Ω	0.24411	0.00207	0.00174

$$
P(r,\theta) = 2\arctan\left\{\frac{r_0^2}{r^2}(1+Ar)[1+u(\theta)]\right\}\exp\left\{-\beta_0 Ar - \beta_1 q_e B_M r^2\right\}
$$

Baryon charge density

$$
B_0(r,\theta)=-\frac{P_r\Theta_\theta-P_\theta\Theta_r}{2\pi^2r^2}\left(\frac{\sin\Theta}{\sin\theta}\right)\sin^2P
$$

```
Baryon charge density distribution of soliton at B_M = 0
```


```
Baryon charge density distribution of soliton at B_M = 10^{17} G
```


Soliton mass & baryon charge redistribution in a magnetic field

FIG. 2. (Color online) Results of the baryon charge distributions along the z direction (left panel) and in the perpendicular plane to the z axis (right panel), respectively. The solid curves depict the results with $B_M = 10^{19}$ G, the dashed ones draw those with $B_M = 10^{17}$ G, and the dotted ones correspond to the case of $B_M = 0$, respectively.

Soliton mass & baryon charge redistribution in a magnetic field

$$
\Delta B_0(r) \equiv B_0(r,\pi/2) - B_0(r,0)
$$

FIG. 3. (Color online) The left panel draws the results of the anisotropy $\Delta B_0(r)$ defined in Eq. (17) as functions of r, whereas the right panel shows the result of $\Delta B_0(0.2 \text{ fm})$ fixed at $r = 0.2 \text{ fm}$ as a function of the magnetic field. Notations in the left panel are the same as in Fig. 2.

Baryon charge localization

$$
B_{(1 \text{ fm})} = \int_{0}^{1 \text{ fm}} r^2 dr \int d\Omega B_0
$$

$$
B_{(1 \text{ fm})} = 0.9014 \text{ for } B_M = 0,
$$

$$
B_{(1 \text{ fm})} = 0.9024 \text{ for } B_M = 10^{17} G
$$
and
$$
B_{(1 \text{ fm})} = 0.9665 \text{ for } B_M = 10^{19} G
$$

Global time independent rotations

Performing separately SO(3) rotations in isotopic and configuration spaces \bigcirc

$$
U = \exp\{i\tau_i D_{ij}(A)N_j(\vec{r})P(\mathbf{R}^{-1}\vec{r})\}
$$

And defining the new vectors in a body-fixed (primed) frame \bigcirc

$$
U=\exp\{i\vec{\tau}\vec{N}'P(\vec{r}')\}
$$

One has the same energy of the classical static configuration \bigcirc

$$
E[P(\vec{r}), \Theta(\vec{r})] = E'[P(\vec{r}'), \Theta(\vec{r}')]
$$

Time dependent slow rotations

Performing separately SO(3) rotations in isotopic and configuration spaces and \bigcirc

$$
U = \exp\{i\tau_i D_{ij}(A(t))N_j(\vec{r})P(\mathbf{R}^{-1}(t)\vec{r})\}
$$

using the following relations \bigcirc

$$
\partial_0 U = f_{1,i}(\vec{N}', \vec{r}') \partial_0 N_i'(t) + f_{2,i}(\vec{N}', \vec{r}') \partial_0 r_i'
$$

$$
\partial_0 N_i'(t) = \dot{D}_{ij}(t) N_j = \dot{D}_{ij} D_{jk}^{-1} D_{kl} N_l = \dot{D}_{ij} D_{jk}^{-1} N_k'
$$

$$
\partial_0 r_i'(t) = \dot{R}_{ij}^{-1}(t) r_j = \dot{R}_{ij}^{-1} R_{jk} R_{kl}^{-1} r_l = \dot{R}_{ij}^{-1} R_{jk} r_k'
$$

one generates the angular velocities in isotopic and configuration spaces \bigcirc

$$
\dot{D}_{ij}D^{-1}_{jk} = i\epsilon_{ikl}\omega_l \quad \text{and} \quad \dot{R}^{-1}_{ij}R_{jk} = -i\epsilon_{ikl}\Omega_l
$$

Quantisation of spheroidal solitons

Time dependent Lagrangian and canonical conjugate variables

Lagrangian has form \bigcirc

$$
L=-\,M+\frac{\omega_1^2+\omega_2^2}{2}\Lambda_{\omega\omega,12}-(\omega_1\Omega_1+\omega_2\Omega_2)\Lambda_{\omega\Omega,12}\\+\frac{\Omega_1^2+\Omega_2^2}{2}\Lambda_{\Omega\Omega,12}+\frac{(\omega_3-\Omega_3)^2}{2}\Lambda_{\omega\Omega,33}
$$

Canonical conjugate variables \bigcirc

$$
T_i = \frac{\partial L}{\partial \omega_i}
$$
 and $J_i = \frac{\partial L}{\partial \Omega_i}$

Hamiltonian of the system \bigcirc

$$
\begin{aligned} \hat{H} &= M + \frac{\hat{T}_3^2}{2\Lambda_{\omega\Omega,33}} + \frac{(\hat{T}_1\hat{J}_1+\hat{T}_2\hat{J}_2)\Lambda_{\omega\Omega,12}}{\Lambda_{\omega\omega,12}\Lambda_{\Omega\Omega,12}-\Lambda_{\omega\Omega,12}^2} \\ &+ \frac{(\hat{T}_1^2+\hat{T}_2^2)\Lambda_{\Omega\Omega,12} + (\hat{J}_1^2+\hat{J}_2^2)\Lambda_{\omega\omega,12}}{2(\Lambda_{\omega\omega,12}\Lambda_{\Omega\Omega,12}-\Lambda_{\omega\Omega,12}^2)} \end{aligned}
$$

Eigenstates and eigenenergies

Eigenstates in a body-fixed reference frame \bigcirc

 $|T,T_3; J,J_3\rangle$

The grand spin zero low energy configuration \bigcirc

$$
\vec{K} = \vec{T} + \vec{J} = 0
$$

Eigenenergies \bigcirc

$$
E = M + \frac{\Lambda_{\omega\omega,12} + \Lambda_{\Omega\Omega,12} - 2\Lambda_{\omega\Omega,12}}{2(\Lambda_{\omega\omega,12}\Lambda_{\Omega\Omega,12} - \Lambda_{\omega\Omega,12}^2)} T(T+1) - \frac{\Lambda_{\Omega\Omega,12}T_3^2 + \Lambda_{\omega\omega,12}J_3^2}{2(\Lambda_{\omega\omega,12}\Lambda_{\Omega\Omega,12} - \Lambda_{\omega\Omega,12}^2)}
$$

$$
-\left(\frac{1}{2\Lambda_{\omega\Omega,33}} + \frac{\Lambda_{\omega\Omega,12}}{\Lambda_{\omega\omega,12}\Lambda_{\Omega\Omega,12} - \Lambda_{\omega\Omega,12}^2}\right)T_3J_3
$$

Eigenstates and eigenenergies

Limiting considerations \bigcirc

$$
\lim_{B_M \to 0, \ \Theta(r,\theta) \to \theta, \ P(r,\theta) \to P(r)} \frac{\Lambda_{\omega\omega,12} + \Lambda_{\Omega\Omega,12} - 2\Lambda_{\omega\Omega,12}}{2(\Lambda_{\omega\omega,12}\Lambda_{\Omega\Omega,12} - \Lambda_{\omega\Omega,12}^2)} \n= \lim_{\Lambda_{\omega\Omega,12} \to \Lambda} \left(\lim_{\Lambda_{\Omega\Omega,12} \to \Lambda_{\omega\Omega,12}} \left(\lim_{B_M \to 0, \ \Lambda_{\omega\omega,12} \to \Lambda_{\Omega\Omega,12}} \frac{\Lambda_{\omega\omega,12} + \Lambda_{\Omega\Omega,12} - 2\Lambda_{\omega\Omega,12}}{2(\Lambda_{\omega\omega,12}\Lambda_{\Omega\Omega,12} - \Lambda_{\omega\Omega,12}^2)} \right) \right) = \frac{1}{2\Lambda}
$$

Only $T_3 = -J_3$ states are allowed \bigcirc

$$
-\frac{\Lambda_{\Omega\Omega,12}T_3^2 + \Lambda_{\omega\omega,12}J_3^2}{2(\Lambda_{\omega\omega,12}\Lambda_{\Omega\Omega,12} - \Lambda_{\omega\Omega,12}^2)} - \left(\frac{1}{2\Lambda_{\omega\Omega,33}} + \frac{\Lambda_{\omega\Omega,12}}{\Lambda_{\omega\omega,12}\Lambda_{\Omega\Omega,12} - \Lambda_{\omega\Omega,12}^2}\right)T_3J_3
$$

=
$$
-\frac{\Lambda_{\Omega\Omega,12}T_3^2 + \Lambda_{\omega\omega,12}J_3^2 + 2\Lambda_{\omega\Omega,12}T_3J_3}{2(\Lambda_{\omega\omega,12}\Lambda_{\Omega\Omega,12} - \Lambda_{\omega\Omega,12}^2)} - \frac{1}{2\Lambda_{\omega\Omega,33}}T_3J_3
$$

Eigenstates and eigenenergies

Finally, we have \bigcirc

$$
E = M + \frac{T_3^2}{2\Lambda_{\omega\Omega,33}}
$$

+
$$
\frac{\Lambda_{\Omega\Omega,12} + \Lambda_{\omega\omega,12} - 2\Lambda_{\omega\Omega,12}}{2(\Lambda_{\omega\omega,12}\Lambda_{\Omega\Omega,12} - \Lambda_{\omega\Omega,12}^2)}(T(T+1) - T_3^2)
$$

Degeneracy of Delta energy states are partially lifted \bigcirc

$$
m_{\rm p}=m_{\rm n}
$$

$$
m_{\Delta^{++}}=m_{\Delta^{-}}\neq m_{\Delta^{+}}=m_{\Delta^{0}}
$$

Baryons in a magnetic field

FIG. 4. (Color online) The changes of the baryon masses as a function of the magnetic field. The solid curve depicts m_{Δ} ⁰, whereas the dashed one draws m_{Δ} -. The dotted one represents m_n , respectively.

The mass splittings

$$
\Delta m_{(0,-)}(B_M) = [m_{\Delta^0}(B_M) - m_{\Delta^-}(B_M)]
$$

\n
$$
= [m_{\Delta^0}(0) - m_{\Delta^-}(0)],
$$

\n
$$
\Delta m_{(0,n)}(B_M) = [m_{\Delta^0}(B_M) - m_n(B_M)]
$$

\n
$$
= [m_{\Delta^0}(0) - m_n(0)],
$$

\n
$$
\Delta m_{(-,n)}(B_M) = [m_{\Delta^-}(B_M) - m_n(B_M)]
$$

\n
$$
= [m_{\Delta^-}(0) - m_n(0)].
$$

FIG. 5. (Color online) The change of the baryon mass splittings in the presence of the magnetic field. The solid curve draws the result of $\Delta m_{(0,-)}(B_M)$, whereas the dashed one depicts $\Delta m_{(0,n)(B_M)}$. The dotted one shows $\Delta m_{(-,n)}(B_M)$. For the definitions of $\Delta m_{(a,b)}$, see Eqs. (25)-(26).

Summary

● Within the present approach

- Baryons are deformed in a magnetic field
- The changes are marginal up to the values of magnetic field existing in neutron stars
- The changes are large at the large values of magnetic field corresponding to heavy-ion collision experiments

Thank you very much for your attention!