

Inha University, Republic of Korea

Instanton Effects on the Charmonium Spectra

Ulugbek Yakhshiev in collaboration with H.C.Kim (Inha University), E.Hiyama (RIKEN)

Talk @ Korea-Japan Joint Workshop "The Present and the Future in Hadron Physics at J-PARC" March 4-5, 2019, Busan, Korea

Content

Charmonium

- Phenomenological Potential Models
- Features of Strong Interactions at Low Energies
- Instanton Potential
- Potential Including Instanton Effects
- Charmonium States Including Instanton Effects
- Summary and Outlook

Charmonium

Charmonium spectrum

- Below $D\overline{D}$ threshold (Region I "low" energies)
- Above $D\bar{D}$ threshold (Region II "high" energies)

Charmonium

Interesting features

- Region I (potential models could be applied)
 - transitions are mainly EM type
 - two body non-relativistic system
 - one has readily the Schrodinger approach
- Region II (field-theoretical approaches seem to be more favourable)
 - the light degrees of freedom are more involved
 - meson molecules
 - diquark-antidiquark
 - tetra-quark picture
 - etc

- Light-light quark sector
 - computed fully in a non-perturbative way
 - only available general method is lattice QCD
 - relativistic models should be constructed
- Light-heavy quark sector
 - light quarks are fully relativistic
 - heavy quarks are moving slowly (v/c expansion is valid - Nonrelativistic QCD approach)
- Heavy-heavy quark sector
 - static $Q\bar{Q}$ potential approach is good approximation

 Static Coulomb-type potential based on perturbative one gluon exchange

$$V^{(\text{OGE})}(r) = -\frac{4\alpha_s(p^2)}{3r}$$

$$\alpha_s(p^2) = \frac{4\pi}{\beta_0} \frac{1}{\ln(p^2/\Lambda_{\text{QCD}}^2)}, \qquad \beta_0 = \frac{11N_c - 2N_f}{3}$$

Confining potential has fully phenomenological nature

$$V^{(\text{conf})}(r) = \kappa r, \qquad \kappa \text{ is string constant}$$

 Leading order central potential is a sum of scalar (S) and vector (V) exchange terms

$$V_C(r) = V^{(\text{conf})}(r) + V^{(\text{OGE})}(r) \equiv V_S(r) + V_V(r)$$

 Spin-dependent parts appear as the next-to-leading order corrections

 $V_{\rm sd}(r) = V_{SS}(r)(\mathbf{S}_Q \cdot \mathbf{S}_{\bar{Q}}) + V_{LS}(r)(\mathbf{L} \cdot \mathbf{S}) + V_T(r)\{3(\mathbf{S}_Q \cdot \mathbf{n})(\mathbf{S}_{\bar{Q}} \cdot \mathbf{n}) - \mathbf{S}_Q \cdot \mathbf{S}_{\bar{Q}}\}$

$$\begin{aligned} V_{SS} &= \frac{1}{3m_Q^2} \nabla^2 V_V \\ V_{LS} &= \frac{1}{2m_Q^2 r} \left(3 \frac{\mathrm{d}V_V}{\mathrm{d}r} - \frac{\mathrm{d}V_S}{\mathrm{d}r} \right) \\ V_T &= \frac{1}{6m_Q^2} \left(\frac{\mathrm{d}^2 V_V}{\mathrm{d}r^2} - \frac{1}{r} \frac{\mathrm{d}V_V}{\mathrm{d}r} \right) \end{aligned}$$

 Full potential containing a confining potential and a Coulombtype potential based on perturbative one gluon exchange

$$V_C(r) = \kappa r - \frac{4\alpha_s}{3r}$$

$$V_{SS}(r) = \frac{32\pi\alpha_s}{9m_Q^2}\delta_\sigma(r)$$

$$V_{LS}(r) = \frac{1}{2m_Q^2} \left(\frac{4\alpha_s}{r^3} - \frac{\kappa}{r}\right)$$

$$V_T(r) = \frac{4\alpha_s}{3m_Q^2 r^3}$$

$$\delta_\sigma(r) = \left(\frac{\sigma}{\sqrt{\pi}}\right)^3 e^{-\sigma^2 r^2}$$

Fit to the data gives: $\kappa = 0.1425 \,\mathrm{GeV}^2$ $\alpha_s = 0.5461,$ $\sigma = 1.0946 \,\mathrm{GeV}$ $m_c = 1.4794 \,\mathrm{GeV}$ (Referred as NA)

[T. Barnes, S. Godfrey, E.S. Swanson, PRD72 (2005)]

Comparison with the Lattice QCD results (central potential)

From [G.S. Bali, K.Schilling, A. Wachter, arXiv:hep-lat/9506017]

TABLE I. Parameters of the nonrelativistic potential models: NR corresponds to the potential model in Ref. [10] where *eleven* charmonium states are used as an input, NR4 describes the present work with the potential parameters corresponding to the *four* charmonium states as an input, respectively.

The model	m_c [GeV]	$lpha_s$ [GeV]	κ $[{ m GeV}^2]$	σ [GeV]
NR NR4	$1.4794 \\ 1.4863$	$0.5461 \\ 0.5525$	$0.1425 \\ 0.1433$	$1.0946 \\ 1.1286$

[UY, to be published]

TABLE II. Experimental and theoretical spectrum of $c\bar{c}$ states. All energy states are given in MeV and the output results are rounded up to 1 MeV. Authors of NR model in Ref. [10] used 11 input states and their values are shown in the second column, respectively. To reproduce NR4 results in this work only 4 states are used as an input, and their values are shown in the fourth column.

State	Ref. [10]	This work	Exp. [13]
	Input NR	Input NR4	
$J/\psi(1^3\mathrm{S}_1)$	3097 3090	3097 3098	3096.900 ± 0.006
$\eta_c(1^1\mathrm{S}_0)$	2979 2982	2984 2983	2983.9 ± 0.5
$\psi(2^3S_1)$	3686 3672	3686 3684	3686.097 ± 0.025
$\eta_c(2^1\mathrm{S}_0)$	3638 3630	3638 3640	3637.6 ± 1.2
$\psi(3^3S_1)$	4040 4072	4085	4039 ± 1
$\psi(4^3S_1)$	4415 4406	4421	4421 ± 4
$\chi_{c2}(1^3\mathrm{P}_2)$	3556 3556	3561	3556.17 ± 0.07
$\chi_{c1}(1^3\mathrm{P}_1)$	3511 3505	3511	3510.67 ± 0.05
$\chi_{c0}(1^{3}\mathrm{P}_{0})$	3415 3424	3414	3414.71 ± 0.30
$h_c(1^1\mathrm{P}_1)$	3516	3527	3525.38 ± 0.11
$\chi_{c2}(2^3\mathrm{P}_2)$	3972	3979	3927.2 ± 2.6
$\chi_{c0}(2^3\mathrm{P}_0)$	3852	3881	3862^{+26+40}_{-32-13}
$\psi_2(1^3\mathrm{D}_2)$	3800	3813	3822.2 ± 1.2
$\psi(1^{3}\mathrm{D}_{1})$	3770 3785	3794	3778.1 ± 1.2
$\psi(2^3D_1)$	4159 4142	4153	4191 ± 5

[UY, to be published]

Origin of potential parameters

The model	m_c [GeV]	$lpha_s$ [GeV]	κ [GeV ²]	σ [GeV]	
NR NR4	$1.4794 \\ 1.4863$	$\begin{array}{c} 0.5461 \\ 0.5525 \end{array}$	$0.1425 \\ 0.1433$	$\begin{array}{c} 1.0946 \\ 1.1286 \end{array}$	
	Dynamical quark mass	Defined by the energy range	Phenomenological parameter	"Technical" (smearing) parameter	

Dynamical quark mass (contribution due to dynamics)

$$\begin{array}{l} \Delta m_c = m_c - m_c^{(current)} \\ \approx 200 \ {\rm MeV} \end{array} \begin{array}{c} {\color{red} \begin{subarray}{c} \begin{subarra}{c} \begin{subarray}{c} \begin{subarray}{c} \begin{subarray}{$$

Strong coupling constant

$$\alpha_s(m_c^{(current)}) \approx \alpha_s(m_c) \approx 0.4$$

Fitted values (for comparison)

The model	m_c [GeV]	$lpha_s \ [{ m GeV}]$	κ $[GeV^2]$	σ [GeV]
NR NR4	$1.4794 \\ 1.4863$	$\begin{array}{c} 0.5461 \\ 0.5525 \end{array}$	$\begin{array}{c} 0.1425 \\ 0.1433 \end{array}$	$1.0946 \\ 1.1286$

QCD Lagrangian (defines the dynamics)

$$\mathcal{L} = \bar{\psi}_{\alpha} (i \not\!\!D_{\alpha\beta} - m_{\alpha\beta}) \psi_{\beta} - \frac{1}{4} G^{a}_{\mu\nu} G^{\mu\nu,a} D_{\mu} = \partial_{\mu} + ig t^{a} A^{a}_{\mu} G^{a}_{\mu\nu} = \partial_{\mu} A^{a}_{\nu} - \partial_{\nu} A^{a}_{\mu} - g f^{abc} A^{b}_{\mu} A^{c}_{\nu}$$

is gauge invariant

$$\begin{array}{rccc} \psi & \to & S\psi \\ gA_{\mu} & \to & S(gA_{\mu} - i\partial_{\mu})S^{\dagger} \end{array}$$

- Low energies (non-perturbative methods)
 - Confinement (understood only qualitatively)
 - Chiral symmetry and its spontaneous breakdown
- High energies (perturbative methods)
 - Asymptotic freedom (quark-gluon plasma)

Non-perturbative methods must be related to QCD

Confinement

- Analytically is not proven
- Numerically can be demonstrated by Lattice QCD
- Chiral symmetry
 - Partially restored at high energies and strongly broken at low energies
 - Can be better understood from the analysis of vacuum structure of QCD and the possible fluctuations around the vacuum
- Instanton (example of pseudo-particle like fluctuation)

Vacuum structure

There are topologically nontrivial structures

- stable and with finite energy
- in pure Yang-Mills theory only in 4D space (instanton)
- represent tunnelling transitions between vacuum states

$$N_W = \frac{1}{24\pi^2} \int d^3 \mathbf{x} \; \epsilon^{ijk} \left[(U^{\dagger} \partial_i U) (U^{\dagger} \partial_j U) (U^{\dagger} \partial_k U) \right]$$

Istantons explain the spontaneous chiral symmetry breaking

- Helicity of a light quark flips from instanton to antiinstanton and vice versa
- Quark acquires the dynamical mass *M*(*p*)

P. Bowman, U. Heller, D. Leinweber and A. Williams, hep-lat/0209129

 Evaluation of Wilson-loop for the two Heavy quarks separated at fixed distance in the instanton medium

$$V(R) = \frac{N}{2VN_c} \int d^3 z_I \operatorname{Tr}_c \left[1 - P \exp\left(i \int_{L_1} dx_4 A_{I4}\right) P \exp\left(-i \int_{L_2} dx_4 A_{I4}\right) \right] + (I \to \bar{I})$$

D. Diakonov, V. Petrov, P. Pobylitsa, PLB 226, 372 (1989)

 Spin-dependent parts appear from the next order in the heavy-quark mass expansion

$$V_{Q\bar{Q}}(r) = V(r) + V_{SS}(r)(\mathbf{S}_Q \cdot \mathbf{S}_{\bar{Q}}) + V_{LS}(r)(\mathbf{L} \cdot \mathbf{S}) + V_T(r) \left[3(\mathbf{S}_Q \cdot \mathbf{n})(\mathbf{S}_{\bar{Q}} \cdot \mathbf{n}) - \mathbf{S}_Q \cdot \mathbf{S}_{\bar{Q}} \right].$$

- Spin-spin part
- Spin-orbit part

$$V_{SS}(r) = \frac{1}{3m_Q^2} \nabla^2 V(r),$$

$$V_{LS}(r) = \frac{1}{2m_Q^2 r} \frac{dV(r)}{dr},$$

$$V_T(r) = \frac{1}{3m_Q^2} \left(\frac{1}{r} \frac{dV(r)}{dr} - \frac{d^2 V(r)}{dr^2}\right).$$

• Tensor part

1

• Central part of the $Q\bar{Q}$ Potential can be expressed in terms of the dimensionless function I

So, the spin dependent parts also expressed in terms of I

- The potential is sensitive to the instanton parameters
- There are different sets of parameters
- We discuss three of them, which we used in our calculations
 - Set I phenomenological [E.V. Shuryak, Nucl.Phys. B203 (1982), D.Diakonov, V.Y.Petrov, Nucl.Phys. B245 (1984)]

$$\rho = \frac{1}{3} \,\mathrm{fm}, \qquad \bar{R} = 1 \,\mathrm{fm}$$

 Set IIa - 1/Nc meson-loop contributions in the light quark sector [H.C.Kim, M.Musakhanov, M.Siddikov, Phys.Lett. B633 (2006)]

$$\rho = 0.35 \,\text{fm}, \qquad \bar{R} = 0.856 \,\text{fm}$$

Set IIb - lattice simulations of instanton vacuum [e.g. M.C. Chu, J.M. Grandy, S.Huang, J.W. Negele, Phys.Rev. D49 (1994)]

$$\rho = 0.36 \,\mathrm{fm}, \qquad \bar{R} = 0.89 \,\mathrm{fm}$$

- All above mentioned sets of parameters and some other additional ones coincide with each-other within 10 – 15% uncertainty
- So, one has a comfortable possibility of independent averaging over instanton positions and orientations in the packing parameter value interval

$$\frac{N}{VN_c} \sim \pi^2 \left(\frac{\rho}{\bar{R}}\right) \in [0.1, 0.3]$$

 We note, that our results from Set IIa and Set IIb are close to each-other • The contribution to central part of the $Q\bar{Q}$ Potential from the instantons (for practical purposes, 8 parametric description)

$$\begin{aligned} V_C^{(I)} &= \frac{4\pi\rho^3}{N_c R^4} I\left(\frac{r}{\rho}\right) \\ I(x) &= I_0 \left[1 + \sum_{i=1}^3 a_i x^{2(i-1)} e^{-b_i x^2} + \frac{a_4}{x} \left(1 - e^{-b_4 x^3}\right) \right] \\ I_0 &= -\frac{2\pi^3}{3} \left(J_0(\pi) + \frac{1}{\pi} J_1(\pi) \right) \\ a &= \begin{pmatrix} -1 \\ 0.10184 \\ 0.00064 \\ -1.11267 \end{pmatrix}, \quad b = \begin{pmatrix} 0.25135 \\ 0.70255 \\ 0.18625 \\ 0.04644 \end{pmatrix} \end{aligned}$$

Comparison of the exact solution with the parametrization

- red dashed (exact)
- blue dotted (parametrization)

• Max value of relative error is at $x \to 0$

$$\lim_{x \to 0} \frac{I^{\text{exact}}(x) - I^{\text{param}}(x)}{I^{\text{exact}}(x)} = 1 - I_0(b_1 + a_2 + a_4b_4) \left\{ \frac{\pi^2}{3} \left[\frac{\pi}{16} - J_1(2\pi) \right] \right\}^{-1} = 0.00972$$

• The contribution to central part of the $Q\bar{Q}$ Potential from the instantons

- At large distances it is flattened and if we consider only instanton
 - no confinement
 - no highly excited state

Potential Including Instanton Effects

Reparametrization of the "restricted full potential"

 $V^{(total)} = V^{(phen)} + V^{(I)}$

 m_c – not free parameter

- α_s not free parameter
 - κ free parameter
 - $\sigma-$ free parameter

TABLE I. Parameters corresponding to each model. MWOI represents the model without any instanton contributions, whereas M-I and M-IIb contain them as explained in Ref. [34].

ho	R	$\Delta m_{ m I}$	$lpha_s$	κ	σ
[fm]	[fm]	[GeV]	[GeV]	$[{ m GeV}^2]$	[GeV]
-	-	-	0.2068	0.1746	5.0248
0.33	1.00	0.0676	0.3447	0.1520	0.9331
0.36	0.89	0.1357	0.4588	0.1279	0.5650
	ρ [fm] - 0.33 0.36	$\begin{array}{ccc} \rho & R \\ [fm] & [fm] \\ \hline - & - \\ 0.33 & 1.00 \\ 0.36 & 0.89 \end{array}$	$\begin{array}{cccc} \rho & R & \Delta m_{\rm I} \\ [{\rm fm}] & [{\rm fm}] & [{\rm GeV}] \end{array} \\ \hline - & - & - \\ 0.33 & 1.00 & 0.0676 \\ 0.36 & 0.89 & 0.1357 \end{array}$	$\begin{array}{c cccc} \rho & R & \Delta m_{\rm I} & \alpha_s \\ [{\rm fm}] & [{\rm fm}] & [{\rm GeV}] & [{\rm GeV}] \\ \hline & - & - & 0.2068 \\ 0.33 & 1.00 & 0.0676 & 0.3447 \\ 0.36 & 0.89 & 0.1357 & 0.4588 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Potential Including Instanton Effects

Dynamical quark mass (contribution due to dynamics)

$$\Delta m_c = m_c - m_c^{(current)}$$

Strong coupling constant
 $\alpha_s^{(\text{MWOI})} = 0.4258$ $\alpha_s^{(\text{M}-\text{I})} = 0.4137$ $\alpha_s^{(\text{M}-\text{IIb})} = 0.4029$

Fitted values (for comparison)

The	ρ	R	$\Delta m_{ m I}$	$lpha_s$	κ	σ
model	$[\mathrm{fm}]$	[fm]	[GeV]	[GeV]	$[{ m GeV}^2]$	[GeV]
MWOI	-	-	-	0.2068	0.1746	5.0248
M-I	0.33	1.00	0.0676	0.3447	0.1520	0.9331
M-IIb	0.36	0.89	0.1357	0.4588	0.1279	0.5650

Charmonium States Including Instanton Effects

State	Input	MWOI	M-I	M-IIb	Exp. [50]
$J/\psi(1^3S_1)$	3097	3084	3094	3096	3096.900 ± 0.006
$\eta_c(1^1\mathrm{S}_0)$	2983	3027	2998	2983	2983.9 ± 0.5
$\psi(2^3S_1)$	3686	3635	3656	3675	3686.097 ± 0.025
$\eta_c(2^1 \mathrm{S}_0)$	3640	3590	3615	3638	3637.6 ± 1.2
$\psi(3^3S_1)$	4040	4067	4069	4071	4039 ± 1
$\psi(4^3S_1)$	4415	4443	4422	4398	4421 ± 4
$\chi_{c2}(1^3\mathrm{P}_2)$		3428	3607	3740	3556.17 ± 0.07
$\chi_{c1}(1^3\mathrm{P}_1)$		3437	3589	3715	3510.67 ± 0.05
$\chi_{c0}(1^3\mathrm{P}_0)$		3415	3551	3673	3414.71 ± 0.30
$h_c(1^1\mathrm{P}_1)$		3430	3599	3727	3525.38 ± 0.11
$\chi_{c2}(2^3 P_2)$		3888	4039	4138	3927.2 ± 2.6
$\chi_{c0}(2^3\mathrm{P}_0)$		3866	4006	4098	3862^{+26+40}_{-32-13}
$\psi_2(1^3 D_2)$		3718	3836	3927	3822.2 ± 1.2
$\psi(1^3 D_1)$		3730	3830	3914	3778.1 ± 1.2
$\psi(2^3D_1)$		4131	4241	4303	4191 ± 5

Summary and Outlook

- Instantons contribute to the heavy quark sector too
- Compared to the charm sector, the bottom sector is less sensitive to instantons
- It will be interesting to take into account the gluon propagator renormalization in the instanton media (screened Coulomb type contribution to the potential)

Thank you very much for your attention!