

Inha University, Republic of Korea

Baryon properties in a strong magnetic field

Ulugbek Yakhshiev

Nuclear Many-Body Theories: Beyond the Mean Field Approach July 05, 2019, APCTP (Pohang), Korea

- Topological soliton models
- Skyrme model
- Soliton in a magnetic field
- EM interactions in a Soliton Picture
- Variational approach to the problem
- Soliton mass and Baryon charge redistribution in a magnetic field
- Quantisation of spheroidal solitons
- Baryons in a magnetic field
- Summary

Topological soliton models

Why topological models?

At fundamental level we may have

- fermions -> bosons are trivial fermion systems
- bosons -> fermions are <u>nontrivial topological structures</u>

Structure

From what made a nucleon and, in particular, its core?

- The structure treatment depends on an energy scale
- At the limit of large number colours the core still has the mesonic content

Topological soliton models

Stabilisation mechanism

- Soliton has the finite size and the finite energy
- One needs at least two counter terms in the effective (mesonic) Lagrangian

Prototype: Skyrme model

[T.H.R. Skyrme, Pros.Roy.Soc.Lond. A260 (1961)]

• Nonlinear chiral effective meson (pionic) theory

$$\mathcal{L} = \frac{F_{\pi}^2}{16} \operatorname{Tr} \left(\partial_{\mu} U^{\dagger} \partial^{\mu} U \right) + \frac{1}{32e^2} \operatorname{Tr} [U^{\dagger} \partial_{\mu} U, U^{\dagger} \partial^{\nu} U]^2$$
Shrinking term

Skyrme Model

Simple scaling analysis $\ \vec{r} ightarrow \lambda \vec{r}$

- Lambda is a characteristics scale length, e.g. parameter defining the soliton size
- The energy of the static configuration (classical soliton mass) changes as

$$E = \int \mathrm{d}^3 r \left\{ \frac{F_\pi^2}{16} \mathrm{Tr} \left(\partial_i U^{\dagger} \partial^i U \right) + \frac{1}{32e^2} \mathrm{Tr} [U^{\dagger} \partial_i U, U^{\dagger} \partial^j U]^2 \right\}$$
$$\Rightarrow \int \mathrm{d}^3 r \left\{ \lambda \frac{F_\pi^2}{16} \mathrm{Tr} \left(\partial_i U^{\dagger} \partial^i U \right) + \lambda^{-1} \frac{1}{32e^2} \mathrm{Tr} [U^{\dagger} \partial_i U, U^{\dagger} \partial^j U]^2 \right\}$$

• Energy-momentum tensor form factors' analysis gives the more detailed information

Skyrme Model

Hedgehog solution (nontrivial mapping)

 Directions in isotopic space are related to the directions in ordinary 3D configuration space

bing) $U = \exp\left\{\frac{i\overline{\tau}\ \overline{\pi}}{2F_{\pi}}\right\} = \exp\left\{i\overline{\tau}\ \overline{n}F(r)\right\}$

 $SU(2) \Leftrightarrow O(3)$ mapping

$$U \Rightarrow U' = AUA^{\dagger} = \exp\{iA\vec{\tau}A^{\dagger}\vec{n}F(r)\} = \exp\{i\tau_i D_{ij}(A)n_jF(r)\}$$

- As a result the energy of the system does not change (rotational zero mode fluctuations)
- Nucleons appear after the zero mode quantuzations

$$E = E'$$

$$H = M_{cl} + \frac{\overline{S}^2}{2I} = M_{cl} + \frac{\overline{T}^2}{2I},$$

$$S = T, s, t \ge (-1)^{t+T} \sqrt{2T + 1} D_{-t,s}^{S=T} (A)$$

The free space Lagrangian (was widely in use)

[G.S.Adkins et al. Nucl.Phys. B228 (1983)]

$$\mathcal{L} = \frac{F_{\pi}^2}{16} \operatorname{Tr} \left(\partial_{\mu} U \partial^{\mu} U^{\dagger} \right) - \frac{1}{16e^2} \operatorname{Tr} \left[U^{\dagger} \partial_{\mu} U, U^{\dagger} \partial_{\nu} U \right]^2 + \frac{F_{\pi}^2 m_{\pi}^2}{16} \operatorname{Tr} \left(U + U^{\dagger} - 2 \right)$$

 Nontrivial structure: topologically stable solitons with the corresponding conserved topological number (baryon number) A

$$U = \exp\{i\overline{\tau} \ \overline{\pi} / 2F_{\pi}\} = \exp\{i\overline{\tau} \ \overline{n}F(r)\}$$
$$B^{\mu} = \frac{1}{24\pi^{2}} \varepsilon^{\mu\nu\alpha\beta} Tr(L_{\nu}L_{\alpha}L_{\beta}) \qquad L_{\alpha} = U^{+}\partial_{\alpha}U$$
$$\underbrace{A = \int d^{3}rB^{0}}_{H = M_{cl} + \frac{\overline{S}^{2}}{2I} = M_{cl} + \frac{\overline{T}^{2}}{2I},$$
$$|S = T, s, t \ge (-1)^{t+T} \sqrt{2T + 1}D_{-t,s}^{S-T}(A)$$

 Nucleon is quantized state of the classical soliton-skyrmion

Soliton in a magnetic field

Deformation of the soliton

- Soliton in a static magnetic field in z-direction has a deformed shape
- Spheroidal solitons due to the charged (nonlinearly interacting) pions in a magnetic field
- One should take into account the deformation effects

Soliton in a magnetic field

"Fully" deformed ansatz

• The most general form

$$U(\vec{r}) = \exp\left\{i\vec{\tau}\cdot\vec{N}(\vec{r})P(\vec{r})\right\}$$

• Three profile functions

Spatial extent

0

$$P = P(r, \theta, \varphi)$$

 Non-spherical symmetry in isotopic space in terms of the two functions

$$\vec{N} = \left(\begin{array}{c} \sin\Theta(r,\theta,\varphi)\cos\Phi(r,\theta,\varphi)\\ \sin\Theta(r,\theta,\varphi)\sin\Phi(r,\theta,\varphi)\\ \cos\Theta(r,\theta,\varphi) \end{array}\right)$$

Axial symmetry for $\vec{B}_M || \vec{z}$

- Only two profile functions
- Third one is in trivial form

$$P = P(r, \theta)$$
 and $\Theta = \Theta(r, \theta)$
 $\Phi = \varphi$

Gauging the theory

 Introducing the standard covariant derivative with U(1) field

$$D_{\mu}U = \partial_{\mu}U + iq_e A_{\mu}[Q, U]$$

 The charge operator in SU(2) framework has the form

$$Q = \frac{1}{6} \mathbb{I} + \frac{1}{2} \tau_3$$

Axial symmetry for $|\vec{B}_M| |\vec{z}|$ gives

Gauge field A_{μ} is an external field

$$A^{\mu} = \left(0, -\frac{1}{2}yB_M, \frac{1}{2}xB_M, 0\right)$$

In a symmetrically fixed gauge

Classical soliton energy (mass)

- The functional of two functions $E[P,\Theta] = \int d^3r \mathcal{M}(P(r,\theta),\Theta(r,\theta))$
- Integrand has the form

$$\mathcal{M}(P,\Theta) = \mathcal{M}(P(r,\theta),\Theta(r,\theta)) + \Delta \mathcal{M}(P(r,\theta),\Theta(r,\theta),B_M)$$
Second order polynomial form on the magnetic field

• If the magnetic field is zero

$$\mathcal{M}(P,\Theta) = \mathcal{M}(P(r),\theta) + \Delta \mathcal{M}(=0)$$
Gives spherically symmetric hedgehog's functional

Variational approach to the problem

Classical equations of motion

 The variation of functional gives the coupled partial differential equations (technically a difficult task)

$$\begin{cases} g(P_{rr}, P_{\theta\theta}, P_r, P_{\theta}, \Theta_r, \Theta_{\theta}, P, \Theta) = 0\\ h(\Theta_{rr}, \Theta_{\theta\theta}, \Theta_r, \Theta_{\theta}, P_r, P_{\theta}, \Theta, P) = 0 \end{cases}$$

 Should satisfy "the baryon number equals to one" condition

$$B = -\frac{1}{\pi} \int_{0}^{\infty} dr \int_{0}^{\pi} d\theta \left(P_r \Theta_{\theta} - P_{\theta} \Theta_r \right) \sin^2 P = 1$$

Simplification of the problem

• Considering the functional

$$\mathcal{M}_{\text{spherical}}(P) = \mathcal{M}(P(r)) + \Delta \mathcal{M}(P(r), B_M)$$

 One gets an ordinary differential equation (nonlinear form)

$$f(P'', P', P, r, B_M) = 0$$

• At the linear approximation

"Confining nature" - big values of magnetic field

$$P''(r) + \frac{2}{r}P'(r) - \frac{2}{r^2}P(r) - \left(m_{\pi}^2 + \frac{2}{3}q_eB_M\right)P(r) - \frac{2}{15}(q_eB_Mr)^2P(r) = 0$$
"The pion mass modification" - small values of magnetic field

Solutions of linear equation

At the small values of magnetic field (Yukawa type)

$$P(r) \sim \frac{1+Ar}{r^2} e^{-Ar}, \quad A = \left(m_\pi^2 + \frac{2}{3}q_e B_M\right)^{1/2}$$

• At the large values of magnetic field (gaussian type)

$$P(r) \sim \frac{1}{2^{1/4}r^2} \exp\left\{-\frac{q_e B_M r^2}{\sqrt{30}}\right\} U\left(\frac{-3 + \sqrt{30}}{12} + \frac{\sqrt{30}m_{\pi}^2}{8q_e B_M}, -\frac{1}{2}; \sqrt{\frac{2}{15}}q_e B_M r^2\right)$$

The confluent hypergeometric function of the second type

Parametrisation of solutions

$$\begin{split} P(r,\theta) &= 2 \arctan\left\{\frac{r_0^2}{r^2}(1+Ar)[1+u(\theta)]\right\} \exp\left\{-\beta_0 Ar - \beta_1 q_e B_M r^2\right)\right\}\\ u(\theta) &= q_e B_M \sum_{n=1}^{\infty} \gamma_n \cos^n \theta\\ \Theta(r,\theta) &= \theta + \zeta(r,\theta)\\ \zeta(r,\theta) &= q_e B_M r e^{-\delta_0^2 r^2} \sum_{n=1}^{\infty} \delta_n \sin(2n\theta)\\ r_0, \ \beta_i, \ \gamma_i, \ \delta_i \quad \text{are variational parameters} \end{split}$$

- Properly reproduces the asymptotic solutions
- Properly reproduces the solution at origin
- Nicely interpolates in between of these solutions
- Accuracy is very good (the deviations from the exact solutions at the spherical case within the 1%)

Dependence of the classical soliton mass on the magnetic field

Analysing the regions (table from the Wikipedia)

- $10^{-9}-10^{-8}$ gauss the magnetic field of the human brain
- $10^{-6}-10^{-3}$ gauss the magnetic field of Galactic molecular clouds
- 0.25–0.60 gauss the Earth's magnetic field at its surface
- 25 gauss the Earth's magnetic field in its core[6]
- 50 gauss a typical refrigerator magnet
- 100 gauss an iron magnet
- 1500 gauss within a sun spot [7]
- 10000 to 13000 gauss remanence of a neodymium-iron-boron (NIB) magnet^[8]
- 16000 to 22000 gauss saturation of high permeability iron alloys used in transformers^[9]
- 3000-70,000 gauss a medical magnetic resonance imaging machine
- 10¹²-10¹³ gauss the surface of a neutron star^[10]
- 4×10¹³ gauss the quantum electrodynamic threshold
- 10¹⁵ gauss the magnetic field of some newly created magnetars^[11]
- **10¹⁷ gauss** the upper limit to neutron star magnetism^[11]

and **10^19 gauss** during the heavy ion collisions (very short time interval)

Analysing the regions

Linearised equation

$$P''(r) + \frac{2}{r}P'(r) - \frac{2}{r^2}P(r) - \left(m_\pi^2 + \frac{2}{3}q_eB_M\right)P(r) - \frac{2}{15}(q_eB_Mr)^2P(r) = 0$$

$$\textcircled{1}$$
The three terms for comparing

Region 1 (Yukawa type asymptotic)

 $r^2 (q_e \times 10^{17} \,\mathrm{G})^2 \sim 10 \,\mathrm{MeV}^2 \ll (m_\pi^2 + 2q_e B_M/3) \approx m_\pi^2 \sim 0.18 \,\mathrm{GeV}^2$

Region 2 (quadratic term is more important - gaussian asymptotic)

$$m_\pi^2 \le 2q_e B_M/3$$

TABLE I. Variational parameters for the profile functions P and Θ at some selected values of the external magnetic field B_M .

B_M	0	$10^{15}{ m G}$	$10^{17}\mathrm{G}$	$10^{19}\mathrm{G}$
r_0, fm^2	0.95646	0.95641	0.95200	0.97324
β_0	1.31568	1.31554	1.30447	0.93320
eta_1	0	0	0	0.21958
$\gamma_2,{ m fm}^2$	0	-0.64430	0.12305	0.33700
$\gamma_4,{ m fm}^2$	0	0.30370	0.21985	0.08227
$\gamma_6, {\rm fm}^2$	0	-0.10019	-0.14775	0.21615
$\delta_0, \mathrm{fm}^{-2}$	4.23604	3.90049	2.84256	3.21149
$\delta_1,{ m fm}$	0	0.13997	0.09016	0.9366
$\delta_2,{ m fm}$	0	0.24411	0.00207	0.00174

$$P(r,\theta) = 2 \arctan\left\{\frac{r_0^2}{r^2}(1+Ar)[1+u(\theta)]\right\} \exp\left\{-\beta_0 Ar - \beta_1 q_e B_M r^2\right)\}$$

Baryon charge density

$$B_0(r,\theta) = -\frac{P_r \Theta_\theta - P_\theta \Theta_r}{2\pi^2 r^2} \left(\frac{\sin\Theta}{\sin\theta}\right) \sin^2 P$$

FIG. 2. (Color online) Results of the baryon charge distributions along the z direction (left panel) and in the perpendicular plane to the z axis (right panel), respectively. The solid curves depict the results with $B_M = 10^{19}$ G, the dashed ones draw those with $B_M = 10^{17}$ G, and the dotted ones correspond to the case of $B_M = 0$, respectively.

$$\Delta B_0(r) \equiv B_0(r, \pi/2) - B_0(r, 0)$$

FIG. 3. (Color online) The left panel draws the results of the anisotropy $\Delta B_0(r)$ defined in Eq. (17) as functions of r, whereas the right panel shows the result of $\Delta B_0(0.2 \text{ fm})$ fixed at r = 0.2 fm as a function of the magnetic field. Notations in the left panel are the same as in Fig. 2.

Baryon charge localization

$$B_{(1 \text{ fm})} = \int_{0}^{1 \text{ fm}} r^2 dr \int d\Omega B_0$$

$$B_{(1 \text{ fm})} = 0.9014 \text{ for } B_M = 0,$$

$$B_{(1 \text{ fm})} = 0.9024 \text{ for } B_M = 10^{17} G$$

and $B_{(1 \text{ fm})} = 0.9665 \text{ for } B_M = 10^{19} G$

Global time independent rotations

• Performing separately SO(3) rotations in isotopic and configuration spaces

$$U = \exp\{i\tau_i D_{ij}(A)N_j(\vec{r})P(\mathbf{R}^{-1}\vec{r})\}$$

• And defining the new vectors in a body-fixed (primed) frame

$$U = \exp\{i\vec{\tau}\vec{N}'P(\vec{r}\,')\}$$

• One has the same energy of the classical static configuration

$$E[P(\vec{r}), \Theta(\vec{r})] = E'[P(\vec{r}'), \Theta(\vec{r}')]$$

Time dependent slow rotations

• Performing separately SO(3) rotations in isotopic and configuration spaces and

$$U = \exp\{i\tau_i D_{ij}(A(t))N_j(\vec{r})P(\mathbf{R}^{-1}(t)\vec{r})\}\$$

using the following relations

$$\partial_0 U = f_{1,i}(\vec{N}', \vec{r}') \partial_0 N'_i(t) + f_{2,i}(\vec{N}', \vec{r}') \partial_0 r'_i$$
$$\partial_0 N'_i(t) = \dot{D}_{ij}(t) N_j = \dot{D}_{ij} D_{jk}^{-1} D_{kl} N_l = \dot{D}_{ij} D_{jk}^{-1} N'_k$$
$$\partial_0 r'_i(t) = \dot{R}_{ij}^{-1}(t) r_j = \dot{R}_{ij}^{-1} R_{jk} R_{kl}^{-1} r_l = \dot{R}_{ij}^{-1} R_{jk} r'_k$$

• one generates the angular velocities in isotopic and configuration spaces

$$\dot{D}_{ij}D_{jk}^{-1} = i\epsilon_{ikl}\omega_l$$
 and $\dot{R}_{ij}^{-1}R_{jk} = -i\epsilon_{ikl}\Omega_l$

Quantisation of spheroidal solitons

Time dependent Lagrangian and canonical conjugate variables

Lagrangian has form

$$L = -M + \frac{\omega_1^2 + \omega_2^2}{2} \Lambda_{\omega\omega,12} - (\omega_1 \Omega_1 + \omega_2 \Omega_2) \Lambda_{\omega\Omega,12} + \frac{\Omega_1^2 + \Omega_2^2}{2} \Lambda_{\Omega\Omega,12} + \frac{(\omega_3 - \Omega_3)^2}{2} \Lambda_{\omega\Omega,33}$$

Canonical conjugate variables

$$T_i = \frac{\partial L}{\partial \omega_i}$$
 and $J_i = \frac{\partial L}{\partial \Omega_i}$

Hamiltonian of the system

$$\hat{H} = M + \frac{\hat{T}_3^2}{2\Lambda_{\omega\Omega,33}} + \frac{(\hat{T}_1\hat{J}_1 + \hat{T}_2\hat{J}_2)\Lambda_{\omega\Omega,12}}{\Lambda_{\omega\omega,12}\Lambda_{\Omega\Omega,12} - \Lambda_{\omega\Omega,12}^2} + \frac{(\hat{T}_1^2 + \hat{T}_2^2)\Lambda_{\Omega\Omega,12} + (\hat{J}_1^2 + \hat{J}_2^2)\Lambda_{\omega\omega,12}}{2(\Lambda_{\omega\omega,12}\Lambda_{\Omega\Omega,12} - \Lambda_{\omega\Omega,12}^2)}$$

Eigenstates and eigenenergies

Eigenstates in a body-fixed reference frame

 $|T,T_3;J,J_3\rangle$

• The grand spin zero low energy configuration

$$\vec{K} = \vec{T} + \vec{J} = 0$$

Eigenenergies

$$E = M + \frac{\Lambda_{\omega\omega,12} + \Lambda_{\Omega\Omega,12} - 2\Lambda_{\omega\Omega,12}}{2(\Lambda_{\omega\omega,12}\Lambda_{\Omega\Omega,12} - \Lambda_{\omega\Omega,12}^2)} T(T+1) - \frac{\Lambda_{\Omega\Omega,12}T_3^2 + \Lambda_{\omega\omega,12}J_3^2}{2(\Lambda_{\omega\omega,12}\Lambda_{\Omega\Omega,12} - \Lambda_{\omega\Omega,12}^2)} - \left(\frac{1}{2\Lambda_{\omega\Omega,33}} + \frac{\Lambda_{\omega\Omega,12}}{\Lambda_{\omega\omega,12}\Lambda_{\Omega\Omega,12} - \Lambda_{\omega\Omega,12}^2}\right) T_3 J_3$$

Quantisation of spheroidal solitons

Eigenstates and eigenenergies

• Limiting considerations

$$\begin{split} \lim_{B_M \to 0, \ \Theta(r,\theta) \to \theta, \ P(r,\theta) \to P(r)} \frac{\Lambda_{\omega\omega,12} + \Lambda_{\Omega\Omega,12} - 2\Lambda_{\omega\Omega,12}}{2(\Lambda_{\omega\omega,12}\Lambda_{\Omega\Omega,12} - \Lambda_{\omega\Omega,12}^2)} \\ = \lim_{\Lambda_{\omega\Omega,12} \to \Lambda} \left(\lim_{\Lambda_{\Omega\Omega,12} \to \Lambda_{\omega\Omega,12}} \left(\lim_{B_M \to 0, \ \Lambda_{\omega\omega,12} \to \Lambda_{\Omega\Omega,12}} \frac{\Lambda_{\omega\omega,12} + \Lambda_{\Omega\Omega,12} - 2\Lambda_{\omega\Omega,12}}{2(\Lambda_{\omega\omega,12}\Lambda_{\Omega\Omega,12} - \Lambda_{\omega\Omega,12}^2)} \right) \right) = \frac{1}{2\Lambda} \end{split}$$

• Only $T_3 = -J_3$ states are allowed

$$-\frac{\Lambda_{\Omega\Omega,12}T_3^2 + \Lambda_{\omega\omega,12}J_3^2}{2(\Lambda_{\omega\omega,12}\Lambda_{\Omega\Omega,12} - \Lambda_{\omega\Omega,12}^2)} - \left(\frac{1}{2\Lambda_{\omega\Omega,33}} + \frac{\Lambda_{\omega\Omega,12}}{\Lambda_{\omega\omega,12}\Lambda_{\Omega\Omega,12} - \Lambda_{\omega\Omega,12}^2}\right)T_3J_3$$
$$= -\frac{\Lambda_{\Omega\Omega,12}T_3^2 + \Lambda_{\omega\omega,12}J_3^2 + 2\Lambda_{\omega\Omega,12}T_3J_3}{2(\Lambda_{\omega\omega,12}\Lambda_{\Omega\Omega,12} - \Lambda_{\omega\Omega,12}^2)} - \frac{1}{2\Lambda_{\omega\Omega,33}}T_3J_3$$

Eigenstates and eigenenergies

• Finally, we have

$$E = M + \frac{T_3^2}{2\Lambda_{\omega\Omega,33}} + \frac{\Lambda_{\Omega\Omega,12} + \Lambda_{\omega\omega,12} - 2\Lambda_{\omega\Omega,12}}{2(\Lambda_{\omega\omega,12}\Lambda_{\Omega\Omega,12} - \Lambda_{\omega\Omega,12}^2)} (T(T+1) - T_3^2)$$

Degeneracy of Delta energy states are partially lifted

$$m_{
m p} = m_{
m n}$$

 $m_{\Delta^{++}} = m_{\Delta^{-}} \neq m_{\Delta^{+}} = m_{\Delta^{0}}$

Baryons in a magnetic field

FIG. 4. (Color online) The changes of the baryon masses as a function of the magnetic field. The solid curve depicts m_{Δ^0} , whereas the dashed one draws m_{Δ^-} . The dotted one represents m_n , respectively.

The mass splittings

$$\Delta m_{(0,-)}(B_M) = [m_{\Delta^0}(B_M) - m_{\Delta^-}(B_M)] - [m_{\Delta^0}(0) - m_{\Delta^-}(0)],$$

$$\Delta m_{(0,n)}(B_M) = [m_{\Delta^0}(B_M) - m_n(B_M)] - [m_{\Delta^0}(0) - m_n(0)],$$

$$\Delta m_{(-,n)}(B_M) = [m_{\Delta^-}(B_M) - m_n(B_M)] - [m_{\Delta^-}(0) - m_n(0)].$$

FIG. 5. (Color online) The change of the baryon mass splittings in the presence of the magnetic field. The solid curve draws the result of $\Delta m_{(0,-)}(B_M)$, whereas the dashed one depicts $\Delta m_{(0,n)(B_M)}$. The dotted one shows $\Delta m_{(-,n)}(B_M)$. For the definitions of $\Delta m_{(a,b)}$, see Eqs. (25)-(26).

Within the present approach

- Baryons are deformed in a magnetic field
- The changes are marginal up to the values of magnetic field existing in neutron stars
- The changes are large at the large values of magnetic field corresponding to heavy-ion collision experiments

Thank you very much for your attention!