Static Properties of strange and nonstrange members of exotic baryons in a chiral soliton model

[Fig: http://lhcb-public.web.cern.ch/lhcb-public/]

CONTENTS

1 MOTIVATION

2 CHRALSOLITONMODEL (based on MEAN FIELD APPROACH)

3 MASSES OF AND

4 RADIATIVE DECAYSOF

5STRONG DECAY WIDTHS OF AND

6 Masses and strong decay widths of heavy baryons

7 SUMMARY

Collaborators:

Hyun-Chul Kim (Inha Univ., Incheon, South Korea),Maxim Polyakov (Ruhr-Uni. Bochum, Germany),Michal Praszalowicz (Jagiellonian Univ., Krakow, Poland)

MOTIVATION I Light Pentaquarks : Did we put a period at ?

1987, M. Praszalowicz (Skyrme Model) presented the first estimate of the mass of

1997, DPP (Chiral Soliton Model) showed the small decay width and the mass of .

2002, T. Nakano (LEPS collaboration) announced the first measurement of

After 2002, positive evidences **VS** negative evidences of experiments (2006~2008) From 2011, pentaquark section in PDG disappeared.

MOTIVATION II New narrow structures and

New narrow structure from (GRAAL 2007, CBELSA/TAPS 2008, A2@MAMI 2013-2017)

Strong suppression of photoexcitation of this resonance off proton ~, consistent with the results from Chiral Soliton model

GS Yang et al., **PRD 71, 094023 (2005)**, arXiv:1809.07489

MOTIVATION New narrow structures and

New narrow structure fromNew narrow structure from(GRAAL 2007, CBELSA/TAPS 2008, A2@MaMiC 2013)(A2@MaMiC 2015, GRAAL 2017)

Assuming as the lightest member,

as the non-strange member of anti-decuplet baryons and as the non-strange member of eikosiheptaplet baryons,

the mass spectrum, radiative decays, strong decays are strictly investigated in the framework of chiral soliton model.

Theoretical Framework

Chiral soliton model & Mean field approach

Large arguments allows us to consider a classical pion mean field (Witten): Relativistic Mean Field Approximation

The presence valence quarks creates the pion mean fields and valence quarks are self-consistently bound by it in the large limit. One can put to real-world value at the end of the calculation.

Theoretical Framework

hedgehog

- : Effective and relativistic low energy theory
- : Large limit : meson fields → Soliton (No quark degree of freedom)
- : Quantizing SU(3) meson fields rotated in flavor and spin space \rightarrow Collective Hamiltonian, model baryon states

Hedgehog Ansatz:

$$U_0 = \begin{bmatrix} e^{i\boldsymbol{n}\cdot\boldsymbol{\tau} P(\boldsymbol{r})} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{1} \end{bmatrix}$$

SU(2) Witten imbedding into **SU(3)**: SU(2) X U(1)

Model baryon state

$$|B\rangle = \sqrt{\dim(\mathcal{R})}(-1)^{J_3 + Y'/2} D_{(Y,T,T_3)(-Y',J,-J_3)}^{(\mathcal{R})*}$$

Constraint for the collective quantization :

$$Y' = -\frac{N_c B}{3}$$

Mixings of baryon states $|B_8\rangle = |8_{1/2}, B\rangle + c_{\overline{10}}^B |\overline{10}_{1/2}, B\rangle + c_{\overline{27}}^B |27_{1/2}, B\rangle,$ $|B_{10}\rangle = |10_{3/2}, B\rangle + a_{\overline{27}}^B |27_{3/2}, B\rangle + a_{\overline{35}}^B |35_{3/2}, B\rangle,$ $|B_{\overline{10}}\rangle = |\overline{10}_{1/2}, B\rangle + d_8^B |8_{1/2}, B\rangle + d_{\overline{27}}^B |27_{1/2}, B\rangle + d_{\overline{35}}^B |\overline{35}_{1/2}, B\rangle$

Collective wave functions are no more in pure states but are given as the linear combinations with higher representations.

Chiral soliton model & Mean field approach

Mixing coefficients

$$\begin{split} c^B_{10} &= c_{10} \begin{bmatrix} \sqrt{5} \\ 0 \\ \sqrt{5} \\ 0 \end{bmatrix}, \ c^B_{27} = c_{27} \begin{bmatrix} \sqrt{6} \\ 3 \\ 2 \\ \sqrt{6} \end{bmatrix}, \ a^B_{27} = a_{27} \begin{bmatrix} \sqrt{15/2} \\ 2 \\ \sqrt{3/2} \\ 0 \end{bmatrix}, \ a^B_{35} = a_{35} \begin{bmatrix} 5/\sqrt{14} \\ 2\sqrt{5/7} \\ 3\sqrt{5/14} \\ 2\sqrt{5/7} \end{bmatrix}, \\ d^B_8 &= d_8 \begin{bmatrix} 0 \\ \sqrt{5} \\ \sqrt{5} \\ 0 \end{bmatrix}, \ d^B_{27} = d_{27} \begin{bmatrix} 0 \\ \sqrt{3/10} \\ 2/\sqrt{5} \\ \sqrt{3/2} \end{bmatrix}, \ d^B_{35} = d_{35} \begin{bmatrix} 1/\sqrt{7} \\ 3/(2\sqrt{14}) \\ 1/\sqrt{7} \\ \sqrt{5/56} \end{bmatrix} \\ c_{\overline{10}} &= -\frac{I_2}{15} (m_s - \hat{m}) \left(\alpha + \frac{1}{5} \gamma \right), \ c_{27} = -\frac{I_2}{25} (m_s - \hat{m}) \left(\alpha - \frac{1}{6} \gamma \right), \\ a_{27} &= -\frac{I_2}{8} (m_s - \hat{m}) \left(\alpha + \frac{5}{6} \gamma \right), \ a_{35} = -\frac{I_2}{24} (m_s - \hat{m}) \left(\alpha - \frac{1}{2} \gamma \right), \\ d_8 &= \frac{I_2}{15} (m_s - \hat{m}) \left(\alpha + \frac{1}{2} \gamma \right), \ d_{27} = -\frac{I_2}{8} (m_s - \hat{m}) \left(\alpha - \frac{7}{6} \gamma \right), \\ d_{\overline{35}} &= -\frac{I_2}{4} (m_s - \hat{m}) \left(\alpha + \frac{1}{6} \gamma \right) \end{split}$$

$$\Delta \overline{M}_{10-8} = \frac{3}{2 I_1}$$
$$\Delta \overline{M}_{\overline{10}-8} = \frac{3}{2 I_2}$$

: moments of inertia ~ Isospin transitions

- : moments of inertia
 - \sim SU(3) flavor transitions

is very important for describing the effects of SU(3) flavor symmetry breaking.

Collective Hamiltonian for flavor symmetry breakings

$$H_{\rm sb} = (m_{\rm s} - \hat{m}) \left(\mathbb{OD}_{88}^{(8)}(\mathcal{R}) + \mathbb{\beta} \hat{Y} + \frac{1}{\sqrt{3}} \mathbb{V} \sum_{i=1}^{3} D_{8i}^{(8)}(\mathcal{R}) \hat{J}_{i} \right)$$

+ $(m_{\rm d} - m_{\rm u}) \left(\frac{\sqrt{3}}{2} \mathbb{OD}_{38}^{(8)}(\mathcal{R}) + \mathbb{\beta} \hat{T}_{3} + \frac{1}{2} \mathbb{V} \sum_{i=1}^{3} D_{3i}^{(8)}(\mathcal{R}) \hat{J}_{i} \right)$

SU(3) flavor symmetry breaking + Isospin symmetry breaking

1. the very same set of dynamical model-parameters allows us

to calculate the physical observables of all SU(3) baryons regardless of different

SU(3) flavor representations of baryons, namely octet, decuplet, antidecuplet, and so on.

2. these dynamical **model-parameters** can be adjusted to the experimental data of the baryon octet which are well established with high precisions.

Expressions of baryon masses

$$[8] M_{N} = \overline{M}_{8} + c^{(1)} + \frac{1}{5} \left(c^{(8)} + \frac{4}{9} c^{(27)} \right) T_{3} + \frac{3}{5} \left(c^{(8)} + \frac{2}{27} c^{(27)} \right) \left(T_{3}^{2} + \frac{1}{4} \right) (\Delta M)_{EN}$$

$$\xrightarrow{-(m_{d} - m_{u}) (\delta_{1} - \delta_{2}) T_{3} - (m_{s} - \hat{m}) (\delta_{1} + \delta_{2}), (\Delta M)_{H}} \\ \xrightarrow{-(m_{d} - m_{u}) (\delta_{1} - \delta_{2}) T_{3} - (m_{s} - \hat{m}) (\delta_{1} + \delta_{2}), (\Delta M)_{H}} \\ \xrightarrow{-(m_{d} - m_{u}) (\delta_{1} - \delta_{2}) T_{3} - (m_{s} - \hat{m}) (\delta_{1} + \delta_{2}), (\Delta M)_{H}} \\ \xrightarrow{-(m_{d} - m_{u}) (\delta_{1} - \frac{3}{20} \gamma, (\Delta M)_{H}} \\ \xrightarrow{-(m_{d} - \frac{1}{10} \alpha - \frac{3}{20} \gamma, (\Delta M)_{H}} \\ \xrightarrow{-(m_{d} - \frac{1}{10} \alpha - \frac{3}{20} \gamma, (\delta_{1} - \frac{1}{4} (c^{(8)} - \frac{4}{21} c^{(27)}) + 2 (m_{s} - \hat{m}) (\delta_{1} - \frac{3}{4} \delta_{2}) \\ \xrightarrow{-(m_{d} - \frac{1}{20} \alpha, \beta, \gamma)} \\ \xrightarrow{-(m_{d} - \frac{1}{20} \alpha, \beta, \gamma)} \\ \xrightarrow{-(m_{d} - \frac{1}{20} \alpha, \beta, \gamma)}$$

$$\begin{bmatrix} \mathbf{\bar{10}} \end{bmatrix} \quad M_{\Theta^+} = \overline{M}_{\mathbf{\bar{10}}} + c^{(1)} + \frac{1}{4} \left(c^{(8)} - \frac{4}{21} c^{(27)} \right) - 2 \left(m_s - \hat{m} \right) \delta_3,$$

$$M_{N^*} = \overline{M}_{\mathbf{\bar{10}}} + c^{(1)} + \frac{1}{4} \left(c^{(8)} - \frac{32}{63} c^{(27)} \right) T_3 + \frac{1}{4} \left(c^{(8)} + \frac{8}{63} c^{(27)} \right) \left(T_3^2 + \frac{1}{4} \right) - (m_d - m_u) \delta_3 T_3 - (m_s - \hat{m}) \delta_3,$$

where $\delta_3 = -\frac{1}{8} \alpha - \beta + \frac{1}{16} \gamma.$ $\sim \alpha, \beta, \gamma$

Within the framework of SM, mass from LEPS (not from DIANA) is consistent with mass.

Chiral soliton model & Mean field approach

Baryon antidecuplet masses

 $\Xi_{3/2}^{--}$ -3/2

 2024.37 ± 10.53

		1	Y					
		2						
	•	• 1	•		•			
-2	-1	0		1		2	\rightarrow T_3	
		• -1	•				-	
		-2 •						

[10] = D(3,0)

Barvor	dec	uplet	masse

 $[\overline{10}] = D(0,3)$

Mass	[MeV]	T_3	Y	$\operatorname{Exp.}$	Predicted
	Δ^{++}	3/2			1244.1 ± 0.6
Μ.	Δ^+	1/2	1	1991 1999	1243.8 ± 0.4
$IVI\Delta$	Δ^0	-1/2	T	1231 - 1233	1244.9 ± 0.4
	Δ^{-}	-3/2			1247.3 ± 0.5
	Σ^{*+}	1		$1382.8 \pm 0.4^{*}$	1383.3 ± 0.4
M_{Σ^*}	Σ^{*0}	0	0	$1383.7 \pm 1.0^{*}$	1384.3 ± 0.4
	Σ^{*-}	-1		$1387.2 \pm 0.5^{*}$	1386.8 ± 0.4
$M_{\Xi^{*0}}$	Ξ^{*0}	1/2	1	1531.80 ± 0.32	1523.8 ± 0.4
	[I] *	-1/2	-1	1535.0 ± 0.6	1526.2 ± 0.4
M_{Ω^-}	Ω^{-}	0	-2	1672.45 ± 0.29	Input

Mass of new narrow structure can be described by eikosiheptaplet nucleon

Decay Widths

In the very same way,

widths of strong and radiative decays can be estimated.

Collective operators of axial-vector and magnetic moment in a chiral soliton model

 $\hat{g}_1 = \hat{g}_1^{(0)} + \hat{g}_1^{(1)},$ $\hat{\mu} = \hat{\mu}^{(0)} + \hat{\mu}^{(1)},$

where

$$\hat{g}_{1}^{(0)} = a_{1}D_{\varphi3}^{(8)} + a_{2}d_{3bc}D_{\varphib}^{(8)}\hat{J}_{c} + \frac{a_{3}}{\sqrt{3}}D_{\varphi8}^{(8)}\hat{J}_{3}, \hat{g}_{1}^{(1)} = \frac{a_{4}}{\sqrt{3}}d_{pq3}D_{\varphip}^{(8)}D_{8q}^{(8)} + a_{5}\left(D_{\varphi3}^{(8)}D_{88}^{(8)} + D_{\varphi8}^{(8)}D_{83}^{(8)}\right) + a_{6}\left(D_{\varphi3}^{(8)}D_{88}^{(8)} - D_{\varphi8}^{(8)}D_{83}^{(8)}\right), \hat{\mu}^{(0)} = w_{1}D_{Q3}^{(8)} + w_{2}d_{3bc}D_{Qb}^{(8)}\hat{J}_{c} + \frac{w_{3}}{\sqrt{3}}D_{Q8}^{(8)}\hat{J}_{3}, \hat{\mu}^{(1)} = \frac{w_{4}}{\sqrt{3}}d_{pq3}D_{Qp}^{(8)}D_{8q}^{(8)} + w_{5}\left(D_{Q3}^{(8)}D_{88}^{(8)} + D_{Q8}^{(8)}D_{83}^{(8)}\right) + w_{6}\left(D_{Q3}^{(8)}D_{88}^{(8)} - D_{Q8}^{(8)}D_{83}^{(8)}\right).$$

values from hyperon semi-leptonic decays of Octet baryons values from magnetic moments of Octet baryons

Magnetic moments for baryon decuplet (in units of μ_N)

B_{10}	Exp.	$\mu_{B_{10}}^{(0)} \left(\mathcal{O}(m_s^0) \right)$	$\mu_{B_{10}}^{(\mathrm{op})}\left(\mathcal{O}(m_s^1)\right)$	$\mu_{B_{10}}^{(\mathrm{wf})}\left(\mathcal{O}(m_s^1)\right)$	$\mu_{B_{10}}^{(\mathrm{total})}$
Δ^{++}	3.7 - 7.5	4.957 ± 0.053	0.414 ± 0.018	0.033 ± 0.002	5.405 ± 0.057
Δ^+	$2.7^{+1.0}_{-1.3}\pm1.5\pm3$	2.479 ± 0.027	0.040 ± 0.003	0.061 ± 0.011	2.580 ± 0.036
Δ^0		0	-0.334 ± 0.019	0.090 ± 0.021	-0.244 ± 0.028
Δ^{-}		-2.479 ± 0.027	-0.708 ± 0.037	0.118 ± 0.031	-3.068 ± 0.042
Σ^{*+}		2.479 ± 0.027	0.253 ± 0.022	0.035 ± 0.003	2.767 ± 0.033
Σ^{*0}		0	-0.040 ± 0.003	0.062 ± 0.009	0.022 ± 0.010
Σ^{*-}		-2.479 ± 0.027	-0.334 ± 0.019	0.090 ± 0.021	-2.723 ± 0.025
Ξ^{*0}		0	0.253 ± 0.022	0.035 ± 0.003	0.288 ± 0.022
[I] *-		-2.479 ± 0.027	0.040 ± 0.003	0.061 ± 0.011	-2.377 ± 0.020
Ω^{-}	-2.02 ± 0.05	-2.479 ± 0.027	0.414 ± 0.018	0.033 ± 0.002	-2.031 ± 0.032

mass splitting analysis

GS Yang et al., Phys. Rev. D 70, 114002 (2004)

Transition magnetic moments (in units of μ_N)

Since the magnetic dipole transitions (M1) are experimentally dominant over the electric quadrupole transitions (E2) in hyperon radiative decays, one can neglect the E2 transitions.

$$\Gamma(B_{\overline{1}0} \to B_8 \gamma) = 4\alpha_{\rm EM} \frac{E_{\gamma}^3}{(M_8 + M_{\overline{1}0})^2} \left(\frac{\mu_{B_8 B_{\overline{1}0}}}{\mu_N}\right)^2,$$

$$\Gamma(B_{10} \to B_8 \gamma) = \frac{\alpha_{\rm EM}}{2} \frac{E_{\gamma}^3}{M_8^2} \left(\frac{\mu_{B_8 B_{10}}}{\mu_N}\right)^2,$$

GS Yang et al., Phys. Rev. D 71, 094023 (2005)

Radiative decay widths of states

$$\frac{\Gamma_{\gamma} \left[n_{\overline{\mathbf{10}}} \to n \right]}{\Gamma_{\gamma} \left[p_{\overline{\mathbf{10}}} \to p \right]} = 8.62 \pm 3.45.$$

$$\frac{\Gamma_{\gamma} \left[p_{\mathbf{27}} \to p \right]}{\Gamma_{\gamma} \left[n_{\mathbf{27}} \to n \right]} = 3.76 \pm 0.64.$$

GS Yang, HCh Kim, arXiv:1809.07489

For, the neutron anomaly can be explained by this ratio.

On the contrary,

is more likely to be found in photoproduction off the **proton target**

From hyperon semileptonic decays of octet baryons, values of are determined. Employing the generalized Goldberger-Treiman relation, meson-baryon coupling constants are obtained.

Decay modes	$\Gamma_i^{(0)}$	$\Gamma_i^{(\text{total})}$	Г	Γ(Exp.) [2]
$\Delta \to N\pi$	75.98 ± 1.01	88.58	± 1.31	116–120
$\begin{array}{l} \Sigma^{*+} \to \Sigma^{0} \pi^{+} \\ \Sigma^{*+} \to \Sigma^{+} \pi^{0} \\ \Sigma^{*+} \to \Lambda \pi^{+} \end{array}$	2.59 ± 0.03 3.17 ± 0.05 29.68 ± 0.26	3.22 ± 0.06 2.62 ± 0.05 30.41 ± 0.33	36.25 ± 0.42	36.0 ± 0.7
$\begin{array}{l} \Sigma^{*0} \rightarrow \Sigma^{0} \pi^{0} \\ \Sigma^{*0} \rightarrow \Sigma^{+} \pi^{-} \\ \Sigma^{*0} \rightarrow \Sigma^{-} \pi^{+} \\ \Sigma^{*0} \rightarrow \Lambda \pi^{0} \end{array}$	$\begin{array}{c} 0 \\ 3.61 \pm 0.11 \\ 2.78 \pm 0.1 \\ 31.15 \pm 0.47 \end{array}$	$\begin{array}{c} 0 \\ 2.98 \pm 0.1 \\ 2.30 \pm 0.09 \\ 31.92 \pm 0.52 \end{array}$	37.21 ± 0.69	36 ± 5
$\begin{array}{l} \Sigma^{*-} \to \Sigma^{-} \pi^{0} \\ \Sigma^{*-} \to \Sigma^{0} \pi^{-} \\ \Sigma^{*-} \to \Lambda \pi^{-} \end{array}$	3.50 ± 0.06 3.64 ± 0.06 31.50 ± 0.30	2.89 ± 0.06 3.01 ± 0.06 32.28 ± 0.37	38.18 ± 0.48	39.4 ± 2.1
$\begin{array}{l} \Xi^{*0} \rightarrow \Xi^0 \pi^0 \\ \Xi^{*0} \rightarrow \Xi^- \pi^+ \end{array}$	4.76 ± 0.05 7.61 ± 0.08	$4.33 \pm 0.06 \\ 6.93 \pm 0.10$	11.26 ± 0.17	9.1 ± 0.5
$\begin{array}{l} \Xi^{*-} \to \Xi^{-} \pi^{0} \\ \Xi^{*-} \to \Xi^{0} \pi^{-} \end{array}$	$\begin{array}{c} 4.76 \pm 0.05 \\ 8.20 \pm 0.13 \end{array}$	$\begin{array}{c} 4.33 \pm 0.06 \\ 8.68 \pm 0.16 \end{array}$	13.01 ± 0.21	$9.9^{+1.7}_{-1.9}$

GS Yang, HCh Kim, Phys. Rev. C **92** 035206 (2015) GS Yang, HCh Kim, Phys. Lett. B **785** 434 (2018)

Within the framework of SM, mass from LEPS is consistent with decay width from DIANA.

The axial-vector operator for describing the strong decay widths of baryons

$$\hat{g}_{1}^{(0)} = (a_{1}D_{\varphi 3}^{(8)} + a_{2}d_{3bc}D_{\varphi b}^{(8)}\hat{J}_{c} + (a_{3})\sqrt{3}D_{\varphi 8}^{(8)}\hat{J}_{3},$$

In the limit of small soliton size (\rightarrow),

GS Yang, HCh Kim, M Praszalowicz, M Polyakov., Phys. Rev. D 96 094021 (2017)

Strong decay widths

Why the decay width of is extremely narrow?

In the limit of small soliton size (\rightarrow),

$$\Gamma_{10 \to 8+\varphi} \sim \left(a_1 - \frac{1}{2}a_2\right)^2$$

where

$$\Gamma_{\Theta NK} = \frac{\left| \overrightarrow{p} \right|^3}{2 \pi f_K^2} \frac{M_N}{M_\Theta} \frac{1}{60} \left(a_1 + a_2 + \frac{1}{2} a_3 \right)^2$$

where !

Strong decay widths of antidecuplet baryons should be very small !

Taking into account **the large limit** and model structure in the **small soliton limit**, strong decay widths of **Heavy baryons** can be estimated !

light baryons ()

Singly heavy baryons ()

Theoretical Framework Hamiltonian for Heavy baryons

Mean meson field valence quarks

$$H_{\mathrm{br}} = lpha D_{88}^{(8)} + eta \hat{Y} + rac{\gamma}{\sqrt{3}} \sum_{i=1}^{3} D_{8i}^{(8)} \hat{J}_i,$$

where

Masses of Heavy baryons

\mathcal{R}^Q_J	\boldsymbol{B}_{c}	Mass	Experiment [17]	Deviation ξ_c
5 c	Λ_c	2272.5 ± 2.3	2286.5 ± 0.1	-0.006
$S_{1/2}^{\circ}$		2476.3 ± 1.2	2469.4 ± 0.3	0.003
	Σ_c	2445.3 ± 2.5	2453.5 ± 0.1	-0.003
$6_{1/2}^{c}$	$[i]_c$	2580.5 ± 1.6	2576.8 ± 2.1	0.001
1/2	Ω_c	2715.7 ± 4.5	2695.2 ± 1.7	0.008
	Σ_c^*	2513.4 ± 2.3	2518.1 ± 0.8	-0.002
$6^{c}_{3/2}$	$\begin{bmatrix} I \\ I \end{bmatrix}_{\mathcal{C}}^{*}$	2648.6 ± 1.3	2645.9 ± 0.4	0.001
572	Ω^*_c	2783.8 ± 4.5	2765.9 ± 2.0	0.006
\mathcal{R}^Q_J	B_b	Mass	Experiment [17]	Deviation ξ_b
āh	Λ_b	5599.3 ± 2.4	5619.5 ± 0.2	-0.004
$S_{1/2}^{o}$	Ξ_b	5803.1 ± 1.2	5793.1 ± 0.7	0.002
	Σ_b	5804.3 ± 2.4	5813.4 ± 1.3	-0.002
$6^{b}_{1/2}$	Ξ_b'	5939.5 ± 1.5	5935.0 ± 0.05	0.001
	0	60717 + 15	60190 ± 10	0.004
	\mathbf{SZ}_b	$60/4.7 \pm 4.5$	0048.0 ± 1.9	0.004
	Σ_b^*	6074.7 ± 4.3 5824.6 ± 2.3	5833.6 ± 1.3	-0.002
6 ^b _{3/2}	Σ_b^* Ξ_b^*	6074.7 ± 4.3 5824.6 ± 2.3 5959.8 ± 1.2	$ \begin{array}{r} 6048.0 \pm 1.9 \\ 5833.6 \pm 1.3 \\ 5955.3 \pm 0.1 \\ \underline{} \\ \end{array} $	-0.002 0.001

Yang et al., Phys. Rev. D 94 (2016) 071502 (RAPID COMM.)

Strong decay widths

$$\hat{g}_{1}^{(0)} = \underbrace{a_{1}}D_{\varphi 3}^{(8)} + \underbrace{a_{2}}d_{3bc}D_{\varphi b}^{(8)}\hat{J}_{c} + \underbrace{a_{3}}{\sqrt{3}}D_{\varphi 8}^{(8)}\hat{J}_{3},$$

$$= \left[\underline{M_{3}} - \frac{2iQ_{12}}{I_{1}}\right]D_{X3}^{(8)} + \left[-\frac{4M_{44}}{I_{2}}\right]d_{pq3}D_{Xp}^{(8)}\hat{J}_{q} + \left[-\frac{2M_{83}}{I_{1}}\right]\frac{1}{\sqrt{3}}D_{X8}^{(8)}\hat{J}_{3} + \cdots$$

where

$$M_{3, \text{val}} = \underbrace{N_{c}}_{v} \langle v | \gamma_{0} \gamma_{3} \gamma_{5} \lambda_{3} | v \rangle,$$

$$Q_{bc, \text{val}} = \underbrace{\frac{N_{c}}{2}}_{2} \sum_{n} \frac{\langle n | \sigma_{3} \lambda_{b} | v \rangle \langle v | \lambda_{c} | n \rangle}{E_{n} - E_{v}} \text{sign} E_{n},$$

$$M_{bc} = \underbrace{\frac{N_{c}}{4}}_{n,m} \sum_{n,m} \langle n | \sigma_{3} \lambda_{b} | m \rangle \langle m | \lambda_{c} | n \rangle \frac{1}{2} \frac{\text{sign} (E_{n} - \mu) - \text{sign} (E_{m} - \mu)}{E_{n} - E_{m}}$$

$$N_{c} - 1$$

For heavy baryons

$$M_{3, \text{val}} = \frac{N_c - 1}{N_c} N_c \langle v | \gamma_0 \gamma_3 \gamma_5 \lambda_3 | v \rangle$$
 from octet baryons

TABLE III. $\Omega_c(\overline{15}_1, 1/2)$ partial and total decay widths in MeV. Experimental value is from the LHCb measurement [2].

#	3050 MeV Decay	This work	Exp.
	$\Omega_c(\overline{15}_1, 1/2) \to \Xi_c(\overline{3}_0, 1/2) + K$	0.339	
	$\Omega_c(\overline{15}_1, 1/2) \to \Omega_c(6_1, 1/2) + \pi$	0.097	
	$\Omega_c(\overline{15}_1, 1/2) \to \Omega_c(6_1, 3/2) + \pi$	0.045	
9	Total	0.48	$0.8\pm0.2\pm0.1$

TABLE V. Predictions in MeV for the partial and total decay widths of explicitly exotic $\Xi_c^{3/2}(\overline{15}_1, J)$.

	$\Xi_c^{s_i}$
TABLE IV. $\Omega_c(\overline{15}_1, 3/2)$ partial and total decay widths in MeV.	$\Xi_c^{3/2}$
Experimental value is from the LHCb measurement [2].	$\Xi_c^{3/2}$

#3	3119 MeV Decay	This work	Exp.
	$\Omega_c(\overline{15}_1, 3/2) \to \Xi_c(\overline{3}_0, 1/2) + K$	0.848	
	$\Omega_c(\overline{15}_1, 3/2) \to \Xi_c(6_1, 1/2) + K$	0.009	• • •
	$\Omega_c(\overline{15}_1, 3/2) \to \Omega_c(6_1, 1/2) + \pi$	0.169	
	$\Omega_c(\overline{15}_1, 3/2) \to \Omega_c(6_1, 3/2) + \pi$	0.096	•••
10	Total	1.12	$1.1\pm0.8\pm0.4$

Decay	J = 1/2	J = 3/2
$\Xi_c^{3/2}(\overline{15}_1, J) \to \Xi_c(\bar{3}_0, 1/2) + \pi$	1.67	2.49
$\Xi_c^{3/2}(\overline{15}_1, J) \to \Xi_c(6_1, 1/2) + \pi$	0.045	0.079
$\Xi_c^{3/2}(\overline{15}_1, J) \to \Xi_c(6_1, 3/2) + \pi$	0.022	0.046
$\Xi_c^{3/2}(\overline{15}_1, J) \to \Sigma_c(6_1, 1/2) + K$		0.019
Total	1.74	2.64
	2931 MeV	3000 MeV

GS Yang, HCh Kim, M Praszalowicz, M Polyakov., Phys. Rev. D 96 094021 (2017)

SUMMARY

- Assuming that the valence quarks are bound by the pion mean fields, we can regard the nucleon as a chiral soliton.
- The framework of this study are very successful for describing static properties of decuplet baryons, such as mass, magnetic moment, transition magnetic moments, widths of radiative and strong decays.
- Due to the SU(3) structure, we show that strong decay widths of antidecuplet baryons should be small. Nucleon-like states of antidecuplet and eikosiheptaplet can be strong candidates of new narrow nucleon states and, respectively.
- Dynamical parameters and flavor quantum numbers of the collective operators and wave functions are modified for **mean field**.
- We have obtained excellent description of physical observables of heavy baryons (Masses, Widths of strong and radiative decays)
- It is shown that **light quarks** govern their structure of singly heavy baryons.

