What can be measured at the E16 experiment at J-PARC?

Philipp Gubler, JAEA

Talk at the "Korea-Japan Joint Workshop on the Present and the Future in Hadron Physics at J-PARC", Pukyong National University, Busan, South Korea, March 4, 2019

 Γ_{φ} = 4.3 MeV

Modification of the φ meson spectral function

based on a hadronic model

P. Gubler and W. Weise, Nucl. Phys. A **954**, 125

Vector mesons in experiment

One method: proton induced interactions on nuclei

Therefore, uniquely determining the spectral function at normal nuclear matter density is not easy!

Experimental Conclusions

R. Muto et al, Phys. Rev. Lett. **98**, 042501 (2007).

 $\frac{m_{\phi}(\rho)}{m_{\phi}(0)} = 1 - k_1 \frac{\rho}{\rho_0}$

35 MeV negative mass shift at normal nuclear matter density

Pole width:

Caution!

Fit to experimental data is performed with a simple Breit-Wigner Posameblization

 0.034 ± 0.007

Pole mass:

QCD sum rules M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Nucl. Phys. B147, 385 (1979); B147, 448 (1979).

Makes use of the analytic properties of the correlation
 $\Pi(q^2) = i \int d^4x e^{iqx} \langle T[\chi(x)\overline{\chi}(0)] \rangle$
 $\chi(x) = \overline{\xi(x)} \gamma_{\mu}s(x)$
 $\chi(x) = \overline{\xi(x)} \gamma_5 d(x)$ $\rightarrow \Pi(q^2) = \frac{1}{\pi} \int_0^\infty ds \frac{\text{Im}\Pi(s)}{s - \phi^2 - i\epsilon}$ $q²$ **is calculated spectral function "perturbatively", of the operator χ using OPE**

After the Borel transformation:

$$
G_{OPE}(M^2) = \frac{1}{\pi} \int_0^\infty ds \frac{1}{M^2} e^{-\frac{s}{M^2}} \text{Im}\Pi(s)
$$

More on the operator product expansion (OPE)

Structure of QCD sum rules for the phi meson $\frac{1}{M^2} \int_0^\infty ds e^{-\frac{s}{M^2}} \rho(s) = c_0(\rho) + \frac{c_2(\rho)}{M^2} + \frac{c_4(\rho)}{M^4} + \frac{c_6(\rho)}{M^6} + \ldots$

In Vacuum

- Dim. 0: $c_0(0) = 1 + \frac{\alpha_s}{\pi}$
- Dim. 2: $c_2(0) = -6m_s^2$
- Dim. 4: $c_4(0) = \frac{\pi^2}{3} \langle \frac{\alpha_s}{\pi} G^2 \rangle + 8\pi^2 m_s \langle \overline{s} s \rangle$
- Dim. 6: $c_6(0) = -\frac{448}{81} \kappa \pi^3 \alpha_s \langle \overline{s}s \rangle^2$

Structure of QCD sum rules for the phi meson $\left(\begin{array}{ccc} 1 & 1 \end{array}\right)$ \sim \sim \sim \sim

$$
\frac{1}{M^2} \int_0^{\infty} ds e^{-\frac{s}{M^2}} \rho(s) = c_0(\rho) + \frac{c_2(\rho)}{M^2} + \frac{c_4(\rho)}{M^4} + \frac{c_6(\rho)}{M^6} + \dots
$$

In Nuclear Matter

 $c_6(\rho) = c_6(0) + \rho \left[-\frac{896}{81} \kappa_N \pi^3 \alpha_s \langle \overline{s} s \rangle \langle N | \overline{s} s | N \rangle - \frac{5}{6} A_4^s M_N^3 \right]$ Dim. 6:

The strangeness content of the nucleon: results from lattice QCD

Recent results from lattice QCD

 $\sigma_{sN} = m_s \langle N| \overline{s} s |N \rangle$

P. Gubler and D. Satow, arXiv:1812:00385 [hepph], to be published in Prog. Part. Nucl. Phys.

Results for the φ meson mass

Compare Theory with Experiment

How can theoretical results be compared to experiment more accurately?

Realistic simulation of pA reaction is needed!

Our tool: a transport code PHSD (Parton Hadron String Dynamics)

W. Cassing and E. Bratkovskaya, Phys. Rev. C **78**, 034919 (2008).

A first look at a reaction to be probed at J-PARC: pA collisions with initial proton energy of 30 GeV

A first look at the reaction: Rapidity distribution of protons/mesons

Due to the large collision energy, the incoming proton passes through the target nucleus

The dilepton spectrum

The φ meson peak is clearly visible, but more statistics are needed to generate the precise dilepton spectrum

Summary and **Conclusions**

- ★ To experimentally the modification of the ϕ meson spectral function at finite density is non-trivial. A good understanding of the underlying pA reaction is needed!
- \star The φ -meson mass shift in nuclear matter constrains the strangeness content of the nucleon:

 σ_{sN} < 35 MeV

 σ_{sN} > 35 MeV

Increasing φ-meson mass in nuclear matter Decreasing φ-meson mass in nuclear matter

 \star Numerical simulations of the pA reactions to be measured at the E16 experiment at J-PARC, using the PHSD transport code, are in progress.

Backup slides

Recent theoretical works about the φ

based on hadronic models

D. Cabrera, A.N. Hiller Blin and M.J. Vicente Vacas, Phys. Rev. C **95**, 015201 (2017).

D. Cabrera, A.N. Hiller Blin and M.J. Vicente Vacas, Phys. Rev. C **96**, 034618 (2017).

Recent theoretical works about the φ

J.J. Cobos-Martinez, K. Tsushima, G. Krein and A.W. Thomas, Phys. Lett. B **771**, 113 (2017). J.J. Cobos-Martinez, K. Tsushima, G. Krein and A.W. Thomas, Phys. Rev. C **96**, 035201 (2017).

based on the quark-meson coupling model

Experimental developments

Slowly KEK) φ mesons are produced in 12 GeV *p*+*A* reactions and are measured through di-leptons.

Other experimental results

There are some more experimental results on the φ-meson width in nuclear matter, based on the measurement of the transparency ratio T:

 (2005)

Starting point	\n $j_{\mu}(x) = \frac{1}{3}\bar{s}(x)\gamma_{\mu}s(x)$ \n
\n $\Pi_{\mu\nu}(q) = i \int d^4x e^{iqx} \langle T[j_{\mu}(x)j_{\nu}(0)] \rangle_{\rho}$ \n	
\n $\Pi(q^2) = \frac{1}{3q^2} \Pi_{\mu}^{\mu}(q)$ \n	
\n $\Pi(q^2) = \frac{1}{3q^2} \Pi_{\mu}^{\mu}(q)$ \n	
\n $\Pi \Pi(q^2) = \frac{\text{Im} \Pi_{\phi}(q^2)}{q^2 g_{\phi}^2} \Big \frac{(1 - a_{\phi})q^2 - \tilde{m}_{\phi}^2}{q^2 - \tilde{m}_{\phi}^2 - \Pi_{\phi}(q^2)} \Big ^2}{\sqrt{q^2 - \tilde{m}_{\phi}^2 - \Pi_{\phi}(q^2)}} \Big _{\text{Kaon loops}}$ \n	

Vacuum spectrum

P. Gubler and W. Weise, Phys. Lett. B **751**, 396 (2015).

Data from J.P. Lees et al. (BABAR Collaboration), Phys. Rev. D **88**, 032013 (2013).

BMW version:

?

χQCD version:

??

The strangeness content of the nucleon, $s_N = m_s \langle N|\overline{s}s|N\rangle$

A. Bottino, F. Donato, N. Fornengo and S. Scopel, Asropart. Phys. **18**, 205 (2002).

Problem at finite ρ: sign problem!

$$
Z = \int DA \det[\not{D} + m - \mu \gamma_0/2] e^{S_{YM}}
$$
\n
$$
\downarrow
$$
\n
$$
\
$$

The basic problem to be solved

$$
G_{OPE}(M) = \frac{1}{M^2} \int_0^\infty ds e^{-\frac{s}{M^2}} \rho(s)
$$

given
(but only incomplete
and with error)

This is an ill-posed problem.

But, one may have additional information on $\rho(\omega)$, which can help to constrain the problem: - Positivity:

 $\rho(\omega) \geq 0$

- Asymptotic values:

$$
\rho(\omega=0), \rho(\omega=\infty)
$$

The Maximum Entropy Method

How can one include this additional information and find the most probable image of $p(\omega)$?

 \rightarrow Bayes' Theorem

$$
P[\rho|G, I] = \frac{P[G|\rho, I]P[\rho|I]}{P[G|I]}
$$

\n
$$
\longrightarrow \frac{\delta P[\rho|G, I]}{\delta \rho} = 0
$$

Results of test-analysis (using MEM)

P. Gubler and K. Ohtani, Phys. Rev. D **90**, 094002 (2014).

M.Asakawa, T.Hatsuda and Y.Nakahara, Prog. Part. Nucl. Phys. 46, 459 (2001). M. Jarrel and J.E. Gubernatis, Phys. Rep. 269, 133 (1996).

The traditional analysis method

The spectral function is approximated by a "pole + continuum" ansatz:

$$
\rho(s) = \lambda^2 \delta(s - m^2) + \theta(s - s_{\text{th}}) \frac{1}{\pi} \text{Im} \Pi^{OPE}(s)
$$

Even though this ansatz is very crude, it works quite well in cases for which it is phenomenologically known to be close to reality.

e.g. $-charmonium (J/\psi)$

The strangeness content of the nucleon: $N|\overline{s}s|N\rangle$

Important parameter for dark-matter searches:

A. Bottino, F. Donato, N. Fornengo and S. Scopel, Asropart. Phys. **18**, 205 (2002).

In-nucleus decay fractions for E325 kinematics

TABLE II. Expected in-nucleus decay fractions of vector mesons in the E325 kinematics, assuming that the meson decay widths are unmodified in nuclei, obtained by using a Monte Carlo type model calculation (Naruki et al., 2006; Muto et al., 2007).

^aFor slow ϕ mesons with $\beta \gamma$ < 1.25.

Taken from: R.S. Hayano and T. Hatsuda, Rev. Mod. Phys. **82**, 2949 (2010).

How can this result be understood? Let us examine the OPE at finite density more closely:

$$
c_2(\rho) = c_2(0) + \rho \left[-\frac{2}{27} M_N^0 + 2m_s \langle N | \bar{s} s | N \rangle + A_1^s M_N - \frac{7}{12} \frac{\alpha_s}{\pi} A_2^g M_N \right]
$$

-83 MeV 2.2 σ_{sN} 38 MeV -31 MeV

$$
\longrightarrow \sim 2.2 \rho \left[\left(\frac{\sigma_{sN}}{1 \text{MeV}} \right) - 33 \right] \text{MeV}
$$

Dimension 4 terms governs the behavior of the φ meson

More on the free KN and KN scattering amplitudes

For KN: Approximate by a real constant $(\rightarrow$

repulsion) T. Waas, N. Kaiser and W. Weise, Phys. Lett. B **379**, 34 (1996).

For $\overline{K}N$: Use the latest fit based on SU(3) chiral effective field theory, coupled channels and recent experimental results (\leftrightarrow) attraction) Y. Ikeda, T. Hyodo and W. Weise, Nucl. Phys. A **881**, 98

K-p scattering length obtained from kaonic hydrogen (SIDDHARTA Collaboration)