Applications of time-dependent density-matrix approach

Mitsuru Tohyama Kyorin University, Tokyo

In collaboration with Peter Schuck

Contents

- 1) Time-dependent Hartree-Fock theory (TDHF)
 - Limitation of Hartree-Fock theory (HF)
 - -Limitation of random-phase approximation (RPA)
- 2) Time-dependent density-matrix approach (TDDM)
 - Ground state
 - Excited states
- 3) Applications
 - Lipkin model
 - 1D Hubbard model
 - E1 and E2 excitations of ⁴⁰Ca and ⁴⁸Ca

4) Summary

1) Time-dependent Hartree-Fock theory (TDHF)

Hamiltonian

$$H = \sum_{\lambda\lambda'} \langle \lambda | t | \lambda' \rangle a_{\lambda}^{+} a_{\lambda'} + \frac{1}{2} \sum_{\lambda_{1}\lambda_{2}\lambda_{1}'\lambda_{2}'} \langle \lambda_{1}\lambda_{2} | v | \lambda_{1}'\lambda_{2}' \rangle a_{\lambda_{1}}^{+} a_{\lambda_{2}} a_{\lambda_{2}'} a_{\lambda_{1}'}$$

Kinetic energy Effective interaction (Skyrme force)

 $\phi_{\lambda}(\vec{r})$: time independent

TDHF gives time-evolution of 1-body density matrix $n_{\alpha\alpha'}$

$$n_{\alpha\alpha'} = \left\langle \Phi(t) \left| a_{\alpha'}^{+} a_{\alpha} \right| \Phi(t) \right\rangle, \qquad \left| \Phi(t) \right\rangle = e^{-iHt/\hbar} \left| \Phi_{0} \right\rangle$$

Equation of motion for $n_{\alpha\alpha'}$

$$\begin{split} &i\hbar \frac{d}{dt} n_{\alpha\alpha'} = \left\langle \Phi(t) \middle| \left[a_{\alpha'}^{+} a_{\alpha}, H \right] \middle| \Phi(t) \right\rangle \\ &= \left\langle \Phi(t) \middle| \sum_{\lambda\lambda'} \left\langle \lambda \middle| t \middle| \lambda' \right\rangle (\delta_{\alpha\lambda} a_{\alpha'}^{+} a_{\lambda'} - \delta_{\alpha'\lambda'} a_{\lambda}^{+} a_{\alpha}) \right. \\ &+ \frac{1}{2} \sum_{\lambda_{1}\lambda_{2}\lambda_{1}'\lambda_{2}'} \left\langle \lambda_{1}\lambda_{2} \middle| v \middle| \lambda_{1}'\lambda_{2}' \right\rangle (\delta_{\alpha\lambda_{1}} a_{\alpha'}^{+} a_{\lambda_{2}}^{+} a_{\lambda_{2}} a_{\lambda_{1}'} - \delta_{\alpha\lambda_{2}} a_{\alpha'}^{+} a_{\lambda_{1}}^{+} a_{\lambda_{2}} a_{\lambda_{1}'} \\ &- \delta_{\alpha'\lambda_{1}'} a_{\lambda_{1}}^{+} a_{\lambda_{2}}^{+} a_{\lambda_{2}} a_{\alpha} + \delta_{\alpha'\lambda_{2}'} a_{\lambda_{1}}^{+} a_{\lambda_{2}}^{+} a_{\lambda_{1}'} a_{\alpha} \right) \left| \Phi(t) \right\rangle \end{split}$$

single-particle basis

$$\begin{pmatrix} \rho(\vec{r},\vec{r}\,':t) = \sum_{\alpha\alpha'} n_{\alpha\alpha'} \phi_{\alpha}(\vec{r}) \phi_{\alpha'}^{*}(\vec{r}\,') \\ i\hbar \frac{d\rho}{dt} = [h,\rho] \end{pmatrix}$$

$$\sum_{\lambda} \rho_{\alpha \lambda \alpha' \lambda} = (N-1)n_{\alpha \alpha'} \approx \sum_{\lambda} (n_{\alpha \alpha'} n_{\lambda \lambda} - n_{\alpha \lambda} n_{\lambda \alpha'}) \Longrightarrow n_{\alpha \alpha'} = \sum_{\lambda} n_{\alpha \lambda} n_{\lambda \alpha'}$$

Limitation of Hartree-Fock theory (HF)

HF ground state = a stationary solution of TDHF eq.

$$i\hbar \frac{d}{dt} n_{\alpha\alpha'} = \sum_{\lambda} (\varepsilon_{\alpha\lambda} n_{\lambda\alpha'} - \varepsilon_{\lambda\alpha'} n_{\alpha\lambda}) = 0$$

 $\varepsilon_{\alpha\alpha'}$ and $n_{\alpha\alpha'}$ can be diagonal as $\varepsilon_{\alpha\alpha'} = \delta_{\alpha\alpha'}\varepsilon_{\alpha}$ and $n_{\alpha\alpha'} = \delta_{\alpha\alpha'}n_{\alpha}$ $(h\phi_{\alpha} = \varepsilon_{\alpha}\phi_{\alpha})$

$$n_{\alpha\alpha'} = \sum_{\lambda} n_{\alpha\lambda} n_{\lambda\alpha'} \Longrightarrow n_{\alpha} = n_{\alpha} n_{\alpha} \Longrightarrow n_{\alpha} = 1 \text{ or } 0$$

 $|\Phi_0\rangle$ is a single Slater determinant $|\Phi_0\rangle = \prod_{i=1}^{A} a_i^+ |0\rangle$

A = 16

Occupation probabilities of doubly closed-shell nuclei

Nucleus	jp	SF(HF)	SF(Exp)(<i>e</i> , <i>e</i> ' <i>p</i>)	SF(Exp)/SF(HF)
¹⁶ O	1/2+	2.00	1.27±0.13	0.64 ± 0.07
⁴⁰ Ca	3/2+	4.00	2.58 ± 0.19	0.65 ± 0.05
⁴⁸ Ca	1/2+	2.00	1.07 ± 0.07	0.54 ± 0.04
²⁰⁸ Pb	1/2+	2.00	0.98 ± 0.09	0.49 ± 0.05
		2j+1		J. Lee et al.,nucl-ex

 $n_{\alpha} < 1$ \longrightarrow Ground state is highly correlated. HF is too simple

Limitation of random phase approximation (RPA)

RPA formulation

- Small amplitude limit of TDHF
- Equation-of-motion approach

Small amplitude limit of TDHF

$$|\Psi(t)\rangle \approx |\Psi_0\rangle + \lambda \sum e^{-i\omega_{\mu}t/\hbar} |\Psi_{\mu}\rangle, \qquad \lambda <<1$$

$$i\hbar \frac{d}{dt} n_{\alpha\alpha'} = i\hbar \frac{d}{dt} \langle \Psi(t) | a_{\alpha'}^{+} a_{\alpha} | \Psi(t) \rangle = \langle \Psi(t) | [a_{\alpha'}^{+} a_{\alpha}, H] | \Psi(t) \rangle$$

$$\approx \lambda \sum \left(\omega_{\mu} \langle \Psi_{0} | a_{\alpha'}^{+} a_{\alpha} | \Psi_{\mu} \rangle e^{-i\omega_{\mu}t/\hbar} - \omega_{\mu} \langle \Psi_{\mu} | a_{\alpha'}^{+} a_{\alpha} | \Psi_{0} \rangle e^{i\omega_{\mu}t/\hbar} \right)$$

$$= \lambda \sum \left(\langle \Psi_{0} | [a_{\alpha'}^{+} a_{\alpha}, H] | \Psi_{\mu} \rangle e^{-i\omega_{\mu}t/\hbar} + \langle \Psi_{\mu} | [a_{\alpha'}^{+} a_{\alpha}, H] | \Psi_{0} \rangle e^{i\omega_{\mu}t/\hbar} \right)$$

$$\langle \Psi_{0} | [a_{\alpha'}^{+} a_{\alpha}, H] | \Psi_{\mu} \rangle = \omega_{\mu} \langle \Psi_{0} | a_{\alpha'}^{+} a_{\alpha} | \Psi_{\mu} \rangle = \omega_{\mu} \widetilde{X}_{\alpha\alpha'}^{\mu}$$

 $\widetilde{x}^{\mu}_{\alpha\alpha'}$: Transition amplitude

$$\left\langle \Psi_{0}\left|\left[a_{\alpha}^{+}a_{\alpha},H\right]\right|\Psi_{\mu}\right\rangle \approx \left(\varepsilon_{\alpha}-\varepsilon_{\alpha'}\right)\tilde{x}_{\alpha\alpha'}^{\mu}+\left(n_{\alpha'}-n_{\alpha}\right)\sum_{\lambda_{1}\lambda_{1}'}\left\langle\alpha\lambda_{1}\left|\nu\right|\alpha'\lambda_{1}'\right\rangle_{A}\tilde{x}_{\lambda_{1}'\lambda_{1}}^{\mu}=\omega_{\mu}\tilde{x}_{\alpha\alpha'}^{\mu}$$

Using $\tilde{x}_{mi}^{\mu} = x_{mi}^{\mu}$ and $\tilde{x}_{im}^{\mu} = -y_{mi}^{\mu}$, we obtain RPA equations

$$(\varepsilon_{m} - \varepsilon_{i})x_{mi}^{\mu} + \sum_{nj} \langle mj | v | in \rangle_{A} x_{nj}^{\mu} + \sum_{nj} \langle mn | v | ij \rangle_{A} y_{nj}^{\mu} = \omega_{\mu}x_{mi}^{\mu}$$
$$(\varepsilon_{m} - \varepsilon_{i})y_{mi}^{\mu} + \sum_{nj} \langle ij | v | mn \rangle_{A} x_{nj}^{\mu} + \sum_{nj} \langle in | v | mj \rangle_{A} y_{nj}^{\mu} = -\omega_{\mu}y_{mi}^{\mu}$$

i, *j*: hole states *m*, *n*: particle states

Matrix form

$$\begin{pmatrix} A & B \\ B^* & A^* \end{pmatrix} \begin{pmatrix} x^{\mu} \\ y^{\mu} \end{pmatrix} = \omega_{\mu} \begin{pmatrix} 1 & 0 \\ 0 - 1 \end{pmatrix} \begin{pmatrix} x^{\mu} \\ y^{\mu} \end{pmatrix}$$

$$A_{minj} = (\varepsilon_m - \varepsilon_i)\delta_{mn}\delta_{ij} + \langle mj | v | in \rangle_A$$
$$B_{minj} = \langle mn | v | ij \rangle_A$$

Equation-of-motion approach

$$Q_{\mu}^{+} = \sum_{mi} x_{mi}^{\mu} a_{m}^{+} a_{i} - \sum_{mi} y_{mi}^{\mu} a_{i}^{+} a_{m}$$
$$Q_{\mu} |\Psi_{0}\rangle = 0, \quad Q_{\mu}^{+} |\Psi_{0}\rangle = |\Psi_{\mu}\rangle, \quad H |\Psi_{0}\rangle = E_{0} |\Psi_{0}\rangle, \quad H |\Psi_{\mu}\rangle = E_{\mu} |\Psi_{\mu}\rangle$$

$$\left\langle \Psi_{0} \left| [a_{\alpha}^{+}a_{\alpha}, H] \right| \Psi_{\mu} \right\rangle = (E_{\mu} - E_{0}) \left\langle \Psi_{0} \left| a_{\alpha}^{+}a_{\alpha} \right| \Psi_{\mu} \right\rangle$$

$$\left\langle \Psi_{0} \left| [[a_{\alpha}^{+}a_{\alpha}, H], Q_{\mu}^{+}] \right| \Psi_{0} \right\rangle = \omega_{\mu} \left\langle \Psi_{0} \left| [a_{\alpha}^{+}a_{\alpha}, Q_{\mu}^{+}] \right| \Psi_{0} \right\rangle$$

 $\begin{pmatrix} A & B \\ B^* & A^* \end{pmatrix} \begin{pmatrix} x^{\mu} \\ y^{\mu} \end{pmatrix} = \omega_{\mu} \begin{pmatrix} 1 & 0 \\ 0 - 1 \end{pmatrix} \begin{pmatrix} x^{\mu} \\ y^{\mu} \end{pmatrix}$

RPA equations

 ε_{F} ε_{F} 0 $1d_{5/2}$ $1p_{1/2}$ $1p_{3/2}$ $1s_{1/2}$

A = 16

E2 strength distribution in RPA

H. Diesner et al. Phys. Rev. Lett. 72, 1994(1994)

Strong fragmentation — RPA is insufficient

2) Time-dependent density-matrix approach (TDDM)

TDDM gives time-evolution of 1-body and 2-body density matrices, $n_{\alpha\alpha'}$ and $C_{\alpha\beta\alpha'\beta'}$

$$\begin{split} n_{\alpha\alpha'} &= \left\langle \Phi(t) \left| a_{\alpha'}^{+} a_{\alpha} \right| \Phi(t) \right\rangle \\ C_{\alpha\beta\alpha'\beta'} &= \left\langle \Phi(t) \left| a_{\alpha'}^{+} a_{\beta'}^{+} a_{\beta} a_{\alpha} \right| \Phi(t) \right\rangle - (n_{\alpha\alpha'} n_{\beta\beta'} - n_{\alpha\beta'} n_{\alpha'\beta}) \\ \left| \Phi(t) \right\rangle &= e^{-iHt/\hbar} \left| \Phi_{0} \right\rangle \end{split}$$

Advantages of TDDM

- TDDM is straightforward extension of TDHF
- TDDM gives self-consistent extensions of HF and RPA

Equation for $n_{\alpha\alpha'}$

$$\begin{split} &i\hbar \frac{d}{dt} n_{\alpha\alpha'} = \left\langle \Phi(t) \left| \left[a_{\alpha'}^{+} a_{\alpha}, H \right] \right| \Phi(t) \right\rangle \\ &= \left\langle \Phi(t) \left| \sum_{\lambda\lambda'} \left\langle \lambda \left| t \right| \lambda' \right\rangle (\delta_{\alpha\lambda} a_{\alpha'}^{+} a_{\lambda'} - \delta_{\alpha'\lambda'} a_{\lambda}^{+} a_{\alpha}) \right. \right. \\ &+ \frac{1}{2} \sum_{\lambda_{1}\lambda_{2}\lambda_{1}'\lambda_{2}'} \left\langle \lambda_{1}\lambda_{2} \left| v \right| \lambda_{1}' \lambda_{2}' \right\rangle (\delta_{\alpha\lambda_{1}} a_{\alpha'}^{+} a_{\lambda_{2}}^{+} a_{\lambda_{2}} a_{\lambda_{1}'} - \delta_{\alpha\lambda_{2}} a_{\alpha'}^{+} a_{\lambda_{1}}^{+} a_{\lambda_{2}} a_{\lambda_{1}'} \right. \\ &- \left. - \delta_{\alpha'\lambda_{1}'} a_{\lambda_{1}}^{+} a_{\lambda_{2}}^{+} a_{\lambda_{2}} a_{\alpha} + \delta_{\alpha'\lambda_{2}'} a_{\lambda_{1}}^{+} a_{\lambda_{2}}^{+} a_{\lambda_{1}} a_{\alpha} \right) \left| \Phi(t) \right\rangle \end{split}$$

$$\begin{split} \left\langle \Phi(t) \left| a_{\alpha}^{+} a_{\lambda_{2}}^{+} a_{\lambda_{2}} a_{\lambda_{1}'} \right| \Phi(t) \right\rangle &= n_{\lambda_{1}'\alpha'} n_{\lambda_{2}'\lambda_{2}} - n_{\lambda_{1}'\lambda_{2}} n_{\lambda_{2}'\alpha'} + \underline{C_{\lambda_{1}'\lambda_{2}'\alpha'\lambda_{2}}} \\ & \downarrow \\ i\hbar \frac{d}{dt} n_{\alpha\alpha'} &= \sum_{\lambda} (\varepsilon_{\alpha\lambda} n_{\lambda\alpha'} - \varepsilon_{\lambda\alpha'} n_{\alpha\lambda}) \\ & + \sum_{\lambda_{2}\lambda_{1}'\lambda_{2}'} \left\langle \alpha\lambda_{2} \left| v \right| \lambda_{1}'\lambda_{2}' \right\rangle C_{\lambda_{1}'\lambda_{2}'\alpha'\lambda_{2}} - \sum_{\lambda_{1}\lambda_{2}\lambda_{2}'} \left\langle \lambda_{1}\lambda_{2} \left| v \right| \alpha'\lambda_{2}' \right\rangle C_{\alpha\lambda_{2}'\lambda_{1}\lambda_{2}} \end{split}$$

For
$$C_{\alpha\beta\alpha'\beta'} = 0$$

 $\Rightarrow i\hbar \frac{d}{dt} n_{\alpha\alpha'} = \sum_{\lambda} (\varepsilon_{\alpha\lambda} n_{\lambda\alpha'} - \varepsilon_{\lambda\alpha'} n_{\alpha\lambda})$ TDHF equation

Equation for $C_{\alpha\beta\alpha'\beta'}$

$$\begin{split} &i\hbar \frac{d}{dt} C_{\alpha\beta\alpha'\beta'} = \left\langle \Phi(t) \left| \left[a_{\alpha'}^{+} a_{\beta'}^{+} a_{\beta} a_{\alpha}, H \right] \right| \Phi(t) \right\rangle \\ &= (\varepsilon_{\alpha} + \varepsilon_{\beta} - \varepsilon_{\alpha'} - \varepsilon_{\beta'}) C_{\alpha\beta\alpha'\beta'} + B_{\alpha\beta\alpha'\beta'} + P_{\alpha\beta\alpha'\beta'} + H_{\alpha\beta\alpha'\beta'} + T_{\alpha\beta\alpha'\beta'} \end{split}$$

B term: 2 particle – 2 hole excitations

$$B_{\alpha\beta\alpha'\beta'} = \left\langle \alpha\beta \left| v \right| \alpha'\beta' \right\rangle_{A} \left[\overline{n}_{\alpha}\overline{n}_{\beta}n_{\alpha'}n_{\beta'} - n_{\alpha}n_{\beta}\overline{n}_{\alpha'}\overline{n}_{\beta'} \right] \quad , \overline{n}_{\alpha} = 1 - n_{\alpha}$$

For
$$n_{\alpha\alpha'} = n_{\alpha}\delta_{\alpha\alpha'}$$
, $n_{\alpha} = 0$, 1

$$B_{mnij} = \left\langle mn \left| v \right| ij \right\rangle_A$$

i, j: hole states *m, n*: particle states

P term: particle – particle and hole – hole correlations

$$P_{\alpha\beta\alpha'\beta'} = \sum_{\lambda\lambda'} \left[\left(1 - n_{\alpha} - n_{\beta} \right) \left\langle \alpha\beta \left| v \right| \lambda\lambda' \right\rangle C_{\lambda\lambda'\alpha'\beta'} - C_{\alpha\beta\lambda\lambda'} \left\langle \lambda\lambda' \left| v \right| \alpha'\beta' \right\rangle \left(1 - n_{\alpha'} - n_{\beta'} \right) \right] \right]$$

For
$$n_{\alpha\alpha'} = n_{\alpha}\delta_{\alpha\alpha'}$$
, $n_{\alpha} = 0$, 1

$$P_{mnij} = \sum_{m'n'} \langle mn | v | m'n' \rangle C_{m'n'ij} + \sum_{i'j'} \langle i'j' | v | ij \rangle C_{mni'j'}$$

H term: particle – hole correlations

$$H_{\alpha\beta\alpha'\beta'} = \sum_{\lambda\lambda'} (n_{\alpha'} - n_{\alpha}) \langle \alpha\lambda | v | \alpha'\lambda' \rangle_{A} C_{\lambda'\beta\lambda\beta'} + \{ \alpha \leftrightarrow \beta, \alpha' \leftrightarrow \beta' \}$$

For
$$n_{\alpha\alpha'} = n_{\alpha}\delta_{\alpha\alpha'}$$
, $n_{\alpha} = 0, 1$

$$H_{mnij} = \sum_{m'i'} [\langle mi' | v | im' \rangle_A C_{m'ni'j} + \langle ni' | v | jm' \rangle_A C_{m'mi'i} - \langle ni' | v | jm' \rangle_A C_{m'ni'i}]$$

$$- \langle ni' | v | im' \rangle_A C_{m'mi'j} - \langle mi' | v | jm' \rangle_A C_{m'ni'i}]$$

$$\varepsilon_F$$

T term : coupling to C_3

$$T_{\alpha\beta\alpha'\beta'} = \sum_{\lambda\lambda'\lambda''} \langle \alpha\lambda | v | \lambda'\lambda'' \rangle C_{\lambda'\lambda''\beta\alpha'\lambda\beta'} + \{ \alpha \leftrightarrow \beta, \alpha' \leftrightarrow \beta' \}$$

Equations for $n_{\alpha\alpha'}$ and $C_{\alpha\beta\alpha'\beta'}$

$$i\hbar \frac{dn_{\alpha\alpha'}}{dt} = \left\langle \Phi(t) \left| \left[a_{\alpha'}^{+} a_{\alpha}, H \right] \right| \Phi(t) \right\rangle = F_{1}(n, C_{2})$$

$$i\hbar \frac{dC_{\alpha\beta\alpha'\beta'}}{dt} = \left\langle \Phi(t) \left| \left[a_{\alpha'}^{+} a_{\beta'}^{+} a_{\beta} a_{\alpha}, H \right] \right| \Phi(t) \right\rangle = F_{2}(n, C_{2}, C_{3})$$

$$\vdots$$

Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy

To truncate BBGKY we need to approximate C_3

Truncation schemes of BBGKY hierarchy

Simplest truncation (TDDM):

 $C_{3} = 0$

TDDM overestimates 2-body correlations •TDDM1: (Tohyama & Schuck, Eur. Phys. J. A 50, 7(2014))

$$C_{p_1 p_2 h_1 p_3 p_4 h_2} \approx \sum_{h} C_{h h_1 p_3 p_4} C_{p_1 p_2 h_2 h}$$
$$C_{p_1 h_1 h_2 p_2 h_3 h_4} \approx \sum_{p} C_{h_1 h_2 p_2 p} C_{p_1 p h_3 h_4}$$

Coupled-Cluster-Doubles (CCD)-like ground state

$$|Z\rangle = e^{Z} |HF\rangle, \quad Z = \frac{1}{4} \sum_{pp'hh'} z_{pp'hh'} a_{p}^{+} a_{p'}^{+} a_{h'} a_{h}$$

gives

$$C_{pp'hh'} \approx z_{pp'hh'}, C_{hh'pp'} \approx z_{pp'hh'}^{*}$$

$$C_{p_1p_2h_1p_3p_4h_2} \approx \sum_{h} z_{p_3p_4hh_1}^{*} z_{p_1p_2h_2h}, C_{p_1h_1h_2p_2h_3h_4} \approx \sum_{p} z_{p_2ph_1h_2}^{*} z_{p_1ph_3h_4}$$

TDDM2: Lipkin model with large N

Tohyama & Schuck, Eur. Phys. J. A 53, 186 (2017)

$$C_{p_1 p_2 h_1 p_3 p_4 h_2} \approx \frac{1}{N} \sum_{h} C_{h h_1 p_3 p_4} C_{p_1 p_2 h_2 h}$$
$$C_{p_1 h_1 h_2 p_2 h_3 h_4} \approx \frac{1}{N} \sum_{p} C_{h_1 h_2 p_2 p} C_{p_1 p h_3 h_4}$$

$$N = 1 + \frac{1}{4} \sum_{pp'hh'} C_{pp'hh'} C_{pp'hh'}^{*}$$

Ground-state calculation

Ground state = a stationary solution of TDDM equations

$$i\hbar \frac{dn_{\alpha\alpha'}}{dt} = 0, \quad i\hbar \frac{dC_{\alpha\beta\alpha'\beta'}}{dt} = 0$$

$$\Rightarrow \begin{cases} (\varepsilon_{\alpha} - \varepsilon_{\alpha'})n_{\alpha\alpha'} + \sum_{\lambda_{1}\lambda_{2}\lambda_{3}} \left\{ \left\langle \alpha\lambda_{3} \left| v \right| \lambda_{1}\lambda_{2} \right\rangle C_{\lambda_{1}\lambda_{2}\alpha'\lambda_{3}} - C_{\alpha\lambda_{3}\lambda_{1}\lambda_{2}} \left\langle \lambda_{1}\lambda_{2} \left| v \right| \alpha'\lambda_{3} \right\rangle \right\} = 0 \\ (\varepsilon_{\alpha} + \varepsilon_{\beta} - \varepsilon_{\alpha'} - \varepsilon_{\beta'})C_{\alpha\beta\alpha'\beta'} + B_{\alpha\beta\alpha'\beta'} + P_{\alpha\beta\alpha'\beta'} + H_{\alpha\beta\alpha'\beta'} + T_{\alpha\beta\alpha'\beta'} = 0 \end{cases}$$

Adiabatic method is convenient:

Starting from HF ground state, we solve TDDM equations with slowly increasing interaction

$$v \Rightarrow v \times \frac{t}{T} \quad \text{with } T >> T_0 = \frac{2\pi\hbar}{\varepsilon}$$

$$\sum_{u=1}^{4} \frac{1}{\varepsilon}$$

$$T = 10T_0$$

$$\sum_{u=1}^{4} \frac{1}{\varepsilon}$$

$$\sum_$$

Excited-state calculation

- Small amplitude limit of TDDM (STDDM)
- Equation-of-motion approach

Small amplitude limit of TDDM (STDDM)

$$|\Psi(t)\rangle \approx |\Psi_0\rangle + \lambda \sum e^{-i\omega_{\mu}t/\hbar} |\Psi_{\mu}\rangle, \qquad \lambda \ll 1$$

$$i\hbar \frac{d}{dt} n_{\alpha\alpha'} = i\hbar \frac{d}{dt} \langle \Psi(t) | a_{\alpha'}^{+} a_{\alpha} | \Psi(t) \rangle = \langle \Psi(t) | [a_{\alpha'}^{+} a_{\alpha}, H] | \Psi(t) \rangle$$

$$\approx \lambda \sum \left(\omega_{\mu} \langle \Psi_{0} | a_{\alpha'}^{+} a_{\alpha} | \Psi_{\mu} \rangle e^{-i\omega_{\mu}t/\hbar} - \omega_{\mu} \langle \Psi_{\mu} | a_{\alpha'}^{+} a_{\alpha} | \Psi_{0} \rangle e^{i\omega_{\mu}t/\hbar} \right)$$

$$= \lambda \sum \left(\langle \Psi_{0} | [a_{\alpha'}^{+} a_{\alpha}, H] | \Psi_{\mu} \rangle e^{-i\omega_{\mu}t/\hbar} + \langle \Psi_{\mu} | [a_{\alpha'}^{+} a_{\alpha}, H] | \Psi_{0} \rangle e^{i\omega_{\mu}t/\hbar} \right)$$

$$\langle \Psi_{0} | [a_{\alpha'}^{+} a_{\alpha}, H] | \Psi_{\mu} \rangle = \omega_{\mu} \langle \Psi_{0} | a_{\alpha'}^{+} a_{\alpha} | \Psi_{\mu} \rangle = \omega_{\mu} \tilde{x}_{\alpha\alpha'}^{\mu}$$

 $\widetilde{x}^{\mu}_{\alpha\alpha'}$: Transition amplitude

$$\begin{split} \left\langle \Psi_{0} \left| \left[a_{\alpha'}^{+} a_{\alpha}, H \right] \right| \Psi_{\mu} \right\rangle &= \left(\varepsilon_{\alpha} - \varepsilon_{\alpha'} \right) \widetilde{x}_{\alpha\alpha'}^{\mu} + \sum_{\lambda\lambda_{1}\lambda_{1}'} \left(\left\langle \alpha\lambda_{1} \left| v \right| \lambda\lambda_{1}' \right\rangle_{A} n_{\lambda\alpha'} - \left\langle \lambda\lambda_{1} \left| v \right| \alpha'\lambda_{1}' \right\rangle_{A} n_{\alpha\lambda} \right) \widetilde{x}_{\lambda_{1}'\lambda_{1}}^{\mu} \\ &+ \sum_{\lambda_{2}\lambda_{1}'\lambda_{2}'} \left\langle \alpha\lambda_{2} \left| v \right| \lambda_{1}'\lambda_{2}' \right\rangle \widetilde{X}_{\lambda_{1}'\lambda_{2}'\alpha'\lambda_{2}}^{\mu} - \sum_{\lambda_{1}\lambda_{2}\lambda_{2}'} \left\langle \lambda_{1}\lambda_{2} \left| v \right| \alpha'\lambda_{2}' \right\rangle \widetilde{X}_{\alpha\lambda_{2}'\lambda_{1}\lambda_{2}}^{\mu} \\ &= \overline{\omega_{\mu}} \widetilde{x}_{\alpha\alpha'}^{\mu} \end{split}$$

$$\begin{pmatrix} n_{h} = 1 \\ n_{p} = 0 \\ \widetilde{X}^{\mu}_{\alpha\beta\alpha'\beta'} = 0 \end{pmatrix} \longrightarrow \widetilde{x}^{\mu}_{\alpha\alpha'} = \begin{pmatrix} x^{\mu}_{mi} \\ -y^{\mu}_{mi} \end{pmatrix} \text{ RPA}$$

Similarly for C_2

$$i\hbar\frac{d}{dt}C_{\alpha\beta\alpha'\beta'} = i\hbar\frac{d}{dt}\left\langle\Psi(t)\left|a_{\alpha'}^{+}a_{\beta'}^{+}a_{\beta}a_{\alpha}\right|\Psi(t)\right\rangle = \left\langle\Psi(t)\left|\left[a_{\alpha'}^{+}a_{\beta'}^{+}a_{\beta}a_{\alpha},H\right]\right|\Psi(t)\right\rangle$$

$$\Rightarrow \left\langle \Psi_{0} \left| \left[a_{\alpha'}^{+} a_{\beta'}^{+} a_{\beta} a_{\alpha}, H \right] \right| \Psi_{\mu} \right\rangle = \omega_{\mu} \left\langle \Psi_{0} \left| a_{\alpha'}^{+} a_{\beta'}^{+} a_{\beta} a_{\alpha} \right| \Psi_{\mu} \right\rangle = \omega_{\mu} \tilde{X}_{\alpha\beta\alpha'\beta'}^{\mu}$$

STDDM equation

$$\begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} \widetilde{x}^{\mu} \\ \widetilde{X}^{\mu} \end{pmatrix} = \omega_{\mu} \begin{pmatrix} \widetilde{x}^{\mu} \\ \widetilde{X}^{\mu} \end{pmatrix}$$

Equation-of-motion approach

$$\begin{aligned} Q_{\mu}^{+} &= \sum_{\lambda\lambda'} x_{\lambda\lambda'}^{\mu} a_{\lambda}^{+} a_{\lambda'} + \sum_{\lambda_{1}\lambda_{2}\lambda_{1}'\lambda_{2}'} X_{\lambda\lambda}^{\mu} a_{\lambda_{1}}^{+} a_{\lambda_{2}}^{+} a_{\lambda_{2}} a_{\lambda_{1}'} : \quad Q_{\mu}^{+} |\Psi_{0}\rangle = |\Psi_{\mu}\rangle, \quad Q_{\mu} |\Psi_{0}\rangle = 0 \\ \langle \Psi_{0} | [a_{\alpha}^{+} a_{\alpha}, H] |\Psi_{\mu}\rangle &= (E_{\mu} - E_{0}) \langle \Psi_{0} | a_{\alpha}^{+} a_{\alpha} | \Psi_{\mu}\rangle = \omega_{\mu} \langle \Psi_{0} | a_{\alpha}^{+} a_{\alpha} | \Psi_{\mu}\rangle \\ \langle \Psi_{0} | [a_{\alpha}^{+} a_{\beta}^{+} a_{\beta} a_{\alpha}, H] |\Psi_{\mu}\rangle &= \omega_{\mu} \langle \Psi_{0} | a_{\alpha}^{+} a_{\beta}^{+} a_{\beta} a_{\alpha} | \Psi_{\mu}\rangle \\ & \checkmark \end{aligned}$$

$$\begin{aligned} \left(\begin{array}{c} A & B \\ C & D \end{array} \right) \begin{pmatrix} x^{\mu} \\ X^{\mu} \end{pmatrix} = \omega_{\mu} \begin{pmatrix} S_{1} & T_{1} \\ T_{2} & S_{2} \end{pmatrix} \begin{pmatrix} x^{\mu} \\ X^{\mu} \end{pmatrix} \\ A &= \langle \Psi_{0} | [[a_{\alpha}^{+} a_{\alpha}, H], a_{\lambda}^{+} a_{\lambda'}] |\Psi_{0}\rangle & S_{1} = \langle \Psi_{0} | [a_{\alpha}^{+} a_{\alpha}, a_{\lambda}^{+} a_{\lambda'}] |\Psi_{0}\rangle \\ B &= \langle \Psi_{0} | [[a_{\alpha}^{+} a_{\alpha}, H], a_{\lambda}^{+} a_{\lambda'}^{+} a_{\lambda'} a_{\lambda'} a_{\lambda'} a_{\lambda'}] |\Psi_{0}\rangle & T_{1} = \langle \Psi_{0} | [a_{\alpha}^{+} a_{\alpha}, a_{\lambda}^{+} a_{\lambda'}^{+} a_{\lambda'} a_{\lambda'} a_{\lambda'} a_{\lambda'}] |\Psi_{0}\rangle \\ D &= \langle \Psi_{0} | [[a_{\alpha}^{+} a_{\beta}^{+} a_{\beta} a_{\alpha}, H], a_{\lambda}^{+} a_{\lambda'}^{+} a_{\lambda'}^{+} a_{\lambda'}^{+} a_{\lambda'} a_{\lambda$$

Extended second RPA (ESRPA)

Under HF assumption

$$\begin{pmatrix} n_h = 1 \\ n_p = 0 \\ C_2 = 0 \end{pmatrix} \longrightarrow \text{Second RPA (SRPA)}$$

SRPA operator

$$Q_{\mu}^{+} = \sum_{mi} x_{mi}^{\mu} a_{m}^{+} a_{i} - \sum_{mi} y_{mi}^{\mu} a_{i}^{+} a_{m} + \sum_{mnij} X_{mnij}^{\mu} a_{m}^{+} a_{n}^{+} a_{j} a_{i} - \sum_{mnij} Y_{mnij}^{\mu} a_{i}^{+} a_{j}^{+} a_{n} a_{m}$$

i, *j* : hole states *m*, *n* : particle states

One-body part of ESRPA (1b-ESRPA)

$$Ax^{\mu} = \omega_{\mu}S_1x^{\mu}$$

$$S_{1} = (n_{\alpha'} - n_{\alpha})\delta_{\alpha\lambda}\delta_{\alpha'\lambda'}$$

$$A = [(\varepsilon_{\alpha} - \varepsilon_{\alpha'})\delta_{\alpha\lambda}\delta_{\alpha'\lambda'} + (n_{\lambda'} - n_{\lambda})\langle\alpha\lambda'|v|\alpha'\lambda\rangle](n_{\alpha'} - n_{\alpha})$$

$$+ \delta_{\alpha\lambda}\sum_{\gamma\gamma'\gamma''}\langle\gamma\gamma'|v|\alpha'\gamma''\rangle C_{\lambda'\gamma''\gamma''} + \sum_{\gamma\gamma'}\langle\lambda'\gamma|v|\alpha'\gamma'\rangle_{A} C_{\alpha\gamma'\lambda\gamma} - \sum_{\gamma\gamma'}\langle\gamma\gamma'|v|\alpha'\lambda\rangle C_{\alpha\lambda'\gamma\gamma'} + \cdots$$

$$\left| \bigvee_{V} \bigvee_$$

Self-energy

Vertex corrections

3) Applications

Lipkin model

$$H = \varepsilon J_0 + \frac{V}{2} \left(J_+^2 + J_-^2 \right)$$
$$J_0 = \frac{1}{2} \sum_{p=1}^N (a_p^+ a_p - a_{-p}^+ a_{-p}^-), \quad J_+ = J_-^+ = \sum_{p=1}^N a_p^+ a_{-p}^-$$

For
$$\chi = \frac{(N-1)|V|}{\varepsilon} \le 1$$
 $|\text{HF}\rangle = \prod_{p=1}^{N} a_{-p}^{+} |0\rangle$
For $\chi > 1$ $|\text{DHF}(\alpha)\rangle = \prod_{p=1}^{N} c_{-p}^{+} |0\rangle$
 $\begin{pmatrix} c_{-p} \\ c_{p} \end{pmatrix} = \begin{pmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{pmatrix} \begin{pmatrix} a_{-p} \\ a_{p} \end{pmatrix}$, $\cos 2\alpha = 1/\chi$

Ground state energy N=4

N=4

Self-energy contributions from C_3 suppress excess correlations

 $C_3 \approx C_2 \times C_2$

Occupation probability

Correlation matrix C_2

 $C_{pp'-p-p'}(\text{DHF}) = (n_{p-p}(\text{DHF}))^2$

Deformed HF (DHF) is good approximation for large N and χ

$$|\Phi_0\rangle \approx \frac{1}{\sqrt{2}}(|\text{DHF}(\alpha)\rangle + |\text{DHF}(-\alpha)\rangle), \quad \cos 2\alpha = \frac{1}{\chi}$$

$$n_{p} = \left\langle \Phi_{0} \left| a_{p}^{+} a_{p} \right| \Phi_{0} \right\rangle \approx \frac{1}{2} \left(\left\langle \text{DHF}(\alpha) \right| a_{p}^{+} a_{p} \right| \text{DHF}(\alpha) \right\rangle + \left\langle \text{DHF}(-\alpha) \left| a_{p}^{+} a_{p} \right| \text{DHF}(-\alpha) \right\rangle \right) = n_{p} \left(\text{DHF})$$

$$n_{p-p} = \left\langle \Phi_{0} \left| a_{-p}^{+} a_{p} \right| \Phi_{0} \right\rangle \approx \frac{1}{2} \left(\left\langle \text{DHF}(\alpha) \right| a_{-p}^{+} a_{p} \right| \text{DHF}(\alpha) \right\rangle + \left\langle \text{DHF}(-\alpha) \left| a_{-p}^{+} a_{p} \right| \text{DHF}(-\alpha) \right\rangle \right) = 0$$

$$\rho_{pp'-p-p'} = \left\langle \Phi_{0} \left| a_{-p}^{+} a_{-p}^{+} a_{p} a_{p} \right| \Phi_{0} \right\rangle = C_{pp'-p-p'} \approx (n_{p-p} \left(\text{DHF}) \right)^{2}$$

$$\rho_{pp'p'-p-p'-p'} = \left\langle \Phi_{0} \left| a_{p}^{+} a_{-p}^{+} a_{-p}^{+} a_{p} a_{p} a_{p} \right| \Phi_{0} \right\rangle \approx n_{p} \left(\text{DHF} \right) (n_{p-p} \left(\text{DHF} \right))^{2} = n_{p} C_{pp'-p-p'}$$

TDDM with $C_3 = 0$ becomes good

Excited states *N*=4

Self-energy contributions in 1b-ESRPA

Excited states in STDDM ($N=200, C_3=0$)

<u>1D-Hubbard model (*N*=6 at half-filling)</u>

$$\begin{split} H = -t \sum_{\langle i,j \rangle,\sigma} c_{i,\sigma}^{+} c_{j,\sigma} + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow} \quad , \qquad \hat{n}_{i\sigma} = c_{i,\sigma}^{+} c_{i,\sigma} \\ \uparrow \qquad \uparrow \qquad \uparrow \\ \text{hopping} \qquad \text{on-site repulsion} \end{split}$$

<u>In momentum space</u> $c_{i,\sigma} = \frac{1}{\sqrt{N}} \sum_{k} a_{k,\sigma} e^{ikx_i}$

$$H = \sum_{k,\sigma} \varepsilon_k a_{k,\sigma}^+ a_{k,\sigma} + \frac{U}{2N} \sum_{k,p,q,\sigma} a_{k,\sigma}^+ a_{k+q,\sigma} a_{p,-\sigma}^+ a_{p,-\sigma}$$

$$\varepsilon_k = -2t\cos k_k$$
, $k_1 = 0$, $k_{2,3} = \pm \frac{\pi}{3}$, $k_{4,5} = \pm \frac{2\pi}{3}$, $k_6 = -\pi$

$$\mathrm{HF}\rangle = \prod_{i=1,\sigma}^{3} a_{k_{i},\sigma}^{+} \left| 0 \right\rangle$$

Ground state energy (N=6)

1st excited state (spin mode) $\Delta q = \pi : \left(-\frac{\pi}{3} \uparrow \Rightarrow \frac{2\pi}{3} \uparrow \right) - \left(-\frac{\pi}{3} \downarrow \Rightarrow \frac{2\pi}{3} \downarrow \right)$

2nd excited state (spin mode) $\Delta q = \frac{\pi}{3} : \left(\frac{\pi}{3} \uparrow \Rightarrow \frac{2\pi}{3} \uparrow\right) - \left(\frac{\pi}{3} \downarrow \Rightarrow \frac{2\pi}{3} \downarrow\right)$

Self-energy + coupling to X^{μ} are important

E1 and E2 excitations in ⁴⁰Ca and ⁴⁸Ca

Ground-state calculations (TDDM)

Single-particle states:

$$1d_{5/2}, 1d_{3/2}, 2s_{1/2}, 1f_{7/2}$$
 $(1f_{5/2}, 2p_{3/2}, 2p_{1/2})$ for $n_{\alpha\alpha}$ and $C_{pp'hh'}$
 $\frac{48}{Ca}$

Residual interaction: simplified Skyrme III

$$v_2 = t_0 (1 + x_0 P_{\sigma}) \delta^3(\vec{r} - \vec{r}'), v_3 = t_3 \delta^3(\vec{r} - \vec{r}') \delta^3(\vec{r} - \vec{r}'')$$

Occupation probabilities

⁴⁰C<u>a</u>

	ϵ_{α} []	MeV]	$n_{lpha lpha}$		
orbit	proton	neutron	proton	neutron	
$1d_{5/2}$	-15.6	-22.9	0.923	0.924	
$1d_{3/2}$	-9.4	-16.5	0.884	0.884	
$2s_{1/2}$	-8.5	-15.9	0.846	0.846	
$1f_{7/2}$	-3.4	-10.4	0.154	0.154	

⁴⁸Ca

	ϵ_{α} []	MeV]	$n_{lpha lpha}$		
orbit	proton	neutron	proton	neutron	
$1d_{5/2}$	-22.6	-22.4	0.963	0.965	
$1d_{3/2}$	-17.1	-17.0	0.952	0.940	
$2s_{1/2}$	-15.1	-16.4	0.905	0.932	
$1f_{7/2}$	-10.6	-10.6	0.059	0.919	
$2p_{3/2}$	-1.7	-3.8	-	0.103	
$2p_{1/2}$	0.1	-2.0	-	0.064	
$1f_{5/2}$	-2.2	-1.9	0.022	0.116	

Excited-state calculations (STDDM)

Single-particle states:

for
$$x_{\alpha\alpha'}^{\mu}$$
: $\varepsilon_{\alpha} \le 50 \text{ MeV}$, $\ell \le 11/2$
for $X_{pp'hh'}^{\mu}$: $2p_{3/2}$, $2p_{1/2}$, $1d_{5/2}$, $1d_{3/2}$, $2s_{1/2}$, $1f_{7/2}$ ($1f_{5/2}$, $2p_{3/2}$, $2p_{1/2}$)
⁴⁸Ca

Residual interaction: simplified Skyrme III

$$v_2 = t_0 (1 + x_0 P_{\sigma}) \delta^3(\vec{r} - \vec{r}'), v_3 = t_3 \delta^3(\vec{r} - \vec{r}') \delta^3(\vec{r} - \vec{r}'')$$

 $\bullet \bullet \bullet \bullet \bullet v1d, 2s$

H. Diesner et al. Phys. Rev.Lett. 72, 1994(1994)

Contributions of 3p-1h and 1p-3h states in ⁴⁰Ca Norm matrix for 3p-1h state: $S_2 \approx (1-n_p)(1-n_{p'})n_{p''}n_h \neq 0$

ESRPA': $X^{\mu}_{pp'hh'} + X^{\mu}_{hh'pp'} + X^{\mu}_{pp'p''h} + X^{\mu}_{phh'h''} + \cdots$

T. Hartmann et al., Phys. Rev. Lett. 85, 274(2000)

⁴⁰Ca(*e*,*e*'*x*)

H. Diesner et al. Phys. Rev. Lett. 72, 1994(1994)

Reasons for strong fragmentation in ⁴⁰Ca

• Partial occupation of $1f_{7/2}$ states

Contributions of h-h and p-p amplitudes

T. Hartmann et al., Phys. Rev. Lett. 85, 274(2000)

4) Summary

- TDDM is a straightforward extension of TDHF
- $C_3 \approx C_2 \times C_2$ gives a better truncation scheme of BBGKY hierarchy except for large *N* Lipkin model.
- TDDM g.s. +ESRPA works for solvable models Excited states :self-energy + coupling to $X^{\mu}_{\alpha\beta\alpha'\beta'}$ are important
- Ground-state correlations are important for fragmentation of E1 and E2 strengths in ⁴⁰Ca and ⁴⁸Ca

Ortho-normalization condition in ESRPA

$$\begin{pmatrix} x^{\mu^*} X^{\mu^*} \end{pmatrix} \begin{pmatrix} S_1 & T_1 \\ T_2 & S_2 \end{pmatrix} \begin{pmatrix} x^{\nu} \\ X^{\nu} \end{pmatrix} = \delta_{\mu\nu}$$

 $(x^{\mu^*} X^{\mu^*})$: left eigen vector

Relation of ESRPA and STDDM