# Effective nuclear force, finite (hyper)nuclei and neutron star from quarks: the QMC model

APCTP Focus Program in Nuclear Physics 2019 Nuclear Many-Body Theories: Beyond the Mean Field Approaches July 1 - July 10, 2019 APCTP, Pohang, South Korea

#### Kazuo Tsushima

UNICSUL/UNICID (Cruzeiro do Sul University/City University of Sao Paulo), Brazil

1. K. Tsushima, Phys. Rev. D 99, 014026 (2019): propaganda (heavy baryon)

2. G. Krein, A. W. Thomas, K. Tsushima (Quarkonia-A) Prog. Part. Nucl. Phys. 100, 161 (2018)

3. K. Saito, K. Tsushima and A. W. Thomas (QMC model) Prog. Part. Nucl. Phys. 58, 1 (2007)

500

# QMC model: Hadron, Nuclear and Neutron Star Structure from Quarks and Gluons

#### Kazuo Tsushima

M.K. Cheoun J.J. Cobos-Martínez **P. Guichon** V. Guzey G. Krein D.H. Lu **P.T.P. Hutauruk** J.P.B.C. de Melo Y. Oh G. Ramalho K. Saito A. Sibirtsev **R. Shyam** A.W. Thomas

Uni. Cruzeiro do Sul City Uni. of Sao Paulo Sao Paulo, Brazil

### OUTLINE

- 1. Introduction: Motivations (QMC model)
- 2. Finite Nuclei: Effective Nuclear Force
- 3. Hypernuclei (General Introduction)
- **4.** Λ-hypernuclei photoproduction
- 5. **E-hypernuclei** production
- 6. Neutron Star
- 7. Heavy Baryons in Medium
- 8. Neutrino reactions and in-medium form factors
- 9. Pion, N, EMFFs and D.A. in medium,
- **10. Bound Nucleon GPDs and Incoherent DVCS**
- **11. D** (K) meson in medium and  $J/\Psi$ -( $\Phi$ -)nuclear bound states
- 12. Other things.....
- **13. Summary and Future Plans**

# Introduction, Motivations: QMC model

#### **References:**

In-medium properties of the low-lying strange, charm, and bottom baryons in the quark-meson coupling model (Heavy Baryons): K. Tsushima Phys. Rev. D 99, 014026 (2019)

Quarkonia-nuclear bindings (QMC model brief summary): G. Krein, A. W. Thomas, K. Tsushima Prog. Part. Nucl. Phys. 100, 161 (2018)

#### **QMC model summary:**

K. Saito, K. Tsushima and A. W. Thomas Prog. Part. Nucl. Phys. 58, 1 (2007)

◀ □ ▶ ┽뢾 ▶ ┽ 클 ▶ ┽ 클 ▶

# Motivations

•(Large) nuclei, and nuclear matter in terms of quarks and gluons (eventually by QCD) ???!!! •NN,NNN,NNNN... interactions  $\rightarrow$ **Nucleus** ? ← shell model, MF model,... •Lattice QCD: still extracting NN, NY and YY interactions, [Y=hyperons: $\Lambda, \Sigma, \Xi$ ] Quark model based description of nucleus Hadron properties in a nuclear medium

# Suggests a different approach : QMC Model

(Guichon, Saito, Tsushima et al., Rodionov et al. - see Saito et al., Prog. Part. Nucl .Phys. 58 (2007) 1 and Prog. Part. Nucl. Phys. 100 (2018) 262-297 for reviews)

- Start with quark model (MIT bag/NJL...) for all hadrons
- Introduce a relativistic Lagrangian with  $\sigma$ ,  $\omega$  and  $\rho$  mesons coupling to non-strange quarks
- Hence only 3 parameters (4 if σ mass not fixed)
  - determine by fitting to:
    - $\rho_{0,}$  E/A and symmetry energy
    - same in dense matter & finite nuclei
- Must solve <u>self-consistently</u> for the internal structure of baryons in-medium







# R=(p'x /p'z)=(GĔ/GM): <sup>4</sup>He/ <sup>1</sup>H

S. Malace, M. Paolone and S. Strauch, arXiv:0807.2251 [nucl-ex]

S. Strauch et al., Phys. Rev. Lett. 91, 052301 (2003)



#### The QMC model P. Guichon, PLB 200, 235 (1988) (For a review, PPNP 58, 1 (2007)) Light (u,d) quarks interact Nuclear Binding !! self-consistently with mean $\sigma$ and $\omega$ fields < **o** > $m^*q=mq - g_\sigma^q \sigma = mq - V\sigma^q$ < ω $\downarrow$ nonlinear in $\sigma$ $M^*N \approx M_N - g_\sigma^N \sigma + (d/2) (g_\sigma^N \sigma)^2$ $M^*N = MN - V_{\sigma}^N$ $[\mathbf{i} \Upsilon \cdot \partial - (\mathbf{m} - V \sigma^{\mathbf{q}}) + \Upsilon_{0} V \omega^{\mathbf{q}}] \mathbf{q} = \mathbf{0}$ $\frac{N}{V\omega} = 3V\omega$ $[i \Upsilon \bullet \partial - M^*_{N} + \Upsilon_0 V^N] N = 0$ **Self-consistent** ! (Applied quark model !) K. Tsushima 7

# **Bound quark** Dirac spinor (1s<sub>1/2</sub>)

# Quark Dirac spinor in a bound hadron: $q_{1s}(\mathbf{r}) = \begin{pmatrix} U(\mathbf{r}) \\ i\sigma \cdot \mathbf{r} L(\mathbf{r}) \end{pmatrix} \chi$

Lower component is enhanced !

- $\Rightarrow$  g<sub>A\*</sub> < g<sub>A</sub>: ~ |U|\*\*2 (1/3) |L|\*\*2,
- $\Rightarrow$  **Decrease** of scalar density  $\Rightarrow$

**Decrease in Scalar Density** 

Scalar density (quark): ~ |U|\*\*2 - |L|\*\*2,

M<sub>N</sub>\*, N wave function, Nuclear scalar density etc., are self-consistently modified due to the N internal structure change !

Novel Saturation mechanism !

## **At Nucleon Level Response to the Applied Scalar Field is the Scalar Polarizability**

**Nucleon response** to **a chiral invariant scalar field** is then a nucleon property of great interest...

$$\overrightarrow{\mathsf{M}^*(\mathsf{R})} \approx \mathsf{M} - g_\sigma \sigma(\overrightarrow{\mathsf{R})} + (\mathsf{d}/2) (g_\sigma \sigma(\overrightarrow{\mathsf{R}}))^{**2}$$

Non-linear dependence scalar polarizability 0.22 d\*\*<sup>1</sup>/<sub>4</sub> R in original QMC (MIT bag)

Indeed, in nuclear matter at mean-field level (e.g. QMC), this is the **ONLY place the response of the internal structure of the nucleon enters.** 

## **QMC model 1: Hadron level**

$$\mathcal{L} = \bar{\psi} [i\gamma \cdot \partial - m_N^*(\sigma) - g_\omega \omega^\mu \gamma_\mu] \psi + \mathcal{L}_{\text{meson}}, \\ m_N^*(\sigma) \equiv m_N - g_\sigma (\sigma) \sigma \simeq m_N - g_\sigma [1 - (a_N/2)(g_\sigma \sigma)] \sigma \\ g_\sigma \equiv g_\sigma (\sigma = 0)$$

$$\begin{split} \mathcal{L}_{\mathrm{meson}} &= \frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma - \mathsf{m}_{\sigma}^{2} \sigma^{2} - \frac{1}{2} \partial_{\mu} \omega_{\nu} (\partial^{\mu} \omega^{\nu} - \partial^{\nu} \omega^{\mu}) \\ &+ \frac{1}{2} \mathsf{m}_{\omega}^{2} \omega^{\mu} \omega_{\mu} \,, \end{split}$$

$$\rho_{\rm B} = \frac{4}{(2\pi)^3} \int d^3 k \; \theta(k_{\rm F} - |\vec{k}|) = \frac{2k_{\rm F}^3}{3\pi^2},$$
  

$$\rho_{\rm s} = \frac{4}{(2\pi)^3} \int d^3 k \; \theta(k_{\rm F} - |\vec{k}|) \frac{m_{\rm N}^*(\sigma)}{\sqrt{m_{\rm N}^{*2}(\sigma) + \vec{k}^2}},$$

940

5 / 31

## QMC model 2: Quark level

 $x = (t, \vec{r}) (|\vec{r}| \le \text{ bag radius})$ 

$$\begin{bmatrix} i\gamma \cdot \partial_{x} - (m_{q} - V_{\sigma}^{q}) \mp \gamma^{0} \left( V_{\omega}^{q} + \frac{1}{2} V_{\rho}^{q} \right) \end{bmatrix} \begin{pmatrix} \psi_{u}(x) \\ \psi_{\overline{u}}(x) \end{pmatrix} = 0 \\ \begin{bmatrix} i\gamma \cdot \partial_{x} - (m_{q} - V_{\sigma}^{q}) \mp \gamma^{0} \left( V_{\omega}^{q} - \frac{1}{2} V_{\rho}^{q} \right) \end{bmatrix} \begin{pmatrix} \psi_{d}(x) \\ \psi_{\overline{d}}(x) \end{pmatrix} = 0 \\ \begin{bmatrix} i\gamma \cdot \partial_{x} - m_{Q} \end{bmatrix} \psi_{Q}(x) \text{ (or } \psi_{\overline{Q}}(x)) = 0 \end{cases}$$

$$\begin{split} \mathbf{m}_{h}^{*} &= \sum_{\mathbf{j}=\mathbf{q}, \mathbf{\bar{q}}, \mathbf{Q}\mathbf{\bar{Q}}} \frac{\mathbf{n}_{j}\Omega_{j}^{*} - \mathbf{z}_{h}}{\mathbf{R}_{h}^{*}} + \frac{4}{3}\pi\mathbf{R}_{h}^{*3}\mathbf{B}, \quad \frac{\partial\mathbf{m}_{h}^{*}}{\partial\mathbf{R}_{h}}\Big|_{\mathbf{R}_{h}=\mathbf{R}_{h}^{*}} = \mathbf{0} \\ \Omega_{q}^{*} &= \Omega_{\bar{q}}^{*} = [\mathbf{x}_{q}^{2} + (\mathbf{R}_{h}^{*}\mathbf{m}_{q}^{*})^{2}]^{1/2}, \text{ with } \mathbf{m}_{q}^{*} = \mathbf{m}_{q} - \mathbf{g}_{\sigma}^{q}\sigma \\ \Omega_{Q}^{*} &= \Omega_{\overline{Q}}^{*} = [\mathbf{x}_{Q}^{2} + (\mathbf{R}_{h}^{*}\mathbf{m}_{Q})^{2}]^{1/2} \quad (\mathbf{Q} = \mathbf{s}, \mathbf{c}, \mathbf{b}) \end{split}$$

# QMC model 3: From quarks

$$\begin{split} \omega &= \frac{g_{\omega}\rho_{B}}{m_{\omega}^{2}}, \\ \sigma &= \frac{g_{\sigma}}{m_{\sigma}^{2}}C_{N}(\sigma)\frac{4}{(2\pi)^{3}}\int d^{3}k\;\theta(k_{F}-|\vec{k}|)\frac{m_{N}^{*}(\sigma)}{\sqrt{m_{N}^{*2}(\sigma)+\vec{k}^{2}}} \\ &= \frac{g_{\sigma}}{m_{\sigma}^{2}}C_{N}(\sigma)\rho_{s} \quad (g_{\sigma}\equiv g_{\sigma}(\sigma=0)), \\ C_{N}(\sigma) &= \frac{-1}{g_{\sigma}(\sigma=0)}\left[\frac{\partial m_{N}^{*}(\sigma)}{\partial\sigma}\right], \\ E^{tot}/A \quad - \quad m_{N} &= \frac{4}{(2\pi)^{3}\rho_{B}}\int d^{3}k\;\theta(k_{F}-|\vec{k}|)\sqrt{m_{N}^{*2}(\sigma)+\vec{k}^{2}} \\ &\quad + \frac{m_{\sigma}^{2}\sigma^{2}}{2\rho_{B}} + \frac{g_{\omega}^{2}\rho_{B}}{2m_{\omega}^{2}} - m_{N}. \end{split}$$

7/31

Kazuo Taushima ( LFTC, UNICSUL (Unive In-medium properties of the low-lying stran

Introduction: QMC

### QMC model 4: Couplings etc.

| m <sub>q</sub> (MeV) | $g_{\sigma}^2/4\pi$ | $g_{\omega}^2/4\pi$ | m* <sub>N</sub> | ĸ     | ZN    | B <sup>1/4</sup> (MeV) |
|----------------------|---------------------|---------------------|-----------------|-------|-------|------------------------|
| 5                    | 5.39                | 5.30                | 754.6           | 279.3 | 3.295 | 170                    |
| 220                  | 6.40                | 7.57                | 698.6           | 320.9 | 4.327 | 148                    |

$$\frac{\partial m_{N}^{*}(\sigma)}{\partial \sigma} = -3g_{\sigma}^{q} \int_{bag} d^{3}r \ \overline{\psi}_{q}(\vec{r})\psi_{q}(\vec{r}) \quad \text{the lowest bag w.f.}$$

$$\equiv -\frac{3g_{\sigma}^{q}S_{N}(\sigma)}{\sigma} = -\frac{\partial}{\partial\sigma} \left[g_{\sigma}(\sigma)\sigma\right],$$

$$C_{N}(\sigma) = \frac{-1}{g_{\sigma}(\sigma=0)} \left[\frac{\partial m_{N}^{*}(\sigma)}{\partial\sigma}\right],$$

(ロアルロアルを行う)。

-040

8 / 31

$$\mathbf{g}_{\sigma} \equiv \mathbf{g}_{\sigma}^{\mathsf{N}} \equiv 3\mathbf{g}_{\sigma}^{\mathsf{q}}\mathbf{S}_{\mathsf{N}}(\sigma=0).$$

### Results: Quark Meson Coupling (Standard)



Symmetric Nuclear Matter - Binding Energy per Nucleon *m<sub>a</sub>* = 5 MeV, *K* = 279.3 MeV

#### Introduction: QMC



ヘロア ふぼう へかてん 強く

1

-240-

10 / 31

Nucleon effective mass: m<sub>q</sub> = 5 MeV



Effective mass of constituent quarks: m<sub>q</sub> = 5 MeV
 All the light-quarks in any hadrons feel the same potentials !!

940

11 / 31

# Standard QMC, $\pi$ , $\rho$ in LF model parameters comparison

Motivation: The present model works well (Symmetric Vertex)!

| m <sub>q</sub> (MeV) | $g_{\sigma}^2/4\pi$ | $g_{\omega}^2/4\pi$ | m*     | к     | ZN    | B <sup>1/4</sup> (MeV) |
|----------------------|---------------------|---------------------|--------|-------|-------|------------------------|
| 5                    | 5.39                | 5.30                | 754.6  | 279.3 | 3.295 | 170                    |
| 220                  | 6.40                | 7.57                | 698.6  | 320.9 | 4.327 | 148                    |
| 430                  | 8.73                | 11.93               | 565.25 | 361.4 | 5.497 | 69.75                  |

• Refs. LF  $\pi$ ,  $\rho$  model: J.P.B.C. de Melo, KT et al., LF  $\pi$  model (m<sub>q</sub> = 220 MeV): Phys.Rev. C90 (2014) no.3, 035201; Phys.Lett. B766 (2017) 125; Few Body Syst. 58 (2017) no.2, 85 LF  $\rho$  model (m<sub>q</sub> = 430 MeV): Few Body Syst. 58 (2017) no.2, 82; arXiv:1802.06096 [hep-ph]

15 / 31

## **Comparison of Energy/nucleon**



- Symmetric Nuclear Matter Binding Energy per Nucleon (scale !!)
- LF pion model (left):  $m_q = 220 \text{ MeV}, K = 320.9 \text{ MeV}$
- Standard QMC (right):  $m_q = 5$  MeV, K = 279.3, MeV

2



< 0

340

13 / 31

2

2-1-1-2

Nucleon effective mass •LF pion model (left:  $m_q = 220 MeV$ ) •Standard QMC (right:  $m_q = 5 MeV$ )

Kazuo Taushima ( LFTC, UNICSUL (Univ In-medium properties of the low-lying stram



Introduction: QMC



(ロ)~~(ロ)~~(と)~~(な)

220

14 / 31

•Effective mass of constituent quarks, up and down •LF pion model:  $m_q = 220 \text{ MeV}$  (left) •Standard QMC  $m_q = 5 \text{ MeV}$  (right)

# Nuclear (Neutron) matter, E/A-m<sub>N</sub>

Novel saturation mechanism ! m<sub>q</sub> = 5 MeV (Standard) Incompressibility QHD: K ≈ 500 MeV QMC: K ≈ 280 MeV (Exp. 200 ~ 300 MeV)

PLB 429, 239 (1998)



# **Application to nuclear structure**





# Finite nuclei (<sup>208</sup>Pb energy levels)

NPA 609, 339 (1996)

# Large mass nuclei **Nuclear** matter

Based on quarks !

**Hadrons** Hypernuclei



# **Summary : Scalar Polarizability**

- Can always rewrite non-linear coupling as linear coupling plus non-linear scalar self-coupling – likely physical origin of non-linear versions of QHD
- In nuclear matter this is **the only place** the internal structure of the nucleon enters in MFA
- Consequence of **polarizability** in atomic physics is **many-body forces:**

Thomas Jefferson National Accelerator Facility





Operated by Jefferson Science Association for the U.S. Department of Energy

# $QMC \iff QHD$

- QHD shows importance of relativity : mean σ, ω and ρ fields
- QMC goes far beyond QHD by incorporating effect of hadron *internal structure*

• Minimal model couples these mesons to *quarks* in relativistic quark model – e.g. MIT bag, or confining NJL

•  $\mathbf{g}_{\sigma}^{q}$ ,  $\mathbf{g}_{\omega}^{q}$ ,  $\mathbf{g}_{\rho}^{q}$  fitted to  $\rho_{0}$ , E/A and symmetry energy

• <u>No additional parameters</u>: predict change of structure and binding in nuclear matter of **all hadrons**: e.g.  $\omega$ ,  $\rho$ ,  $\eta$ ,  $J/\psi$ , N,  $\Lambda$ ,  $\Sigma$ ,  $\Xi \implies$  see later !

# **Linking QMC to Familiar Nuclear Theory**

Since early 70's tremendous amount of work in nuclear theory is based upon **effective forces** 

- Used for everything from nuclear astrophysics to collective excitations of nuclei
- Skyrme Force: Vautherin and Brink

In Paper : Guichon and Thomas, Phys. Rev. Lett. 93, 132502 (2004)

explicitly obtained effective force, 2- plus 3- body, of Skyrme type

- equivalent to QMC model (required expansion around  $\sigma = 0$ )

Thomas Jefferson National Accelerator Facility



Operated by Jefferson Science Association for the U.S. Department of Energy

lerson (

### **Derivation of Density Dependent Effective Force**

Physical origin of density dependent forces of Skyrme type within the quark meson coupling model

P.A.M. Guichon<sup>a,\*</sup>, H.H. Matevosyan<sup>b,c</sup>, N. Sandulescu<sup>a,d,e</sup>, A.W. Thomas<sup>b</sup>

Nuclear Physics A 772 (2006) 1–19

- Start with classical theory of MIT-bag nucleons with structure modified in medium to give  $M_{eff}(\sigma)$ .
- Quantise nucleon motion (non-relativistic), expand in powers of derivatives
- Derive equivalent, local energy density functional:

$$\langle H(\vec{r}) \rangle = \rho M + \frac{\tau}{2M} + \mathcal{H}_0 + \mathcal{H}_3 + \mathcal{H}_{\text{eff}} + \mathcal{H}_{\text{fin}} + \mathcal{H}_{\text{so}}$$



### **Derivation of EDF (cont.)**

$$\begin{aligned} \mathcal{H}_{0} + \mathcal{H}_{3} &= \rho^{2} \bigg[ \frac{-3G_{\rho}}{32} + \frac{G_{\sigma}}{8(1 + d\rho G_{\sigma})^{3}} - \frac{G_{\sigma}}{2(1 + d\rho G_{\sigma})} + \frac{3G_{\omega}}{8} \bigg] \\ &+ (\rho_{n} - \rho_{p})^{2} \bigg[ \frac{5G_{\rho}}{32} + \frac{G_{\sigma}}{8(1 + d\rho G_{\sigma})^{3}} - \frac{G_{\omega}}{8} \bigg], \end{aligned}$$

$$\mathcal{H}_{\text{eff}} = \left[ \left( \frac{G_{\rho}}{8m_{\rho}^2} - \frac{G_{\sigma}}{2m_{\sigma}^2} + \frac{G_{\omega}}{2m_{\omega}^2} + \frac{G_{\sigma}}{4M_N^2} \right) \rho_n + \left( \frac{G_{\rho}}{4m_{\rho}^2} + \frac{G_{\sigma}}{2M_N^2} \right) \rho_p \right] \tau_n + p \leftrightarrow n,$$

$$\mathcal{H}_{\text{fin}} = \left[ \left( \frac{3G_{\rho}}{32m_{\rho}^{2}} - \frac{3G_{\sigma}}{8m_{\sigma}^{2}} + \frac{3G_{\omega}}{8m_{\omega}^{2}} - \frac{G_{\sigma}}{8M_{N}^{2}} \right) \rho_{n} + \left( \frac{-3G_{\rho}}{16m_{\rho}^{2}} - \frac{G_{\sigma}}{2m_{\sigma}^{2}} + \frac{G_{\omega}}{2m_{\omega}^{2}} - \frac{G_{\sigma}}{4M_{N}^{2}} \right) \rho_{p} \right] \nabla^{2}(\rho_{n}) + p \Leftrightarrow n,$$

$$\mathcal{H}_{\text{so}} = \nabla \cdot J_{n} \left[ \left( \frac{-3G_{\sigma}}{8M_{N}^{2}} - \frac{3G_{\omega}(-1+2\mu_{s})}{8M_{N}^{2}} - \frac{3G_{\rho}(-1+2\mu_{v})}{32M_{N}^{2}} \right) \rho_{n} \right] \text{Spin-orbit}_{\text{force}}_{\text{predicted!}}$$



#### Note the totally new, subtle density dependence

STRUCTUR

### Physical Origin of Density Dependent Force of the Skyrme Type within the QMC model

That is, apply new **effective force** directly to calculate nuclear properties using Hartree-Fock (as for usual well known force)

|            | $E_B$ (MeV, exp) | $E_B$ (MeV, QMC) | $r_c \text{ (fm, exp)}$ | $r_c$ (fm, QMC) |
|------------|------------------|------------------|-------------------------|-----------------|
| $^{16}O$   | 7.976            | 7.618            | 2.73                    | 2.702           |
| $^{40}Ca$  | 8.551 »          | 8.213            | 3.485 »                 | 1% 3.415        |
| $^{48}Ca$  | 8.666            | 8.343            | 3.484                   | 3.468           |
| $^{208}Pb$ | 7.867            | 7.515            | 5.5                     | 5.42            |

• Where analytic form of (e.g.  $H_0 + H_3$ ) piece of energy functional derived from QMC is:

$$\mathcal{H}_{0} + \mathcal{H}_{3} = \rho^{2} \left[ \frac{-3 G_{\rho}}{32} + \frac{G_{\sigma}}{8 (1 + \mathbf{O} \rho G_{\sigma})^{3}} - \frac{G_{\sigma}}{2 (1 + \mathbf{O} \rho G_{\sigma})} + \frac{3 G_{\omega}}{8} \right] + \frac{1}{8 (1 + \mathbf{O} \rho G_{\sigma})^{3}} + \frac{G_{\sigma}}{2 (1 + \mathbf{O} \rho G_{\sigma})} + \frac{G_{\sigma}}{8} \right] + \frac{1}{8 (1 + \mathbf{O} \rho G_{\sigma})^{3}} + \frac{G_{\omega}}{8} \right],$$
highlights scalar polarizability  $(\rho_{n} - \rho_{p})^{2} \left[ \frac{5 G_{\rho}}{32} + \frac{G_{\sigma}}{8 (1 + \mathbf{O} \rho G_{\sigma})^{3}} - \frac{G_{\omega}}{8} \right],$ 
Thomas Jefferson National Accelerator Facility
$$\mathcal{O} = \mathcal{O} = \mathcal$$

Operated by Jefferson Science Association for the U.S. Department of Energy

## **Explicit Demonstration of Origin of 3-Body Force**

Since early 70's tremendous amount of work in nuclear theory is based upon effective forces • Used for everything from nuclear astrophysics to collective excitations of nuclei

Skyrme Force: Vautherin and Brink





Guichon and Thomas, Phys. Rev. Lett. 93, 132502 (2004)

SPECIAL RESEARCI CENTRE FOR THE

SUBAT

# **Spin-orbit splitting**

| Element |         | States                                | Exp<br>[keV]           | QMC<br>[keV] | SV-bas<br>[keV] |
|---------|---------|---------------------------------------|------------------------|--------------|-----------------|
| 016     | proton  | 1p <sub>1/2</sub> - 1p <sub>3/2</sub> | 6.3 (1.3)a)            | 5.8          | 5.0             |
|         | neutron | 1p <sub>1/2</sub> - 1p <sub>3/2</sub> | 6.1 (1.2)a)            | 5.7          | 5.1             |
| Ca40    | proton  | 1d <sub>3/2</sub> - 1d <sub>5/2</sub> | 7.2 <sup>b)</sup>      | 6.3          | 5.7             |
|         | neutron | 1d <sub>3/2</sub> - 1d <sub>5/2</sub> | 6.3 <sup>b)</sup>      | 6.3          | 5.8             |
| Ca48    | proton  | 1d <sub>3/2</sub> - 1d <sub>5/2</sub> | 4.3 <sup>b)</sup>      | 6.3          | 5.2             |
|         | neutron | 1d <sub>3/2</sub> - 1d <sub>5/2</sub> |                        | 5.3          | 5.2             |
| Sn132   | proton  | 2p <sub>1/2</sub> - 2p <sub>3/2</sub> | 1.35(27) <sup>a)</sup> | 1.32         | 1.22            |
|         | neutron | 2p <sub>1/2</sub> - 2p <sub>3/2</sub> | 1.65(13) <sup>a)</sup> | 1.47         | 1.63            |
|         | neutron | 2d <sub>3/2</sub> - 2d <sub>5/2</sub> |                        | 2.71         | 2.11            |
| Pb208   | proton  | 2p <sub>1/2</sub> - 2p <sub>3/2</sub> |                        | 0.91         | 0.93            |
|         | neutron | 3p <sub>1/2</sub> - 3p <sub>3/2</sub> | 0.90(18) <sup>a)</sup> | 1.11         | 0.89            |





# Systematic approach to finite nuclei

J.R. Stone, P.A.M. Guichon, P. G. Reinhard & A.W. Thomas: ( Phys Rev Lett, 116 (2016) 092501 )

• Constrain 3 basic quark-meson couplings ( $g_{\sigma}{}^{q}$ ,  $g_{\omega}{}^{q}$ ,  $g_{\rho}{}^{q}$ ) so that nuclear matter properties are reproduced within errors

-17 < E/A < -15 MeV 0.14 <  $\rho_0$  < 0.18 fm<sup>-3</sup> 28 < S<sub>0</sub> < 34 MeV L > 20 MeV 250 < K<sub>0</sub> < 350 MeV

- Fix at overall best description of finite nuclei with 5 parameters (3 for the EDF +2 pairing pars)
- Benchmark comparison: SV-min 16 parameters (11+5 pairing)





#### **Overview of 106 Nuclei Studied – Across Periodic Table**

| Element | Z  | N       | Element | Z   | N         |
|---------|----|---------|---------|-----|-----------|
| С       | 6  | 6 -16   | Pb      | 82  | 116 - 132 |
| 0       | 8  | 4 -20   | Pu      | 94  | 134 - 154 |
| Са      | 20 | 16 - 32 | Fm      | 100 | 148 - 156 |
| Ni      | 28 | 24 - 50 | No      | 102 | 152 - 154 |
| Sr      | 38 | 36 - 64 | Rf      | 104 | 152 - 154 |
| Zr      | 40 | 44 -64  | Sg      | 106 | 154 - 156 |
| Sn      | 50 | 50 - 86 | Hs      | 108 | 156 - 158 |
| Sm      | 62 | 74 - 98 | Ds      | 110 | 160       |
| Gd      | 64 | 74 -100 |         |     |           |

Not fit

| Ν  | Z       | Ν   | Z       |
|----|---------|-----|---------|
| 20 | 10 - 24 | 64  | 36 - 58 |
| 28 | 12 – 32 | 82  | 46 - 72 |
| 40 | 22 - 40 | 126 | 76 - 92 |
| 50 | 28 - 50 |     |         |



i.e. We look at most challenging cases of p- or n-rich nuclei


# **Overview**

| data                  | m rms~error~% |        |  |  |
|-----------------------|---------------|--------|--|--|
| 7                     | QMC           | SV-min |  |  |
| fit nuclei:           |               |        |  |  |
| binding energies      | 0.36          | 0.24   |  |  |
| diffraction radii     | 1.62          | 0.91   |  |  |
| surface thickness     | 10.9          | 2.9    |  |  |
| rms radii             | 0.71          | 0.52   |  |  |
| pairing gap (n)       | 57.6          | 17.6   |  |  |
| pairing gap $(p)$     | 25.3          | 15.5   |  |  |
| ls splitting: proton  | 15.8          | 18.5   |  |  |
| ls splitting: neutron | 20.3          | 16.3   |  |  |
| superheavy nuclei:    | 0.1           | 0.3    |  |  |
| N=Z nuclei            | 1.17          | 0.75   |  |  |
| mirror nuclei         | 1.50          | 1.00   |  |  |
| other                 | 0.35          | 0.26   |  |  |



Stone et al., PRL 116 (2016) 092501



### **Superheavy Binding : 0.1% accuracy**





ADELAIDE JNIVERSITY



# Shape evolution of Zr (Z=40) Isotopes



- Shape co-existence sets in at N=60 Sotty et al., PRL115 (2015)172501
- Usually difficult to describe

ADELAIDE JNIVERSITY

COEP

- e.g. Mei et al., PRC85, 034321 (2012)



#### Stone et al., PRL 116 (2016) 092501

### **Quadrupole deformation in Superheavies**



**Figure 2.** (Color online). Quadrupole deformation calculated in QMC $\pi$  for isotopes with proton number 100 < Z < 128. ADELAIDE UNIVERSITY AUSTRALIA **Stone et al., E P J Web of Conferences 163 (2017) 00057** 



## **Drip line predictions**

**Table 1.** Neutron numbers corresponding to proton and neutrondrip lines, derived from the Fermi energy for isotopes ofelements 96 < Z < 136

| Ζ   | N(p) | N(n) | Ζ   | N(p) | N(n) |
|-----|------|------|-----|------|------|
| 96  | 132  | 224  | 118 | 174  | 278  |
| 98  | 134  | 226  | 120 | 180  | 286  |
| 100 | 138  | 230  | 122 | 184  | 290  |
| 102 | 138  | 236  | 124 | 188  | 296  |
| 104 | 146  | 240  | 126 | 192  | 298  |
| 106 | 146  | 242  | 128 | 196  | 302  |
| 108 | 154  | 246  | 130 | 202  | 306  |
| 110 | 158  | 250  | 132 | 208  | 310  |
| 112 | 164  | 256  | 134 | 214  | 314  |
| 114 | 168  | 260  | 136 | 218  | 314  |
| 116 | 170  | 268  |     |      |      |





#### Martinez, Konieczka, Bąszyk et al. – HFODD Implementation







Publication in preparation....

## **Summary: Finite Nuclei**

- The effective force was derived at the quark level based upon the changing structure of a bound nucleon
- Has many less parameters but reproduces nuclear properties at a level comparable with the best phenomenological Skyrme forces
- Looks like standard nuclear force
- BUT underlying theory also predicts modified internal structure and hence modified
  - DIS structure functions
  - elastic form factors.....





# Mesons in nuclear medium in QMC



### QMC model 2: Quark level

 $x = (t, \vec{r}) (|\vec{r}| \le \text{ bag radius})$ 

$$\begin{bmatrix} i\gamma \cdot \partial_{x} - (m_{q} - V_{\sigma}^{q}) \mp \gamma^{0} \left( V_{\omega}^{q} + \frac{1}{2} V_{\rho}^{q} \right) \end{bmatrix} \begin{pmatrix} \psi_{u}(x) \\ \psi_{\overline{u}}(x) \end{pmatrix} = 0 \\ \begin{bmatrix} i\gamma \cdot \partial_{x} - (m_{q} - V_{\sigma}^{q}) \mp \gamma^{0} \left( V_{\omega}^{q} - \frac{1}{2} V_{\rho}^{q} \right) \end{bmatrix} \begin{pmatrix} \psi_{d}(x) \\ \psi_{\overline{d}}(x) \end{pmatrix} = 0 \\ \begin{bmatrix} i\gamma \cdot \partial_{x} - m_{Q} \end{bmatrix} \psi_{Q}(x) \text{ (or } \psi_{\overline{Q}}(x)) = 0 \end{cases}$$

$$\begin{split} \mathbf{m}_{h}^{*} &= \sum_{\mathbf{j}=\mathbf{q}, \mathbf{\bar{q}}, \mathbf{Q}\mathbf{\bar{Q}}} \frac{\mathbf{n}_{j}\Omega_{j}^{*} - \mathbf{z}_{h}}{\mathbf{R}_{h}^{*}} + \frac{4}{3}\pi\mathbf{R}_{h}^{*3}\mathbf{B}, \quad \frac{\partial\mathbf{m}_{h}^{*}}{\partial\mathbf{R}_{h}}\Big|_{\mathbf{R}_{h}=\mathbf{R}_{h}^{*}} = \mathbf{0} \\ \Omega_{q}^{*} &= \Omega_{\bar{q}}^{*} = [\mathbf{x}_{q}^{2} + (\mathbf{R}_{h}^{*}\mathbf{m}_{q}^{*})^{2}]^{1/2}, \text{ with } \mathbf{m}_{q}^{*} = \mathbf{m}_{q} - \mathbf{g}_{\sigma}^{q}\sigma \\ \Omega_{Q}^{*} &= \Omega_{\overline{Q}}^{*} = [\mathbf{x}_{Q}^{2} + (\mathbf{R}_{h}^{*}\mathbf{m}_{Q})^{2}]^{1/2} \quad (\mathbf{Q} = \mathbf{s}, \mathbf{c}, \mathbf{b}) \end{split}$$

Introduction: QMC

### Hadron masses (ratios) in medium



(ロ)~~(ロ)~~をとくをう

240

17 / 31

2

# Scalar potentials in QMC respects SU(3) (light quark # !)



# Hypernuclei (Introduction)

What are Hypernuclei?

Hypernuclei are nuclear systems where at least one nucleon is replaced by a hyperon (e.g.  $\Lambda$ ).



Z is a bound state of Z protons (A-Z-1) neutrons and a Λ hyperon

Hypernuclei are a laboratory to study the hyperon-nucleon, Hyperon-hyperon interactions.

#### Production processes (e.g.) for reactions leading to S=-1 hypernuclei





N \* (1650), N\*(1710), N\*(1720) baryonic resonances.







### Why are Hypernuclei interesting!

New type of nuclear matter, new symmetries, New selection rules. First kind of flavored nuclei.

Hyperons are free from Pauli principle restrictions

Can occupy quantum states already filled up with nucleons

This makes a hyperon embedded in the nucleus a unique tool for exploring the nuclear structure.

**Good probe for deeply bound single particle states.** 



#### Study of S = -1 hypernuclei ( $\Lambda$ or $\Sigma$ )

The nuclear structure and the many body nuclear dynamics is extended to new non conventional symmetries, due to the inclusion of an  $S \neq 0$  degree of freedom in the nucleus, YN interaction



The Skyrme type  $\Lambda N$  interaction from the known BE of  $\Lambda$  hypernuclei.

Neelam Guleria, S.K. Dhiman and R. Shyam, Nucl. Phys. A 886, 71 (2012)

The role played by quark degrees of freedom in nuclear phenomena: Quark-Meson coupling model, extended for hypernuclei

Guichon, KT, Saito, Thomas

The study of four fermion, strangeness changing, baryon-baryon weak interaction  $YN \rightarrow NN$ , which can occur only inside hypernuclei

### S = -2 systems

#### ➡ New Physics items

- For a detailed understanding of the quark aspect of the baryon-baryon forces in the SU(3) space, information on the YY channel is essential.
- Are there S=-2 deeply bound multi K states??
- Search for *H particle* six-quark system uuddss

**Conjectured** composition of a neutron star

### Neutron star composition

• Formation of compact stars depends On the nature of the YY interaction.



Juergen Schaffner-Bielich, Nucl. Phys. A804 (2008) 309

**Experiments No! Σ-Hypernuclei** Naïve SU(3) based model yield Σ-Hypernuclei!  $\rightarrow$  QMC ?

# Λ, Σ ⇔ Self-consistent OGE color hyperfine interaction

 $\Lambda$  and  $\Sigma$  hypernuclei are more or less similar (channel couplings) 🖨 improve !  $\Xi$  potential: weaker (~1/2) of  $\Lambda$  and  $\Sigma$ (Light quark #) Very small spin-orbit splittings for A hypernuclei 👄 SU(6) quark model

# Bag mass and color mag. HF int. contribution (OGE)

T. DeGrand et al., PRD 12, 2060 (1975)  $M = [Nq\Omega q + Ns\Omega s]/R - Z0/R + 4\pi BR^3/3$ +  $(Fs)^{n} \Delta Em(f)$  (f=N, $\Delta$ , $\Lambda$ , $\Sigma$ , $\Xi$ ...)  $\Delta E_{M} = -3\alpha_{c} \sum_{i} \lambda_{i} \lambda_{i} \overrightarrow{\sigma}_{i} \cdot \overrightarrow{\sigma}_{j} M(m_{i}, m_{j}, R)$  $\Delta E_{M}(\Lambda) = -3 \alpha_{c}^{a, i < j} M(m_{q}, m_{q}, R), \quad (q=u, d)$  $\Delta E_M(\Sigma) = \alpha_c M(m_q, m_q, R)$  $-4\alpha cM(mq,ms,R)$ 

### **Latest QMC: Includes Medium Modification of Color Hyperfine Interaction**

**N** -  $\Delta$  and  $\Sigma$  -  $\Lambda$  splitting arise from **one-gluon-exchange** in MIT Bag Model : as "  $\sigma$  " so does this splitting...



Operated by Jefferson Science Association for the U.S. Department of Energy



HF couplings for hyperons ↔ successful for high density neutron star (NPA 792, 341 (2007))



# Hypernuclei spectra 1

#### NPA 814, 66 (2008)

|                | $ \stackrel{16}{\Lambda} \stackrel{O}{Exp.} $ | $^{17}_{\Lambda}\mathrm{O}$ | $^{17}_{\pm 0}O$ | $^{40}_{\Lambda} Ca_{Exp.}$ | $^{41}_{\Lambda}$ Ca | ${}^{41}_{\Xi^0}$ Ca | $^{49}_{\Lambda}$ Ca | ${}^{49}_{\Xi^0}\mathrm{Ca}$ |
|----------------|-----------------------------------------------|-----------------------------|------------------|-----------------------------|----------------------|----------------------|----------------------|------------------------------|
| <b>1s</b> 1/2  | -12.4                                         | -16.2                       | -5.3             | -18.7                       | -20.6                | -5.5                 | -21.9                | -9.4                         |
| 1p3/2          |                                               | -6.4                        |                  |                             | -13.9                | -1.6                 | -15.4                | -5.3                         |
| 1p1/2          | -1.85                                         | -6.4                        |                  |                             | - <u>13.9</u>        | -1.9                 | -15.4                | -5.6                         |
| 1d5/2          |                                               |                             |                  |                             | -5.5                 |                      | -7.4                 |                              |
| 2s1/2          |                                               |                             |                  |                             | -1.0                 |                      | -3.1                 |                              |
| 1 <b>d</b> 3/2 |                                               |                             |                  |                             | -5.5                 |                      | -7.3                 |                              |

# Hypernuclei spectra 2

#### NPA 814, 66 (2008)

|                   | $^{89}_{\Lambda}$ Yb Exp. | ${}^{91}_{\Lambda}$ Zr | $\frac{91}{50}$ Zr | ${}^{208}_{\Lambda}$ Pb <sub>Exp.</sub> | $^{209}_{\Lambda}$ Pb | $209 \atop \Xi^0$ Pb |
|-------------------|---------------------------|------------------------|--------------------|-----------------------------------------|-----------------------|----------------------|
| <b>1s</b> 1/2     | -23.1                     | -24.0                  | -9.9               | -26.3                                   | -26.9                 | -15.0                |
| 1p <sub>3/2</sub> |                           | -19.4                  | -7.0               |                                         | -24.0                 | -12.6                |
| 1p1/2             | -16.5                     | -19.4                  | -7.2               | -21.9                                   | -24.0                 | -12.7                |
| 1d5/2             | -9.1                      | -13.4                  | -3.1               | -16.8                                   | -20.1                 | -9.6                 |
| 2s <sub>1/2</sub> |                           | -9.1                   | —                  |                                         | -17.1                 | -8.2                 |
| 1 <b>d</b> 3/2    | (-9.1)                    | -13.4                  | -3.4               | (-16.8)                                 | -20.1                 | -9.8                 |

# Summary: hypernuclei

- The latest version of QMC (OGE color hyperfine interaction included selfconsistently in matter) =>
- A single-particle energy 1s1/2 in Pb is -26.9 MeV (Exp. -26.3 MeV) ⇐ no extra parameter!
- Small spin-orbit splittings for the  $\Lambda$
- No  $\Sigma$  nuclear bound state !!
- $\Xi$  is expected to form nuclear bound state

### **Neutron Stars**





# LETTER (2010)

### A two-solar-mass neutron star measured using Shapiro delay

P. B. Demorest<sup>1</sup>, T. Pennucci<sup>2</sup>, S. M. Ransom<sup>1</sup>, M. S. E. Roberts<sup>3</sup> & J. W. T. Hessels<sup>4,5</sup>





Reports a very accurate pulsar mass much larger than seen before : 1.97 ± 0.04 solar mass

Claim: it rules out hyperon occurrence - ignored our work *published* three years before!







### **Consequences of QMC for Neutron Star**



Later work: Saito et al., Whittenbury et al.....

# **Consequences for Neutron Star**

#### **D.L.Whittenbury et.al., Phys.Rev. C89 (2014) 06580**

New QMC model, relativistic, Hartree-Fock treatment



Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

# **Recent issue:** no $\Delta$ in N.S

- The latest version of QMC (OGE color hyperfine interaction included selfconsistently in matter) =>
- A single-particle energy 1s1/2 in Pb is -26.9 MeV (Exp. -26.3 MeV) ⇐ no extra parameter!
- No  $\Sigma$  nuclear bound state !!
- Same interaction of OGE for N and  $\Delta^ \Rightarrow$  No  $\Delta^-$  in neutron star. arXiv:1906.0549 (T.F. Motta, A.W. Thomas, P.A.M. Guichon)

In-medium properties of the low-lying Strange, Charm, Bottom baryons

Effective masses (Σ<sub>b</sub>, Ξ<sub>b</sub> !!)
In-medium bag radii
In-medium bag eigenfrequencies
Scalar and vector (plus Pauli) potentials
Excitation (total) energies (Σ<sub>b</sub>, Ξ<sub>b</sub> !!)

(日)(日)(日)(日)(日)

### In vacuum (inputs)

| $B(q_1, q_2, q_3)$        | ZB     | mB     | R <sub>B</sub> | x1    | X2    | X3    |
|---------------------------|--------|--------|----------------|-------|-------|-------|
| N(qqq)                    | 3.295  | 939.0  | 0.800          | 2.052 | 2.052 | 2.052 |
| A(uds)                    | 3.131  | 1115.7 | 0.806          | 2.053 | 2.053 | 2.402 |
| Σ(qqs)                    | 2.810  | 1193.1 | 0.827          | 2.053 | 2.053 | 2.409 |
| Ξ(qss)                    | 2.860  | 1318.1 | 0.820          | 2.053 | 2.406 | 2.406 |
| Ω(sss)                    | 1.930  | 1672.5 | 0.869          | 2.422 | 2.422 | 2.422 |
| $\Lambda_{c}(udc)$        | 1.642  | 2286.5 | 0.854          | 2.053 | 2.053 | 2.879 |
| $\Sigma_{c}(qqc)$         | 0.903  | 2453.5 | 0.892          | 2.054 | 2.054 | 2.889 |
| $\Xi_{\rm c}(\rm qsc)$    | 1.445  | 2469.4 | 0.860          | 2.053 | 2.419 | 2.880 |
| $\Omega_{\rm c}(\rm ssc)$ | 1.057  | 2695.2 | 0.876          | 2.424 | 2.424 | 2.884 |
| $\Lambda_b(udb)$          | -0.622 | 5619.6 | 0.930          | 2.054 | 2.054 | 3.063 |
| $\Sigma_{b}(qqb)$         | -1.554 | 5813.4 | 0.968          | 2.054 | 2.054 | 3.066 |
| $\Xi_{\rm b}(\rm qsb)$    | -0.785 | 5793.2 | 0.933          | 2.054 | 2.441 | 3.063 |
| $\Omega_{\rm b}(\rm ssb)$ | -1.327 | 6046.1 | 0.951          | 2.446 | 2.446 | 3.065 |

### In medium at $ho_0 = 0.15 \, {\rm fm}^3$

| $B(q_1, q_2, q_3)$        | m <sub>B</sub> * | R <sup>*</sup> B                       | ×*1         | x2*   | ×3                                            |
|---------------------------|------------------|----------------------------------------|-------------|-------|-----------------------------------------------|
| N(qqq)                    | 754.5            | 0.786                                  | 1.724       | 1.724 | 1.724                                         |
| Λ(uds)                    | 992.7            | 0.803                                  | 1.716       | 1.716 | 2.401                                         |
| Σ(qqs)                    | 1070.4           | 0.824                                  | 1.705       | 1.705 | 2.408                                         |
| Ξ(qss)                    | 1256.7           | 0.818                                  | 1.708       | 2.406 | 2.406                                         |
| $\Omega(sss)$             |                  | <u></u>                                | a <u></u> a |       | <u>,                                     </u> |
| $\Lambda_c(udc)$          | 2164.2           | 0.851                                  | 1.691       | 1.691 | 2.878                                         |
| $\Sigma_{c}(qqc)$         | 2331.8           | 0.889                                  | 1.671       | 1.671 | 2.888                                         |
| $\Xi_{\rm c}(\rm qsc)$    | 2408.3           | 0.859                                  | 1.687       | 2.418 | 2.880                                         |
| $\Omega_{\rm c}(\rm ssc)$ | -                |                                        | _           | _     | _                                             |
| $\Lambda_{b}(udb)$        | 5498.5           | 0.927                                  | 1.651       | 1.651 | 3.063                                         |
| $\Sigma_{b}(qqb)$         | 5692.8           | 0.966                                  | 1.630       | 1.630 | 3.066                                         |
| $\Xi_{\rm b}(\rm qsb)$    | 5732.7           | 0.931                                  | 1.649       | 2.440 | 3.063                                         |
| $\Omega_{\rm b}(\rm ssb)$ |                  | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | de stati    | 2     |                                               |
#### Effective masses: Strange (left), Charm (right) baryons



がする

< D > C

340

22 / 31

2

#### **Effective masses:**

Strange (left), Bottom (right) baryons



940

23 / 31

2

(ロア・ロティア・マルト・ア

#### Bag eigenfrequencies: Strange (left), Charm (right) baryons



かくほと

940

24 / 31

#### Bag eigenfrequencies: Strange (left), Bottom (right) baryons



21-12

940

#### Bag radii: Strange, Charm, Bottom baryons



がする

< 0 >---

220

#### Scalar and (Vector+Pauli) potentials: Strange (left), Charm (right) baryons



240

#### Scalar and (Vector+Pauli) potentials: Strange (left), Bottom (right) baryons



< 0 >---

240

#### Excitation energies (scalar + vector pots.): $\Sigma_b, \Xi_b$ Vector + "Pauli" (left), Vector (right)



21-1-2

340

#### Summary, Perspective

•QMC model: In-medium properties of the low-lying Strange, Charm, Bottom baryons (completed) effective masses, bag radii, bag eigenfrequencies, (two different) vector potentials, excitation (total) energies



 $\implies \bullet$  **EM FFs., Weak-interaction FFs.** for heavy baryons in medium  $\implies \bullet$  in the near future !!

⇒● Heavy ion collisions involving heavy baryons!!!

⇒•Other interesting applications ??!! Your Suggestions !!!

**A-Hypernuclei** phtoproduction

### Photoproduction of A hypernuclei R. Shyam, KT, A.W. Thomas, PLB 676, 51 (2009)

A and K<sup>+</sup>are produced
via s-channel
N\* excitation (dominant)
S11(1650), P11(1710)
P13(1720)

Energy region of interests,
 hypernuclei production
(~ 10 % ambiguity due to
the other background ⇒)



#### Effective Lagrangian model for $\gamma p \rightarrow K \Lambda$ reaction



## $^{12}_{\Lambda}$ B hypernucleus (MeV)

| State                        | Exp.        | QMC   | Vv     | Vs      |
|------------------------------|-------------|-------|--------|---------|
|                              |             |       | (W.S)  | (W.S)   |
| $\Lambda^{12} B1s_{1/2}$     | 11.37       | 14.93 | 171.78 | -212.69 |
| $\Lambda^{12} B_{1p_{3/2}}$  | 1.73        | 3.62  | 204.16 | -252.28 |
| ${}^{12}_{\Lambda}B1p_{1/2}$ | 1.13        | 3.62  | 227.83 | -280.86 |
| $(p_{1}p_{3/2})$ -1          | 15.96       | (≅OK) | 382.60 | -472.34 |
| $^{12}$ C                    | Sep. energy |       |        |         |



# Summary: A hypernuclei photoproduction

- - distinguishable difference!
- 3. Back ground inclusion (higher energies)
- 4. Heavier  $\Lambda$  hypernuclei

### **Discussions**

1. Study of  $\Xi$  hypernuclei  $\Rightarrow$  A(K<sup>-</sup>,K<sup>+</sup>)  $\equiv$  B reaction 2. Elementary  $\mathbf{K}^{-} \mathbf{N} \rightarrow \Xi \mathbf{K}^{+}$  reaction — 3. Heavier **A** hypernuclei **photoproduction 4. Electroproduction of A** hypernuclei 5. Ac and Ab hypernuclei ???!!! (KT, F.C. Khanna, Phys. Rev. C 67, 015211 (2003))

# Ξ-Hypernuclei

#### **KINEMATICS**



#### Production process of Cascade (S=-2) hypernuclei



#### Covarient Description of A $(h\gamma, K^+)_{Y}B$ reaction, Effective Lagrangian model

\* Effective Lagrangians at Meson-baryon-Resonance vertices

Coupling constants, form-factors (from the description of elementary reaction)

- Propagators for resonances (spin-1/2, spin-3/2)
- Bound state nucleon (hole) and hyperon (particle) spinors
- \* Initial and final state interactions (distorted waves).
- Medium effects of Resonances

All calculations in momentum space, so nonlocalities are included.



A typical amplitude

$$M_{2b}(N_{1/2}^{*}) = C_{iso}^{2b} \left(\frac{g_{NN\pi}}{2m_{N}}\right) (g_{N_{1/2}^{*}N\pi}) (g_{N_{1/2}^{*}\Lambda K^{+}}) \bar{\psi}(p_{2}) \gamma_{5} \gamma_{\mu} q^{\mu} \\ \times \psi(p_{1}) D_{\pi}(q) \bar{\psi}(p_{\Lambda}) \gamma_{5} D_{N_{1/2}^{*}}(p_{N^{*}}) \gamma_{5}$$

$$\times \Phi_K^{(-)*}(p'_K, p_K) \Psi_i^{(+)}(p'_i, p_i),$$



Effective Lagrangian model for the p (K<sup>-</sup>,K<sup>+</sup>,<sup>0</sup>)  $\Xi^{-}(\Xi^{0})$ 

 $\Lambda$ (1116),  $\Lambda$ (1180),  $\Lambda$ (1405),  $\Lambda$ (1520),  $\Lambda$ (1670),  $\Lambda$ (1890),  $\Sigma$ (1189),  $\Sigma$ (1385),  $\Sigma$ (1670),  $\Sigma$ (1750)

The information about the coupling constants is very scanty

From SU(3) model, old experimental determinations

R. Shyam, Olaf Scholten and A.W. Thomas, Phys. Rev. C84 (2011) 042201(R)



#### Elementary reactions for $\Xi^-$ production, Role of resonances



R.Shyam, O. Scholten, A. W. Thomas, Phys. Rev. C 84 (2011) 042201

#### **Bound state spinors**

A mean field approach, Phenomenological, or QMC

Momentum space Dirac Eq.

$$\begin{split} \not p\psi(p) &= m_N\psi(p) + F(p), \\ F(p) &= \delta(p_0 - E) \left[ \int d^3 p' V_s(-\mathbf{p}')\psi(\mathbf{p} + \mathbf{p}') \\ &- \gamma_0 \int d^3 p' V_v^0(-\mathbf{p}')\psi(\mathbf{p} + \mathbf{p}') \right]. \\ \psi(p) &= \delta(p_0 - E) \begin{pmatrix} f(k)\mathscr{Y}_{\ell 1/2j}^{m_j}(\hat{p}) \\ -ig(k)\mathscr{Y}_{\ell' 1/2j}^{m_j}(\hat{p}) \end{pmatrix}, \\ F(p) &= \delta(p_0 - E) \begin{pmatrix} \zeta(k)\mathscr{Y}_{\ell 1/2j}^{m_j}(\hat{p}) \\ -i\zeta'(k)\mathscr{Y}_{\ell' 1/2j}^{m_j}(\hat{p}) \end{pmatrix}, \end{split}$$

#### **Cascade bound states**

Phenomenological and QMC model



#### **Cross section** for $\Xi$ -hypernuclear production



R. Shyam, K. Tsushima and A.W. Thomas, Nucl. Phys. A 881, 255 (2012)

#### Cross section for $\Xi$ -hypernuclear production



R. Shyam, K. Tsushima and A.W. Thomas, Nucl. Phys. A 881, 255 (2012)

**Dover and Gal, Ann. Phys. 146 (1983) 256** 

#### **Difference between Old and our New results**





SUMMARY AND OUTLOOK

We developed a new description of the  $\Xi$  hypernuclear production via (K<sup>-</sup>, K<sup>+</sup>) reaction that is based on the mechanism of hyperon resonance excitation and decay. New calculations differ significantly from the older one.

A covariant description of the reaction is desirable and is possible.

Bound state spinors from the QMC model (quark-based) and phenomenological model

New Measurements are needed for some key quantities to resolve the differences between the old calculations. J-PARC facility should be ideal for this purpose. (E.g., elementary cross section.) Neutrino Reactions, MFP (v, v asymmetry)

M.K. Cheoun, K.S. Choi, K.S. Kim, K. Saito, T. Kajino, T. Maruyama, KT, P.T.P. Hutauruk, Y. Oh

Phys. Lett. B 723, 464 (2013)
Phys. Rev. C 87, 065502 (2013)
arXiv: 1802.01749 [nucl-th]
Medium effect on CC weak form factors
(Octet baryon EM ffs.
G. Ramalho, KT, J. Phys. G 40, 015102 (2013))

### R=(p'x /p'z)=(G<sup>e</sup>E/G<sup>b</sup>M): <sup>4</sup>He/<sup>1</sup>H (reminder)

S. Malace, M. Paolone and S. Strauch, arXiv:0807.2251 [nucl-ex]

S. Strauch et al., Phys. Rev. Lett. 91, 052301 (2003)



 $W^{\mu} = F1(Q^{2})\gamma^{\mu} + iF2(Q^{2})\sigma^{\mu\nu}q_{\nu}/2MN$ + FA(Q^{2})\gamma^{\mu}\gamma\_{5} + FP(Q^{2})q^{\mu}\gamma\_{5}/2MN

 $FA(Q^2) = GA(Q^2) = -gA / (1+Q^2 / MA^2)^2$ 

$$\mathbf{Fi} = \mathbf{F} \stackrel{\mathbf{p}}{\mathbf{i}} - \mathbf{F} \stackrel{\mathbf{n}}{\mathbf{i}} (\mathbf{i}=1,2)$$

$$G_E = F_1 - Q^2 F_2/4M_N$$

 $\mathbf{GM} = \mathbf{F1} + \mathbf{F2}$ 

**M**<sub>N</sub>\* - 
$$\rho$$
 (density)  
 $\rho_0 = 0.15$  fm <sup>-3</sup>

### $g_A*/g_A - Q^2$ and $\rho$ (density): 0.5 $\rho_0$ Increase top to bottom





### **F1\*/F1 – Q<sup>2</sup> and ρ** (density): 0.5ρ<sub>0</sub> Increase bottom to top

### **F2\*/F2 – Q<sup>2</sup> and ρ** (density): 0.5ρ<sub>0</sub> Increase bottom to top





### $\sigma(\bar{v}_e) - E$ and $\rho$ (density): 0.5 $\rho_0$ Increase top to bottom

### **σ**(ν<sub>e</sub>) – E and ρ (density): 0.5ρ₀ Increase top to bottom




# 

# $\sigma(v_e)$ + $\sigma(\bar{v}_e)$ : E and ρ (density): 0.5ρ<sub>0</sub> Increase top to bottom



 ${}^{12}C(\bar{v}_{e}, e^{+}){}^{12}B_{g,s(1+)}$  $\rho/\rho_{0}: 0, 0.5, 1.0$ Increase top to bottom

$${}^{12}C(v_{e},e^{-})^{12}B_{g.s(1+)}$$
  
 $\rho/\rho_{0}: 0, 0.5, 1.0$   
Increase top to bottom





 $\sigma(\bar{v}_e)/\sigma(v_e)$ : E and  $\rho$  (density): 0.5 $\rho_0$ Increase top to bottom

# $\sigma(\bar{\nu}_{e})/\sigma(\nu_{e}) in^{12} C$ E and $\rho$ (density): 0.5 $\rho_{0}$ Increase top to bottom





## Neutrino Mean Free Path Weak FFs. In medium (QMC)



## Neutrino Mean Free Path Cross Sections



## **Neutrino Mean Free Path**





Asymm. enhanced by the in-medium FFs.

Neutrino MFP increases 10 − 40 % ⇒ Neutron Star Cooling Enahnced !!

## Pion, N, EMFFs and D.A. in medium

J.P.B.C. de Melo et al, Phys.Rev. C90 (2014) no.3, 035201 Phys.Lett. B766 (2017) 125 Nucl.Phys. A970 (2018) 325 (W.R.B. Aráujo et al)

Medium effect on pion and N EMFFs and pion Distribution Amplitude with the Light Front Constituent Quark Model

# Pion, N, properties in medium

**Overview of the Light-Front** 

Light-Front Coordinates

Four-Vector 
$$\implies x^{\mu} = (x^0, x^1, x^2, x^3) \rightarrow (x^+, x^-, \vec{x}_{\perp})$$

- $x^+ = t + z$   $x^+ = x^0 + x^3 \implies \text{Time}$
- $x^- = t z$   $x^- = x^0 x^3 \implies \text{Position}$

**Metric Tensor and Scalar product** 

$$x \cdot y = x^{\mu} y_{\mu} = x^{+} y_{+} + x^{-} y_{-} + x^{1} y_{1} + x^{2} y_{2} = \frac{x^{+} y^{-} + x^{-} y^{+}}{2} - \vec{x}_{\perp} \vec{y}_{\perp}$$

 $p^+ = p^0 + p^3$ ,  $p^- = p^0 - p^3$ ,  $\vec{p}_\perp = (p^1, p^2)$ 

୬ ଏ. ୧ 5 / 74



(a)  $\Rightarrow$  Valence Component of the Electromagnetic Current (b)  $\Rightarrow$  Non-Valence Component of the Electromagnetic Current Ref.: de Melo and Frederico, PRC (1997), de Melo, Naus, Frederico and Sauer, PRC(1999)

(ロトイボトイモト 革

#### • Motivation: The present model works well (Symmetric Vertex)!

| Observables: Decay constant and charge radius                                   |                 |                         |               |               |             |                    |  |  |  |
|---------------------------------------------------------------------------------|-----------------|-------------------------|---------------|---------------|-------------|--------------------|--|--|--|
|                                                                                 | $f_{0^-}$ (MeV) | <i>r</i> <sub>0</sub> - | $m_u (\pi^-)$ | $m_d (\pi^+)$ | $m_d (K^+)$ | $m_{\bar{s}}(K^+)$ |  |  |  |
| Pion                                                                            | 93.12           | 0.736                   | 220           | 220           |             |                    |  |  |  |
|                                                                                 | 101.85          | 0.670                   | 250           | 250           |             |                    |  |  |  |
| Kaon                                                                            | 101.81          | 0.754                   |               |               | 220         | 440                |  |  |  |
| 20                                                                              | 113.74          | 0.687                   |               |               | 250         | 440                |  |  |  |
| $m_R = 600 \text{ MeV}$ , (all masses in MeV and radius in fm )                 |                 |                         |               |               |             |                    |  |  |  |
| Ex.(Pion): $f_{\pi} = 92.4 \pm 0.021$ MeV, $r_{\pi} = 0.672 \pm 0.08$ fm (PDG)  |                 |                         |               |               |             |                    |  |  |  |
| Ex.(Kaon): $f_{k^+} = 110.38 \pm 0.1413$ MeV, $r_{k^+} = 0.560 \pm 0.031$ (PDG) |                 |                         |               |               |             |                    |  |  |  |

Ref.: de Melo, Frederico, Pace and Salmè, NPA707, 399 (2002);
ibid., Braz. J. Phys. 33, 301 (2003)
Yabusaki, Ahmed, Paracha, de Melo, El-Bennich, PRD92 (2015) 034017.

1 900

(口) (同) (ヨト (耳)

### **Comparison of Energy/nucleon**



- Symmetric Nuclear Matter Binding Energy per Nucleon (scale !!)
- LF pion model (left):  $m_q = 220 \text{ MeV}, K = 320.9 \text{ MeV}$
- Standard QMC (right):  $m_q = 5$  MeV, K = 279.3, MeV

2



OMC



200

23 / 74

•Effective mass of constituent quarks, up and down •Pion, Nucleon:  $m_q = 220$  MeV (left) •Standard QMC  $m_q = 5$  MeV (right)

Kazuo Taushima Collaborations: In-Medium Pion (p-meson, Nucleon) Prope

## Valence Light-front wave function in Medium (Symm. Nuclear Matter)

$$\Phi^{*}(k^{+},\vec{k}_{\perp};P^{+},\vec{P}_{\perp}) = \frac{P^{+}}{m_{\pi}^{*2} - M_{0}^{2}} \qquad \left[ \frac{N^{*}}{(1-x)(m_{\pi}^{*2} - \mathcal{M}^{2}(m_{q}^{*2},m_{R}^{2}))} + \frac{N^{*}}{x(m_{\pi}^{*2} - \mathcal{M}^{2}(m_{R}^{2},m_{q}^{*2}))} \right]$$

240

26 / 74

计算计 推

< <p>+ < <p>+ < <p>+ < <p>+ <</p>

• 
$$x = k^+/P^+$$
, with  $0 \le x \le 1$ ,  $m_\pi^* \simeq m_\pi$   
•  $\mathcal{M}^2(m_a^2, m_b^2) = \frac{k_\perp^2 + m_a^2}{x} + \frac{(P-k)_\perp^2 + m_b^2}{1-x} - P_\perp^2$   
• Free Square Mass operador:  $M_0^2 = \mathcal{M}^2(m_q^{*2}, m_q^{*2})$ .

Kazuo Taushima Collaborations: In-Medium Pion (g-meson, Nucleon) Prope

Pion properties in medium.  $\eta^*$  is the probability of the valence component in the pion. ( $\rho_0 = 0.15 \text{ fm}^{-3}$ )

| $ ho/ ho_0$ | $m_q^*$ [MeV] | $f_{\pi}^{*}$ [MeV] | $ < r_{\pi}^{*2}>^{1/2}$ [fm] | $\eta^*$ |
|-------------|---------------|---------------------|-------------------------------|----------|
| 0.00        | 220           | 93.1                | 0.73                          | 0.782    |
| 0.25        | 179.9         | 80.6                | 0.84                          | 0.812    |
| 0.50        | 143.2         | 68.0                | 1.00                          | 0.843    |
| 0.75        | 109.8         | 55.1                | 1.26                          | 0.878    |
| 1.00        | 79.5          | 40.2                | 1.96                          | 0.930    |

(日)(日)(三)(三)(三)(三)(日)(日)



#### Exp. Data (in Vacuum!!)

Kazuo Taushima Collaborations: In-Medium Pion (p-meson, Nucleon) Prope

32 / 74

2

くロトイピトイモト

SAG



Pion Electromagnetic Radius

33 / 74

2

200

イモト

10140

2

35



SAC

34 / 74

2

4. 20 - 1-

394

(D) (0) (4)

• Pion Decay Constant

Kazuo Taushima Collaborations: In-Medium Pion (p-meson, Nucleon) Prope

Pion in Medium

## **Distribution Amplitude (normalized with** $f_{ps}$ !!!)

Def.: DAs

$$\phi_{DA}(x) = \int \frac{d^2 k_{\perp}}{(16\pi^3)} \Psi_{\rho s}(x, \vec{k}_{\perp})$$
$$\int_0^1 dx \int \frac{d^2 k_{\perp}}{16\pi^3} \Psi_{\rho s}(x, \vec{k}_{\perp}) = \frac{f_{\rho s}}{2\sqrt{6}}$$

Def.: NDA (normalized to unity)

$$\phi(x) = \frac{2\sqrt{6}}{f_{ps}} \int \frac{d^2k_{\perp}}{(16\pi^3)} \Psi_{ps}(x, \vec{k}_{\perp}) \; .$$

• Pion Asymptotic

$$\phi_{\pi}^{as}(x,\mu^2) \propto 6x(1-x)$$

Kazuo Taushima Collaborations: In-Medium Pion (p-meson, Nucleon) Prope

36 / 74

220

あたくあた 著

< **□** > 4

Pion in Medium

#### **NDAs vacuum**



Kazuo Taushima Collaborations: In-Medium Pion (p-meson, Nucleon) Prope

2 DQC 37 / 74

In-medium Distribution Amplitude

# **Pion (Valence) W. Func.: Vacuum (left)** $\rho_0$ (right) $f_{\pi}^*/2\sqrt{6}$ normalization



Kazuo Taushima Collaborations: In-Medium Pion (g-meson, Nucleon) Prope

43 / 74

2

220

イロト イロト イセト イモト

#### In-Medium NDA



45 / 74

イロト イロト イキト イキト き のくで

In-Medium Nucleon EMFFs in LF spin-coupling model

 W.R.B. de Aráujo et al., Nucl. Phys. A970 (2018) 325
 Eur.Phys.J. A29 (2006) 227
 Phys.Lett. B478 (2000) 86

#### **Nucleon EM form factors**



Kazuo Taushima Collaborations: In-Medium Pion (p-meson, Nucleon) Prope

63 / 74

#### **N** wave function, EM form factors

$$\mathcal{L}_{N-3q} = m_{N} \epsilon^{lmn} \overline{\Psi}_{(l)} i\tau_{2} \gamma_{5} \Psi_{(m)}^{C} \overline{\Psi}_{(n)} \Psi_{N} + H.C.$$

$$\Psi_{Power} = N_{Power} \left[ (1 + M_{0}^{2}/\beta^{2})^{-p} + \lambda (1 + M_{0}^{2}/\beta_{1}^{2})^{-p} \right]$$

$$\lambda = \left[ (1 + M_{H}^{2}/\beta_{1}^{2})/(1 + M_{H}^{2}/\beta^{2}) \right]^{p}$$

$$F_{1N}(Q^{2}) = \frac{1}{\sqrt{1 + \eta}} \langle N \uparrow |J_{N}^{+}(Q^{2})|N \uparrow \rangle$$

$$F_{2N}(Q^{2}) = \frac{1}{\sqrt{\eta}\sqrt{1 + \eta}} \langle N \uparrow |J_{N}^{+}(Q^{2})|N \downarrow \rangle$$

$$G_{EN}(Q^{2}) = F_{1N}(Q^{2}) - \frac{Q^{2}}{4m_{N}^{2}} F_{2N}(Q^{2})$$

$$G_{MN}(Q^{2}) = F_{1N}(Q^{2}) + F_{2N}(Q^{2})$$

SAG

64 / 74

Kazuo Taushima Collaborations: In-Medium Pion (g-meson, Nucleon) Prope

Nucleon EM form factors in medium

#### **Proton EM form factors in medium**



Kazuo Taushima Collaborations: In-Medium Pion (p-meson, Nucleon) Prope

69 / 74

イロト イボト イモト イモト イロト イロト

#### Proton EM form factor ratio in medium



Kazuo Taushima Collaborations: In-Medium Pion (p-mason, Nucleon) Prope

70 / 74

1200

#### Neutron EM form factors in medium



#### Kazuo Taushima Collaborations: In-Medium Pion (p-meson, Nucleon) Prope

71 / 74

イロトイロトイミトイミト き のくで

## JLab data: double ratio (in medium) $[G_{Ep}^{^{4}\text{He}}(Q^{2})/G_{Mp}^{^{4}\text{He}}(Q^{2})]/[G_{Ep}^{^{1}\text{H}}(Q^{2})/G_{Mp}^{^{1}\text{H}}(Q^{2})]$



200

72 / 74

1

Kazuo Taushima Collaborations: In-Medium Pion (p-meson, Nucleon) Prope

# **Neutron EMFFs double ratio !!**



# Bound Nucleon GPDs and Incoherent DVCS

V. Guzey, A.W. Thomas, KT Phys. Lett. B 673, 9 (2009) Phys. Rev. C 79, 055205 (2009)

Medium effect on Generalized Parton Distributions and Deeply Virtual Compton Scattering on a <sup>4</sup>He nucleus

#### Introduction

eply Virtual Compton ittering (DVCS) is the cleanest mple of hard exclusive process. A $Y = A, A^*, (A-1)N, ...$ 

The QCD factorization theorem for hard exclusive reactions (DVCS, electroproduction of mesons) allows to interpret the measurements in terms of universal generalized parton distributions (GPDs) of the target.

The GPDs generalize and interpolate between form factors and structure functions and encode information on 3D distributions of quarks and gluons in the target. S on nuclear targets is more complex and versatile than DVCS on the free on since:

any more final states can be excited

ie reaction mechanism is more complex

fferent spin and isospin of the target are available.



#### Important roles of nuclear DVCS:

Iuclear DVCS gives the information on the nucleon GPDs complimentary to DVCS n the free proton:

- theoretical description of nuclear GPDs requires GPDs of the (bound) proton and neutron as input
   VG and Strikman '03, VG '08;S. Scopetta '04; S. Liuti and S.K. Taneja '05
- incoherent DVCS on deuteron accesses almost-on-shell neutron GPDs
   M. Mazouz et al. (Hall A), Phys. Rev. Lett. 99, 242501 (2007)
- DVCS on polarized <sup>3</sup>He will probe GPDs of the neutron
- $\bullet$  electroduction of pseudoscalar mesons on deuteron is sensitive to non-pole contribution to the GPD  $\tilde{E}$

F. Cano and B. Pire, Eur. Phys. J. A **19**, 423 (2004) ↓ **???!!!** 

electroproduction of pseudoscalar mesons on <sup>3</sup>He at small t probes GPDs of the neutron (γ<sup>\*</sup><sub>L</sub>+<sup>3</sup>He→ π<sup>0</sup>+<sup>3</sup>He) or proton (γ<sup>\*</sup><sub>L</sub>+<sup>3</sup>He→ π<sup>+</sup>+<sup>3</sup>H)
 L. Frankfurt *et al.*, Phys. Rev. D **60**, 014010 (1999)

ear DVCS is interesting in its own right:

light access novel nuclear effects not present in DIS and elastic scattering on uclear targets:

contribution of non-nucleon (meson) degrees of freedom to the real part of the DVCS amplitude

M.V. Polyakov, Phys. Lett. B 555, 57 (2003); VG and M. Siddikov, J. Phys. G 32, 251 (2006)

unexpected pattern of nuclear shadowing for the real part of the DVCS amplitude at high-energies

A. Freund and M. Strikman, Phys. Rev. C 69, 015203 (2004)

<u>/ill\_put\_stringent\_constaints\_on\_theoretical\_models\_of\_the\_nuclear\_structure:</u> variant\_description is more important than for nuclear DIS and nuclear form ctors

t high energies, nuclear DVCS is more sensitive to the physics of high parton ensities and the parton saturation than inclusive scattering .V.T. Machado, arXiv:0810.3665 [hep-ph]

#### Incoherent and coherent nuclear DVCS

eoretical analysis of nuclear DVCS, the analysis is simplest when the final state nple: elastic or complete set of final nuclear states.



n the final nuclear state is not detected (summed over), both coherent and nerent contributions are present.
S amplitude:  $\mathcal{T}_{\text{DVCS}}^{A} = -\bar{u}(k')\gamma_{\mu}u(k)\frac{1}{Q^{2}}H^{\mu\nu}\epsilon_{\nu}^{*}$ ronic tensor:  $H^{\mu\nu} = -\int d^{4}x e^{-iqx} \langle X | \hat{T}\{J^{\mu}(x)J^{\nu}(0)\} | A \rangle \equiv \langle X | \mathcal{O}(q) | A \rangle$ S amplitude squared:

$$\begin{split} \sum_{\mathbf{CS}} |^{2} \propto \langle A | \mathcal{O}^{\dagger}(q) | X \rangle \langle X | \mathcal{O}(q) | A \rangle &= \langle A | \mathcal{O}^{\dagger}(q) \mathcal{O}(q) | A \rangle \\ &= \sum_{i,j} \langle A | N_{i} \rangle \langle N_{i} | \mathcal{O}^{\dagger}(q) \mathcal{O}(q) | N_{j} \rangle \langle N_{j} | A \rangle \\ &= \sum_{i} |\langle A | N_{i} \rangle|^{2} \langle N_{i} | \mathcal{O}^{\dagger}(q) \mathcal{O}(q) | N_{i} \rangle + \sum_{i \neq j} \langle A | N_{i} \rangle \langle N_{i} | \mathcal{O}^{\dagger}(q) \mathcal{O}(q) | N_{j} \rangle \langle N_{j} | A \rangle \\ &= A |\mathcal{T}_{\mathrm{DVCS}}^{N}|^{2} + A(A-1) F_{A}^{2}(t' = A/(A-1)t) |\mathcal{T}_{\mathrm{DVCS}}^{A, \mathrm{coh.enr.}}|^{2} \end{split}$$

ankfurt, G.A. Miller and M.Strikman, Phys. Rev. D 65, 094015 (2002)





the difference between the coherent-enriched and purely coherent contributions



$$A(A-1)F_A^2(t')$$



#### ral important comments:

he assumption of the completeness of final nuclear states (closure approximation) justified at sufficiently large t so that many final states are possible.

oth incoherent and coherent nuclear DVCS take place on <u>medium-modified</u>, <u>if-shell nucleons</u> that are subject to <u>Fermi motion</u>. <u>or incoherent nuclear DVCS</u>:

$$\boldsymbol{A}|\mathcal{T}_{\mathrm{DVCS}}^{N}|^{2} \rightarrow \int_{\alpha_{\mathrm{min}}}^{1} \frac{d\alpha}{\alpha} \rho_{A}^{N}(\alpha) |\mathcal{T}_{\mathrm{DVCS}}^{N^{*}}(\xi_{N}(\alpha)|^{2}$$

my numerical results shown below, these effects are neglected. I only distinguish etween protons and neutrons:

$$egin{aligned} &A|\mathcal{T}_{ ext{DVCS}}^{N}|^{2}=oldsymbol{Z}|\mathcal{T}_{ ext{DVCS}}^{p}|^{2}+N|\mathcal{T}_{ ext{DVCS}}^{n}|^{2}\ &A\mathcal{T}_{ ext{DVCS}}^{A, ext{coh.enr.}}=oldsymbol{F}_{A}(oldsymbol{t}')(oldsymbol{Z}\mathcal{T}_{ ext{DVCS}}^{p}+N\mathcal{T}_{ ext{DVCS}}^{n})\equivoldsymbol{A}F_{A}(oldsymbol{t}')\mathcal{T}_{ ext{DVCS}}^{N/A} \end{aligned}$$

S cross section at the photon level (keeping only the GPD H):

$$rac{d\sigma}{dt} pprox rac{\pi lpha_{ ext{em}}^2 x_B^2}{Q^4} \left[ A(A-1) F_A^2(t') |\mathcal{H}_{N/A}|^2 + rac{Z}{|\mathcal{H}_p|^2} + N |\mathcal{H}_n|^2 
ight]$$

#### S beam-spin asymmetry $A_{LU}(\phi)$ :

$$\underline{A_{LU}(\phi)} = \frac{\overrightarrow{\sigma} - \overleftarrow{\sigma}}{\sigma^{\text{unp}}} = \frac{(A-1)ZF_A^2(t')\Delta\mathcal{I}_{N/A} + \underline{Z}\Delta\mathcal{I}_p + N\Delta I_n}{Z(Z-1)F_A^2(t')|\mathcal{T}_{N/A}^{\text{BH}}|^2 + Z|\mathcal{T}_p^{\text{BH}}|^2 + N|\mathcal{T}_n^{\text{BH}}|^2 + \dots}$$

e-Heitler process



"Counting" for coherent-enriched interference



#### **Addium modifications and incoherent nuclear DVCS**

new Jefferson Lab (CLAS collaboration) experiment on DVCS on <sup>4</sup>He will sure giyan, F.-X. Girod, K. Hafidi, S. Liuti, E. Voutier *et al.*, Jefferson Lab Experiment E08-024

urely coherent DVCS on <sup>4</sup>He (the final nucleus will be detected using BoNuS etector)

coherent DVCS on the bound proton (the final proton is detected)





ictions for  $A_{LU}^A/A_{LU}^p$  for coherent DVCS on <sup>4</sup>He ( $\phi = 90^0$ ) Izey, Phys. Rev. C **78**, 025211 (2008)



ictions for the incoherent DVCS on bound proton in <sup>4</sup>He

$$\frac{A_{LU}^{p^*}}{A_{LU}^p} = 1 \qquad \qquad \text{However !!} \Rightarrow$$

Fermi motion, off-shellness and medium-modification effects are not taken into unt. ncluded the effect of medium-modifications of the bound nucleon assuming that edium nucleon GPDs are modified in proportion to the bound nucleon elastic factors.

A.W. Thomas and K. Tsushima, arXiv:0806.3288

#### Model, assumption !

$$egin{aligned} H^{q/p^*} &= rac{F_1^{p^*}(t)}{F_1^p(t)} H^{q/p} \ E^{q/p^*} &= rac{F_2^{p^*}(t)}{F_2^p(t)} E^{q/p} \ ilde{H}^{q/p^*} &= rac{G_1^{p^*}(t)}{G_1^p(t)} ilde{H}^{q/p} \end{aligned}$$



medium-modified elastic form factors are taken from the Quark-Meson Coupling el whose predictions are consistent with the polarization transfer measurement  $\vec{e}, e'\vec{p}$ )<sup>3</sup>H (Hall A JLab): S. Malace, S. Strauch, arXiv:0807.2252 (Actually, MM+FM+FSI) ictions for the ratio of the bound to free proton DVCS beam-spin asymmetries,  $/A_{LU}^p$ , for incoherent DVCS on <sup>4</sup>He

A.W. Thomas and K. Tsushima, arXiv:0806.3288.



he deviation of  $A_{LU}^{p^*}/A_{LU}^p$  from unity is as large as 6%

ur predictions are much smaller in size and different in shape ( $x_B$ -dependence) om the predictions of S. Liuti and S.K. Taneja, Phys. Rev. C **72**, 032201 (2005); C **72**, 4902 (2005)

#### **Conclusions and Discussion**

sing the completeness of the final nuclear states, one can derive an expression r nuclear DVCS that interpolates between the coherent-enriched and incoherent uclear DVCS

or the coherent-enriched and purely coherent nuclear DVCS, we predict the combinatoric" enhancement at small t,  $A_{LU}^A/A_{LU}^p = 1.65 - 2$ .

or the incoherent nuclear DVCS at large t,  $A_{LU}^A/A_{LU}^p < 1$  due to the neutron ontribution.

he effect of medium-modifications of the bound nucleon GPDs are modelled sing results of the Quark-Meson coupling model; the deviation of  $A_{LU}^{p}/A_{LU}^{p}$  is most 6%.

the above results, we neglected the effects of the Fermi motion and the final ate interactions.

uture work (personal plans): final state interactions for incoherent DVCS on suteron; DVCS on polarized <sup>3</sup>He.

## Speculations !!! (bound proton spin) $J_q+J_G=(\Delta q+L_q)+J_G=1/2$

• 
$$g_A^* < g_A \Rightarrow \Delta q^* < \Delta q$$

- $F_{1*} = F_1(F_{1*}(0) = F_1(0) = 1), F_{2*} > F_2$
- Hq<sup>\*</sup>  $\cong$  Hq, Eq<sup>\*</sup> > Eq ( $\mu p^*$  >  $\mu p$ )

$$Jq^* = \frac{1}{2} - JG^* = (\Delta q^* + Lq^*)$$

$$= \frac{1}{2} \int dx \times (Hq^* + Eq^*) > \frac{1}{2} \int dx \times (Hq + Eq)$$

$$= (\Delta q + Lq) = \frac{1}{2} - J_G = J_q$$

• 
$$Jq^* > Jq$$
 ( $JG^* < JG$  or  $Lq^* > Lq$ )

## D meson scalar potential



### **D** and **D**\* potentials in **nuclear matter**



### **D** (cd) total potential in Pb



### **D** (cd) bound state wave functions in **Pb**



# D bound state energy in Pb

| state | +<br><b>1,96</b><br>*Vqω | ν <mark>Ρ</mark> | Vgw<br>No<br>Coulomb | D <sup>0</sup><br>1.96<br>*Vqω | ν <sup>¯0</sup> | VQ <sup>0</sup> |
|-------|--------------------------|------------------|----------------------|--------------------------------|-----------------|-----------------|
| 1s    | -10.6                    | -35.2            | -11.2                | unbound                        | -25.4           | -96.2           |
| 1р    | -10.2                    | -32.1            | -10.0                | unbound                        | -23.1           | -93.0           |
| 2s    | -7.7                     | -30.0            | -6.6                 | unbound                        | -19.7           | -88.5           |

# J/W in nuclei (historical)

<u>S. J. Brodsky, I. Schmidt, Guy F. de Téramond:</u> **QCD van der Waals potential** A=9,  $\eta_c$  binding energy ~ 400 [MeV] !!! PRL 64, 1011 (1990)

Corrected by folding nuclear density dist. <u>D. A. Wasson</u>: at most ~ 30 [MeV] !!! PRL 67, 2237 (1991)

# $J/\Psi$ pot. at $\rho_0$ (<u>color octet</u>)

<u>αψ/2 <N| Ĕa • Ĕa |N></u> M.B. Voloshin: chromo-polarizability at **ρ**₀, V< -21 (**α**ψ/2 GeV<sup>-3</sup>) [MeV], Prog. Part. Nucl. Phys. 61, 455 (2008) S.H. Lee, C.M. Ko: QCD Stark effect V = -8 + 3 (D-loop) [MeV], prc 67, 038202 (2003) M. Luke, A.V. Manohar, M.J. Savage: EFT V = -11 ~ - 8 [MeV], PLB 288, 355 (1992)

## **QCD** sum rules

Klingl et. al, PRL 82, 3396 (1999), Err-ibid 83, 4224 (1999). A. Hayashigaki, Prog. Theor. Phys. 101, 923 (1999). S. Kim and S. H. Lee, NPA 679, 517 (2001).

(mass shift) V = - 4 ~ - 7 [MeV] Recent A=2,3 few-body calculations V.B. Belyaev et. al, NPA 780, 100 (2006)  $\eta_c$  - d and  $\eta_c$  - <sup>3</sup>*He* (local Yukawa type pot.)  $E_B$  = a few ~ ten [MeV]

Lattice (quenched) T. Kawanai, S. Sasaki, PRD 82, 09151 (2010) Equal-time BS amplitudes  $\rightarrow$  potential  $\eta_c$  - N and J/ $\Psi$  - N potentials: attraction ! V = - 30 ~ - 40 [MeV] at r ~ 0.2 fm



$$\mathcal{L}_{\psi DD} = i g_{\psi DD} \psi^{\mu} \left[ \bar{D} \left( \partial_{\mu} D \right) - \left( \partial_{\mu} \bar{D} \right) D \right]$$

$$\mathcal{L}_{\psi DD^*} = rac{g_{\psi DD^*}}{m_{\psi}} arepsilon_{lphaeta\mu
u} \left(\partial^{lpha}\psi^{eta}
ight) \left[\left(\partial^{\mu}ar{D}^{*
u}
ight) D + ar{D}\left(\partial^{\mu}D^{*
u}
ight)
ight]$$

$$\mathcal{L}_{\psi D^* D^*} = i g_{\psi D^* D^*} \left\{ \psi^{\mu} \left[ \left( \partial_{\mu} \bar{D}^{*\nu} \right) D_{\nu}^* - \bar{D}^{*\nu} \left( \partial_{\mu} D_{\nu}^* \right) \right] \right. \\ \left. + \left[ \left( \partial_{\mu} \psi^{\nu} \right) \bar{D}_{\nu}^* - \psi^{\nu} \left( \partial_{\mu} \bar{D}_{\nu}^* \right) \right] D^{*\mu} + \left. \bar{D}^{*\mu} \left[ \psi^{\nu} \left( \partial_{\mu} D_{\nu}^* \right) - \left( \partial_{\mu} \psi^{\nu} \right) D_{\nu}^* \right] \right\}$$

## **D** and **D**\* masses in matter



## **Vertex form factor**

$$U_{D,D*}(\vec{q}^{2}) = \left[\frac{\Lambda^{2} D_{,D*} + m^{*2} J/\Psi}{\Lambda^{2} D_{,D*} + 4\omega^{*2} D_{,D*}(\vec{q}^{2})}\right]^{2}$$

## **D-D** loop: J/Ψ potential in matter



# J/Ψ binding in finite nuclei

### Potentials and single-particle energies in <sup>4</sup>He and <sup>208</sup>Pb

 $J/\Psi$  meson in vacuum

#### $J/\Psi$ potentials in <sup>4</sup>He and <sup>208</sup>Pb



37 / 40

100

DRO

## **Proca (Klein-Gordon) equation**

### **Lorentz condition** $\Rightarrow$ **T and L modes similar**

$$\nabla^2 + E^2 - \mu^2$$

$$-2\mu(m(r)^*-m)\Phi(r)=0$$

$$\mu = mMA/(m+MA)$$
  
m: J/ $\Psi$  mass, MA: nucleus mass

## **Possible width**

$$\begin{bmatrix} p^{2} - m^{2} + i m \Gamma \end{bmatrix} = \begin{bmatrix} p^{2} - m^{2} - \Sigma \end{bmatrix}$$

$$\Gamma = -\frac{Im(\Sigma)}{m}$$

$$= (p/E) (0.5\rho) \sigma$$

$$\approx 1.1 \text{ MeV } (p=3 \text{ GeV})$$

$$\Gamma : \text{F. Riek et al., PRC 82, 015202 (2010)}$$

σ

: A. Sibirtsev et al., PRC 63, 044906 (2001)

#### $J/\Psi$ meson in vacuum

### $J/\Psi$ Bound state energies: Schrödinger (KG) Eq.

|                                    |            | Bound state energies |                    |                    |                    |                    |  |
|------------------------------------|------------|----------------------|--------------------|--------------------|--------------------|--------------------|--|
| 18                                 | - j        | $\Lambda_D = 2000$   | $\Lambda_D = 3000$ | $\Lambda_D = 4000$ | $\Lambda_D = 5000$ | $\Lambda_D = 6000$ |  |
| $\frac{4}{J/\psi}$ He              | 1s         | n                    | n                  | -0.70              | -2.70              | -5.51              |  |
| $\frac{12}{J/\psi}C$               | 1s         | 0.52                 | 1.98               | 4.47               | 7.67               | 11.26              |  |
|                                    | 1p         | n                    | n                  | п                  | -1.38              | -3.84              |  |
| $\frac{16}{J/\psi}$ O              | 1s         | -1.03                | -2.87              | -5.72              | -9.24              | -13.09             |  |
|                                    | lp         | n                    | n                  | -0.94              | -3.48              | -6.60              |  |
| <sup>40</sup><br>Ј/ψ <sup>Сн</sup> | 1 <b>s</b> | -2.78                | -5.44              | - <b>9</b> .14     | -13.50             | -18.12             |  |
|                                    | lp         | 0.38                 | 2.32               | 5.43               | 9.32               | 13.56              |  |
|                                    | 1d         | n                    | n                  | -1.52              | -4.74              | -8.49              |  |
|                                    | 2s         | n                    | n                  | -1.27              | -4.09              | -7.60              |  |
| <sup>48</sup><br><sub>J/ψ</sub> Ca | 1s         | -2.96                | -5.62              | -9.28              | -13.55             | -18.08             |  |
|                                    | 1p         | -0.73                | -2.83              | -6.03              | -9.95              | -14.16             |  |
|                                    | 1d         | n                    | n                  | -2.46              | -5.87              | -9.73              |  |
|                                    | 2s         | n                    | -0.07              | -1.90              | -5.00              | -8.65              |  |
| 90<br>}/ψZr                        | ls         | -3.64                | -6.40              | -10.12             | -14.41             | -18.92             |  |
|                                    | 1p         | -1.93                | -4.42              | -7.92              | -12.03             | -16.40             |  |
|                                    | 1d         | -0.03                | -2.13              | -5.31              | -9.18              | -13.37             |  |
|                                    | 2s         | -0.02                | -1.56              | -4.51              | -8.26              | -12.37             |  |
|                                    | 2p         | n                    | n                  | -1.52              | -4.71              | -8.45              |  |
| <sup>208</sup><br>Ј/ψРЪ            | ls         | -4.25                | -7.08              | -10.82             | -15.11             | -19.60             |  |
|                                    | 1p         | -3.16                | -5.86              | -9.52              | -13.74             | -18.18             |  |
|                                    | 1d         | -1.84                | -4.38              | -7.90              | -12.01             | -16.37             |  |
|                                    | 2s         | -1.41                | -3.81              | -7.25              | -11.30             | -15.61             |  |
|                                    | 2p         | 0.07                 | 1.95               | 5.10               | 8.97               | 13.14              |  |

Kazuo Tsushima Collaborations: Nuclear bindings of  $\phi$  and  $J/\Psi$  mesons

SAC

# J/Ψ-nuclear bound states Summary, outlook

• J/ potential in nuclear matter **Color octet, QCD Stark** → attraction! Color singlet, DD loop  $\rightarrow$  all give attraction! (nongauged J/ $\Psi$ ) • J/Ψ will be bound in (large mass) nuclei (nearly **stopped** production of  $J/\Psi$ ) Widths of D and D\* ?! • **(next)** and **Y** in future **?!** 

## $\Phi$ -meson nuclear bound states

## • J.~J.~Cobos-Martínez, et al.

- Phys.Lett. B771 (2017) 113-118
- Phys.Rev. C96 (2017) 035201
- J.Phys.Conf.Ser. 912 (2017) 012009
- PoS Hadron2017 (2018) 209





## $\Phi$ -meson nuclear bound states

d-meson in medium

 $\phi$ -meson: at normal nucl. matt. density  $\rho_0$ 

|                 | $\Lambda_{K} = 1000$ | $\Lambda_K = 2000$ | $\Lambda_K = 3000$ | $\Lambda_K = 4000$ |
|-----------------|----------------------|--------------------|--------------------|--------------------|
| $m_{\phi}^{*}$  | 1009.3               | 1000.9             | 994.9              | 990.5              |
| $\Gamma^*_\phi$ | 37.7                 | 34.8               | 32.8               | 31.3               |

Form Factor at  $\phi KK$  vertex

$$u_{\mathcal{K}}(\vec{q}^2) = \left(rac{\Lambda_{\mathcal{K}}^2 + m_{\phi}^2}{\Lambda_{\mathcal{K}}^2 + 4E_{\mathcal{K}}^2(\vec{q})}
ight)^2$$

VA Q CA

*d*-meson in medium

#### $m_{\phi}^*$ and width in symm. nucl. matter (non-gauged)



Kazuo Taushima Collaborations: Nuclear bindings of  $\phi$  and  $J/\Psi$  mesons

26 / 40

2

トイモトイモト

520

#### **Complex Potential and KG equation**

$$V_{\phi A}(r) = \Delta m_{\phi}^{*}(\rho_{B}(r)) - (i/2)\Gamma_{\phi}^{*}(\rho_{B}(r)),$$
  
$$\equiv U_{\phi}(r) - \frac{i}{2}W_{\phi}(r)$$

$$(-\nabla^2 + \mu^2 + 2\mu V(\vec{r})) \phi(\vec{r}) = \mathcal{E}^2 \phi(\vec{r})$$
  
 $\mu = m_{\phi} m_A / (m_{\phi} + m_A)$ 

ヘロア 小田 アイボア 小田 アメロア

29 / 40

## $m_{\phi}^*$ and width: <sup>208</sup>Pb



31 / 40

1

81. >

DRG
## **Bound state energies**

|                              |    | $\Lambda_{K} = 2000$ |      | $\Lambda_K = 3000$ |      | $\Lambda_{K} = 4000$ |      |
|------------------------------|----|----------------------|------|--------------------|------|----------------------|------|
| -2                           |    | E                    | Γ/2  | E                  | ٢/2  | E                    | Γ/2  |
| <sup>4</sup> <sub>b</sub> He | ls | п (-0.8)             | п    | n (-1.4)           | n    | -1.0 (-3.2)          | 8.3  |
| $^{12}_{\phi}C$              | 1s | -2.1 (-4.2)          | 10.6 | -6.4 (-7.7)        | 11.1 | -9.8 (-10.7)         | 11.2 |
|                              | ls | 4.0 (5.9)            | 12.3 | 8.9 ( 10.0)        | 12.5 | 12.6 (13.4)          | 12.4 |
|                              | 1p | n (n)                | п    | n (n)              | n    | n (-1.5)             | п    |
| $^{40}_{\phi}$ Ca            | ls | 9.7 (11.1)           | 16.5 | 15.9 (16.7)        | 16.2 | 20.5 (21.2)          | 15.8 |
|                              | 1p | -1.0 (-3.5)          | 12.9 | -6.3 (-7.8)        | 13.3 | -10.4 (-11.4)        | 13.3 |
|                              | 1d | п (n)                | п    | n (n)              | n    | п (-1.4)             | п    |
| $^{48}_{\phi}$ Ca            | 1s | -10.5 (-11.6)        | 16.5 | -16.5 (-17.2)      | 16.0 | -21.1 (-21.6)        | 15.6 |
|                              | lp | -2.5 (-4.6)          | 13.6 | -7.9 (-9.2)        | 13.7 | -12.0 (-12.9)        | 13.6 |
|                              | ld | п (n)                | n    | n ( 0.8)           | n    | 2.1 ( 3.6)           | 11.1 |
| 90<br>¢<br>Zr                | 1s | -12.9 (-13.6)        | 17.1 | -19.0 (-19.5)      | 16.4 | -23.6 (-24.0)        | 15.8 |
|                              | 1p | -7.1 (-8.4)          | 15.5 | -12.8 (-13.6)      | 15.2 | -17.2 (-17.8)        | 14.8 |
|                              | 1d | -0.2 (-2.5)          | 13.4 | -5.6 (-6.9)        | 13.5 | -9.7 (-10.6)         | 13.4 |
|                              | 2s | n (-1.4)             | n    | -3.4 (-5.1)        | 12.6 | -7.4 (-8.5)          | 12.7 |
|                              | 2p | п (n)                | п    | n (n)              | п    | n (-1.1)             | п    |
| <sup>208</sup> РЪ<br>ф       | 15 | -15.0 (-15.5)        | 17.4 | -21.1 (-21.4)      | 16.6 | -25.8 (-26.0)        | 16.0 |
|                              | 1p | -11.4 (-12.1)        | 16.7 | -17.4 (-17.8)      | 16.0 | -21.9 (-22.2)        | 15.5 |
|                              | ld | -6.9 (-8.1)          | 15.7 | -12.7 (-13.4)      | 15.2 | -17.1 (-17.6)        | 14.8 |
|                              | 2s | -5.2 (-6.6)          | 15.1 | -10.9 (-11.7)      | 14.8 | -15.2 (-15.8)        | 14.5 |
|                              | 2p | n (-1.9)             | n    | -4.8 (-6.1)        | 13.5 | -8.9 (-9.8)          | 13.4 |
|                              | 2d | n (n)                | n    | n (-0.7)           | n    | -2.2 (-3.7)          | 11.9 |

Kazuo Tsushima COllaborations: Nuclear bindings of  $\phi$  and  $J/\Psi$  mesons

32 / 40

HIEN E SQO

## **Summary and Future Plans**

- **1. QMC model:** Quark-based in-medium hadron properties and nuclear model (phenomenological)
- 2. Hypernuclei,  $\Lambda$  and  $\Xi$ -hypernuclei ( $\Lambda_{c}, \Lambda_{b}$ )
- **3. Heavy Baryons in nuclear medium**
- 4. Neutrino reactions and in-medium form factors, MFP
- **5.** Pion, N, EMFFs, pion D.A., bound Nucleon GPDs and Incoherent DVCS
- 6. **D** meson in nuclear medium and  $J/\Psi(\Phi)$ -nuclear bound states
- 7. Plans: In-medium gA and weak-transitions, heavy baryons