The future of lattice studies in Korea, PKNU, Busan, Korea, 2019/Sep./6

Lattice QCD & QGP

Masakiyo Kitazawa (Osaka U.)

Contents

- **1.** Why lattice is difficult?
- 2. Thermodynamics
- 3. Casimir Effect in SU(3) Yang-Mills
- 4. Dynamics
- 5. Energy-Momentum Tensor in Hadrons
- 6. Correlation Function

7. Machine Learning

Lattice QCD is a powerful tool to study non-perturbative phenomena of QCD?

Yes, but it is not so useful...

Reproducing HIC on the lattice?

Not possible with various fundamental reasons

Difficulties

Too many degrees of freedom
 Ignorance about physical states
 Ignorance about physical operators

Lattice simulations are accessible only to correlation functions of specific operators in Euclidean space-time.

QCD is a Quantum Theory.

Time evolution can be simulated. (Eigenvalue problem would be easier.)

QCD is a Quantum Field Theory

Quantum Field Theory φ(x) at every space-time points are arguments of wave func.

 $\Psi[\psi(x)]$

Functional of ψ So many d.o.f

Numerical simulation of time evolution is too difficult!

Initial Conditions

Initial conditions having physical meaning?

- Vacuum $|0\rangle$
- 1-particle state $a_{p_1}^{\dagger}|0\rangle$ 2-particle state $a_{p_1}^{\dagger}c_{p_2}^{\dagger}|0\rangle$

 $|0\rangle$ Vacuum state: unknown a_n^{\dagger} Creation operators: unknown

Path Integral

Transition amplitudes between two states can be calculated as

 $\langle \phi_2(x), t_2 | \phi_1(x), t_1 \rangle$ $= \lim_{a \to 0} \left[\prod_x \int d\phi(x) \right] e^{iS[\phi(x)]/\hbar}$ $= \int \mathcal{D}\phi e^{iS(\phi)/\hbar}$

Lattice field theory is constructed by the space-time discretization

Problems: ①What are physical states? ②How to carry out path integral numerically?

OFT in Euclidean SpaceTime Action becomes real: Importance sampling $\int \mathcal{D}x e^{iS[x(t)]/\hbar} \int \mathcal{D}x e^{-S_{\rm E}[x(\tau)]/\hbar}$ \Box Vacuum state is created by taking $\tau \rightarrow \pm \infty$ $\int \mathcal{D}x e^{-\int_{-\tau_1}^0 d\tau L[x(\tau)]} \sim e^{-H\tau_1} |x, -\tau_1\rangle \xrightarrow[\tau_1 \to \infty]{} 0\rangle$ $\langle 0|f(\hat{x})|0\rangle \sim \int_{-\infty}^{\infty} \mathcal{D}x f(x)_{\tau=0} e^{-S/\hbar}$

Note: One may apply the periodic BC.

Calculating Operators

Lattice Simulations can calculate vacuum correlation funcs. $\langle 0 | \mathcal{O}(x) | 0
angle$

Calculating Operators

Lattice Simulations can calculate vacuum correlation funcs. $\langle 0 | \mathcal{O}(x) | 0 \rangle$ $\langle 0 | \mathcal{O}_1(x) \mathcal{O}_2(y) | 0
angle$

These are almost everything that lattice simulations can do.

QFT @ Nonzero T

 $Z = \mathrm{Tr}e^{-\beta H} = \sum \langle n | e^{-\beta H} | n \rangle$ $=\int \mathcal{D}\phi e^{-S_T}$

(Anti-)Periodic BC = Nonzero T system

 $\langle \mathcal{O} \rangle_T = \int \mathcal{D} \phi \mathcal{O} e^{-S_T}$

Thermodynamics Energy density: $\langle T_{00} \rangle_T$ Pressure: $\langle T_{11} \rangle_T$ Suzuki,2013; FlowQCD, 2014

New Physics on the Lattice

New operators

New usage of operatorsCleverer measurement

New Environment Nonzero T, magnetic field, boundary conditions, finite density, N_c, N_f, ... Polyakov loop, Wilson loop, $\bar{\psi}\psi, \ \bar{\psi}\Gamma\psi, \ \cdots$ $T_{\mu\nu}$

Energy-Momentum Tensor

All components are important physical observables!

EMT on the Lattice: Conventional

 $\begin{aligned} & \text{Lattice EMT Operator}_{\text{Caracciolo+, 1990}} \\ & T_{\mu\nu} = Z_6 T_{\mu\nu}^{[6]} + Z_3 T_{\mu\nu}^{[3]} + Z_1 \left(T_{\mu\nu}^{[1]} - \left\langle T_{\mu\nu}^{[1]} \right\rangle \right) \\ & T_{\mu\nu}^{[6]} = (1 - \delta_{\mu\nu}) F_{\mu\rho}^a F_{\nu\rho}^a, \ T_{\mu\nu}^{[3]} = \delta_{\mu\nu} \left(F_{\mu\rho}^a F_{\nu\rho}^a - \frac{1}{4} F_{\rho\sigma}^a F_{\rho\sigma}^a \right), \ T_{\mu\nu}^{[1]} = \delta_{\mu\nu} F_{\rho\sigma}^a F_{\rho\sigma}^a \end{aligned}$

\Box Fit to thermodynamics: Z_3, Z_1

Shifted-boundary method: Z₆, Z₃ Giusti, Meyer, 2011; 2013; Giusti, Pepe, 2014~; Borsanyi+, 2018

Multi-level algorithm

effective in reducing statistical error of correlator

Meyer, 2007; Borsanyi, 2018; Astrakhantsev+, 2018

EMT with Gradient Flow "SFtE Method"

New measurement of the renormalized EMT on the lattice. Suzuki 2013; FlowQCD 2014~; WHOT-QCD 2017~

Thermodynamics

direct measurement of expectation values $\langle T_{00} \rangle, \langle T_{ii} \rangle$

Fluctuations and Correlations viscosity, specific heat, ... $\eta = \int_0^\infty dt \langle T_{12}; T_{12} \rangle$

 $c_V \sim \langle \delta T_{00}^2 \rangle$

Hadron Structure

- flux tube / hadrons
- stress distribution

Thermodynamics

Quantum Statistical Mechanics

$$ho = rac{1}{Z} e^{-eta(H-\mu N)}$$
 Density Matrix
 $Z = \mathrm{Tr} e^{-eta(H-\mu N)}$ Partition Function
 $\langle O
angle = \mathrm{Tr}[O
ho]$

Thermodynamics on the Lattice

Thermodynamic Relations

$$\varepsilon = \frac{T^2}{V} \frac{\partial \ln Z}{\partial T} \qquad p = T \frac{\partial \ln Z}{\partial V}$$

Derivative w.r.t. $a \rightarrow V \& 1/T$ changes

$$a\frac{\partial \ln Z}{\partial a} \sim \frac{V}{T}(\varepsilon - 3p)$$

Full QCD, BW; HotQCD (2014)

Thermodynamics of SU(3) YM

Integral method

 Most conventional / established
 Use themodynamic relations Boyd+ 1995; Borsanyi, 2012

 Gradient-flow method
 Take expectation values of EMT FlowQCD, 2014, 2016

 Moving-frame method Giusti, Pepe, 2014~
 Non-equilibrium method
 Use Jarzynski's equality Caselle+, 2016;2018
 Differential method Shirogane+(WHOT-QCD), 2016~

$$p = \frac{T}{V} \ln Z$$
$$T \frac{\partial (p/T^4)}{\partial T} = \frac{\varepsilon - 3p}{T^4}$$

 $\begin{cases} \varepsilon = \langle T_{00} \rangle \\ p = \langle T_{11} \rangle \end{cases}$

SU(3) Thermodynamics: Comparison

Boyd+:1996 / Borsanyi+: 2012

 All results agree well.
 But, the results of integral method has a discrepancy. (Older result looks better...)

Future Study

Thermodynamics in SU(3) YM: Understand discrepancy between various analyses especially in two integral methods.

Invent other methods

Casimir Effect
of SU(3)YM @ T>o

attractive force between two conductive plates

Brown, Maclay 1969

x z y

Brown, Maclay 1969

Brown, Maclay 1969

Thermodynamics on the Lattice

Various Methods

□ Integral, differential, moving frame, non-equilibrium, ... □ rely on thermodynamic relations valid in V→∞ $P = \frac{T}{V} \ln Z$ $sT = \varepsilon + P$ Not applicable to anisotropic systems

UWe employ **Gradient Flow Method** $\varepsilon = \langle T_{00} \rangle$ $P = \langle T_{11} \rangle$ **Components of EMT are directly accessible!**

Pressure Anisotropy @ T≠o

Pressure Anisotropy @ T≠o

MK, Mogliacci, Kolbe, Horowitz, 1904.00241

Free scalar field $\Box L_2 = L_3 = \infty$ \Box Periodic BC Mogliacci+, 1807.07871

Lattice result

Periodic BC
Only t→0 limit
Error: stat.+sys.

Medium near T_c is remarkably insensitive to finite size!

Pressure Anisotropy @ T≠o

MK, Mogliacci, Kolbe, Horowitz, 1904.00241

Free scalar field $\Box L_2 = L_3 = \infty$ \Box Periodic BC Mogliacci+, 1807.07871

Lattice result

Periodic BC
Only t→0 limit
Error: stat.+sys.

Medium near T_c is remarkably insensitive to finite size!
Energy densty / transverse P

Energy Density

Transverse Pressure P_z

HigherT

High-T limit: massless free gluons How does the anisotropy approach this limit?

Difficulties

□ Vacuum subtraction requires large-volume simulations. □ Lattice spacing not available $\rightarrow c_1(t)$, $c_2(t)$ are not determined.

HigherT

High-T limit: massless free gluons How does the anisotropy approach this limit?

Difficulties

□ Vacuum subtraction requires large-volume simulations. □ Lattice spacing not available $\rightarrow c_1(t)$, $c_2(t)$ are not determined.

We study

$$\frac{P_x + \delta}{P_z + \delta}$$

$$\delta = -\frac{1}{4} \sum_{\mu} T^{\rm E}_{\mu\mu}$$

No vacuum subtr. nor Suzuki coeffs. necessary!

 $P_x + \delta$ $\overline{P_z + \delta}$

 $T/T_c \cong 8.1 (\beta = 8.0) / T/T_c \cong 25 (\beta = 9.0)$

Ratio approaches the asymptotic value.
 But, large deviation exists even at T/T_c~25.

Future Study

Why SU(3) YM theory near but above Tc is so insensitive to the existence of the boundary?

Much higher temperatureOther boundary conditions (anti-PBC and etc.)

Dynamics (Real-time Evolution)

Analytic Continuation

Lattice: imaginary time

Dynamics: real time

Real-time info. have to be extracted from the correlation funcs. in imaginary time.

Spectral Function

slope at the origin

 \rightarrow transport coefficients

r(w, p)

Kubo formulae $\eta \sim \lim_{\omega \to 0} \frac{1}{\omega} \rho(\omega)$ • shear viscosity : T_{12} • bulk viscosity : T_{mm} • electric conductivity : J_{ii}

peaks

quasi-particle excitation width ~ decay rate

 ω

Analytic Continuation

Lattice: imaginary time

Dynamics: real time

$$ho(\omega,oldsymbol{k})$$

continuous

$$\tilde{G}(\tau) = \int d\omega \frac{e^{(\beta/2 - \tau)\omega}}{e^{\beta\omega/2} + e^{-\beta\omega/2}} \rho(\omega)$$

Maximum Entropy Method

Asakawa, Nakahara Hatsuda, 2001

"ill-posed problem"

Lattice data

Vector, $T = 1.49T_{\rm c}$, p/T = 0

 10^{-1}

 10^{-2}

(au)

Maximum Entropy Method

Asakawa, Nakahara Hatsuda, 2001

Lattice data ^{10⁴} ^{10⁹} ^{10⁻¹} ^{10⁻²} ^{10⁻³} ^{10⁻⁴} ^{10⁻⁴} ^{10⁻⁴} ^{10⁴} ^{10⁴}

Prior probability

- Shannon-Jaynes entropy
- default model $m(\omega)$

Maximum Entropy Method

Asakawa, Nakahara Hatsuda, 2001

Charmonium SPC

Spectral function of J/ψ Ikeda, Asakawa, MK

Transverse/longitudinal decomposed
 Mass enhancement in medium?

Dispersion Relation of Charmonia

Ikeda, Asakawa, MK PRD 2017

Disp. Rel. in vacuum $E = \sqrt{p^2 + m^2}$

Large mass enhancement at nonzero T.
 Disp. Rel. of J/ψ is unchanged from the vacuum one.

EMT Distribution inside Hadrons

Stress = Force per Unit Area

Stress = Force per Unit Area

Pressure

 $\vec{P} = P\vec{n}$

Stress = Force per Unit Area

Pressure

Generally, F and n are not parallel

Force

Local interaction

Faraday 1839

Maxwell Stress

(in Maxwell Theory)

$$\sigma_{ij} = \varepsilon_0 E_i E_j + \frac{1}{\mu_0} B_i B_j - \frac{1}{2} \delta_{ij} \left(\varepsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right)$$

$$\vec{E} = (E, 0, 0)$$
$$T_{ij} = \begin{pmatrix} -E^2 & 0 & 0 \\ 0 & E^2 & 0 \\ 0 & 0 & E^2 \end{pmatrix}$$

Parallel to field: Pulling
 Vertical to field: Pushing

(in Maxwell Theory)

Definite physical meaning

Distortion of field, line of the field

Propagation of the force as local interaction

Quark-Anti-quark system

Formation of the flux tube \rightarrow confinement

Previous Studies on Flux Tube

 Potential
 Action density
 Color-electric field so many studies...

Cea+ (2012)

Stress Tensor in $Q\overline{Q}$ System

Yanagihara+, 1803.05656 PLB, in press Lattice simulation SU(3) Yang-Mills a=0.029 fm R=0.69 fm t/a²=2.0

pushing

pulling

Definite physical meaning
Distortion of field, line of the field
Propagation of the force as local interaction
Manifestly gauge invariant

SU(3) YM vs Maxwell

SU(3) Yang-Mills (quantum)

Maxwell (classical)

Propagation of the force is clearly different in YM and Maxwell theories!

Stress Distribution on Mid-Plane

From rotational symm. & parity

EMT is diagonalized in Cylindrical Coordinates

$$T_{cc'}(r) = \begin{pmatrix} T_{rr} \\ T_{\theta\theta} \\ T_{zz} \\ T_{44} \end{pmatrix}$$

 $T_{rr} = \vec{e}_r^T T \vec{e}_r$ $T_{\theta\theta} = \vec{e}_{\theta}^T T \vec{e}_{\theta}$

Degeneracy in Maxwell theory

 $\vec{e_r}$

 \bigcirc

 $T_{rr} = T_{\theta\theta} = -T_{zz} = -T_{44}$

Mid-Plane

Degeneracy: T₄₄ ~ T_{zz}, T_{rr} ~ T_{\thetaθ}
 Separation: T_{zz} ≠ T_{rr}
 Nonzero trace anomaly $\sum T_{cc} \neq 0$

Mid-Plane

Degeneracy: T₄₄ ~ T_{zz}, T_{rr} ~ T_{\theta}
 Separation: T_{zz} ≠ T_{rr}
 Nonzero trace anomaly $\sum T_{cc} \neq 0$

Gradient Flow and EMT SFtE Method

Yang-Mills Gradient Flow

□ diffusion equation in 4-dim space
 □ diffusion distance d ~ √8t
 □ "continuous" cooling/smearing
 □ No UV divergence at t>0

Small Flow-Time Expansion

Luescher, Weisz, 2011 Suzuki, 2013

 $\tilde{\mathcal{O}}(t,x) \xrightarrow[t \to 0]{} \sum_{i \to 0} \sum_{i} c_i(t) \mathcal{O}_i^R(x)$

an operator at t>0

*****t

 $\tilde{\mathcal{O}}(t,x)$

t→0 limit

remormalized operators of original theory

Constructing EMT 1 Suzuki, 2013 $\tilde{\mathcal{O}}(t,x) \xrightarrow[t \to 0]{} \sum_{i} c_i(t) \mathcal{O}_i^R(x)$ $\mathcal{\tilde{O}}(t,x)$ Gauge-invariant dimension 4 operators $\begin{cases} U_{\mu\nu}(t,x) = G_{\mu\rho}(t,x)G_{\nu\rho}(t,x) - \frac{1}{4}\delta_{\mu\nu}G_{\mu\nu}(t,x)G_{\mu\nu}(t,x) \\ E(t,x) = \frac{1}{4}\delta_{\mu\nu}G_{\mu\nu}(t,x)G_{\mu\nu}(t,x) \end{cases} \end{cases}$

Constructing EMT

Suzuki, 2013

$$U_{\mu\nu}(t,x) = \alpha_U(t) \left[T^R_{\mu\nu}(x) - \frac{1}{4} \delta_{\mu\nu} T^R_{\rho\rho}(x) \right] + \mathcal{O}(t)$$
$$E(t,x) = \langle E(t,x) \rangle + \alpha_E(t) T^R_{\rho\rho}(x) + \mathcal{O}(t)$$
vacuum subtr.

Remormalized EMT

$$T^{R}_{\mu\nu}(x) = \lim_{t \to 0} \left[c_1(t) U_{\mu\nu}(t, x) + \delta_{\mu\nu} c_2(t) E(t, x)_{\text{subt.}} \right]$$

Perturbative coefficient: Suzuki (2013); Makino, Suzuki (2014); Harlander+ (2018); Iritani, MK, Suzuki, Takaura (2019)

Perturbative Coefficients

Choice of the scale of g²

 $c_1(t) = c_1\left(g^2(\mu(t))\right)$

Previous: $\mu_d(t) = 1/\sqrt{8t}$ Improved: $\mu_0(t) = 1/\sqrt{2e^{\gamma_E}t}$

Harlander+ (2018)

Gradient Flow Method

Take Extrapolation (t,a) \rightarrow (0,0) $\langle T_{\mu\nu}(t) \rangle_{\text{latt}} = \langle T_{\mu\nu}(t) \rangle_{\text{phys}} + \begin{bmatrix} C_{\mu\nu}t \\ D_{\mu\nu}t \\ t \end{bmatrix} + \begin{bmatrix} 0 \\ t \end{bmatrix} + \cdots$ O(t) terms in SFTE lattice discretization

Iritani, MK, Suzuki, Takaura, PTEP 2019

□ t dependence becomes milder with higher order coeff.
 □ Better t→o extrapolation

Systematic error: μ_0 or μ_d , uncertainty of Λ ($\pm 3\%$), fit range Extrapolation func: linear, higher order term in c_1 (~ g^6)

Double Extrapolation $t \rightarrow 0, a \rightarrow 0$

$$\langle T_{\mu\nu}(t) \rangle_{\text{latt}} = \langle T_{\mu\nu}(t) \rangle_{\text{phys}} + \begin{bmatrix} C_{\mu\nu}t \\ C_{\mu\nu}t \end{bmatrix} + \begin{bmatrix} D_{\mu\nu}(t)\frac{a^2}{t} \end{bmatrix}$$

O(t) terms in SFTE lattice discretization

Continuum extrapolation $\langle T_{\mu\nu}(t) \rangle_{\text{cont}} = \langle T_{\mu\nu}(t) \rangle_{\text{lat}} + C(t)a^2$

Small t extrapolation $\langle T_{\mu\nu} \rangle = \langle T_{\mu\nu}(t) \rangle + C't$

Iritani, MK, Suzuki, Takaura, PTEP 2019

□ t dependence becomes milder with higher order coeff.
 □ Better t→o extrapolation

Systematic error: μ_0 or μ_d , uncertainty of Λ (±3%), fit range Extrapolation func: linear, higher order term in c_1 (~g⁶)

Effect of Higher-Order Coeffs.

Systematic error: μ_0 or μ_d , Λ , t $\rightarrow 0$ function, fit range

More stable extrapolation with higher order $c_1 \& c_2$ (pure gauge)

Gradient Flow for Fermions

$$\partial_t \psi(t, x) = D_\mu D_\mu \psi(t, x)$$
$$\partial_t \bar{\psi}(t, x) = \psi(t, x) \overleftarrow{D}_\mu \overleftarrow{D}_\mu$$
$$D_\mu = \partial_\mu + A_\mu(t, x)$$

Luscher, 2013 Makino, Suzuki, 2014 Taniguchi+ (WHOT) 2016; 2017

Not "gradient" flow but a "diffusion" equation.

Energy-momentum tensor from SFTE Makino, Suzuki, 2014

EMT in QCD

$$T_{\mu\nu}(t,x) = c_1(t)U_{\mu\nu}(t,x) + c_2(t)\delta_{\mu\nu} (E(t,x) - \langle E \rangle_0) + c_3(t) (O_{3\mu\nu}(t,x) - 2O_{4\mu\nu}(t,x) - \text{VEV}) + c_4(t) (O_{4\mu\nu}(t,x) - \text{VEV}) + c_5(t) (O_{5\mu\nu}(t,x) - \text{VEV}) T_{\mu\nu}(x) = \lim_{t \to 0} T_{\mu\mu}(t,x)$$

2+1 QCD EoS from Gradient Flow

Taniguchi+ (WHOT-QCD), PR**D96**, 014509 (2017)

m_{PS}/m_V ≈0.63

Agreement with integral method except for N_t=4, 6
 N_t=4, 6: No stable extrapolation is possible
 Statistical error is substantially suppressed!

Physical mass: Kanaya+ (WHOT-QCD), 1710.10015

Lattice Setup

Yanagihara+, 1803.05656

SU(3) Yang-Mills (Quenched) Wilson gauge action Clover operator

APE smearing / multi-hit

fine lattices (a=0.029-0.06 fm)
 continuum extrapolation

Simulation: bluegene/Q@KEK

 $\langle O(x) \rangle_{\mathbf{Q}\bar{\mathbf{Q}}} = \lim_{T \to \infty} \frac{\langle \delta O(x) \delta W(R,T) \rangle}{\langle W(R,T) \rangle}$

β	$a [\mathrm{fm}]$	$N_{ m size}^4$	$N_{\rm conf}$		R/a	
6.304	0.058	48^{4}	140	8	12	16
6.465	0.046	48^{4}	440	10	—	20
6.513	0.043	48^{4}	600	—	16	—
6.600	0.038	48^{4}	1,500	12	18	24
6.819	0.029	64^{4}	$1,\!000$	16	24	32
		R	[fm]	0.46	0.69	0.92

Continuum Extrapolation at mid-point

 \Box a \rightarrow 0 extrapolation with fixed t

t→0 Extrapolation at mid-point

□ $a \rightarrow 0$ extrapolation with fixed t □ Then, t $\rightarrow 0$ with three ranges

Mid-Plane

Degeneracy: T₄₄ ~ T_{zz}, T_{rr} ~ T_{\thetaθ}
 Separation: T_{zz} ≠ T_{rr}
 Nonzero trace anomaly $\sum T_{cc} \neq 0$

Mid-Plane

Degeneracy: T₄₄ ~ T_{zz}, T_{rr} ~ T_{\theta}
 Separation: T_{zz} ≠ T_{rr}
 Nonzero trace anomaly $\sum T_{cc} \neq 0$

Momentum Conservation

Yanagihara+, in prep.

In cylindrical coordinats,

$$\partial_i T_{ij} = 0 \longrightarrow \partial_r (rT_{rr}) = T_{\theta\theta} - r\partial_z T_{rz}$$

For infinitely-long flux tube

 $\partial_r(rT_{rr}) = T_{\theta\theta}$

 \mathbf{T}_{rr} and $\mathbf{T}_{\theta\theta}$ must separate!

Effect of boundaries is important for the flux tube at R=0.92fm

Force from Stress

 $F_{\rm stress} = \int_{\rm mid.} d^2 x T_{zz}(x)$

Newton 1687

Faraday 1839

Screening of $Q\overline{Q}$ Force above T_c

Q-Qbar force is screened in the deconfined phase.

Temperature Dependence

Vacuum (Current Universe)

High Temperature (Early Universe)

 $\langle T_{\mu\nu}(x) \rangle_{\mathbf{Q}\bar{\mathbf{Q}}} = \frac{\langle \delta T_{\mu\nu}(x) \delta \Omega(y) \Omega^{\dagger}(z) \rangle}{\langle \Omega(y) \Omega^{\dagger}(z) \rangle}$

Temperature Dependence

Vacuum (Current Universe)

High Temperature (Early Universe)

 $T=1.44T_c$

Singlet projection for T=1.44T_c
 Flux-tube structure is screened above T_c.

Mid Plane

T=1.44Tc, R=0.46 fm

Vacuum, R=0.46 fm

\Box Separation b/w T₄₄ & T_{zz}?

Stress Tensor around A Quark in a deconfined phase

Pressure inside the Earth

Pressure inside Hadrons EMT distribution inside hadrons now accessible??

Pressure @ proton

arXiv:1810.07589 Nature, 557, 396 (2018)

EMT distribution @ pion

Kumano, Song, Teryaev Phys. Rev. D 97, 014020 (2018)

Stress Tensor around A Quark in a deconfined phase

 $\langle T_{\mu\nu}(x) \rangle_{\mathbf{Q}} = \frac{\langle \delta T_{\mu\nu}(x) \delta \Omega(0) \rangle}{\langle \Omega \rangle}$ Preliminary 8 $\beta = 6.6, t/a^2 = 2.0$ 6 4 $-\langle \mathcal{T}_{44}^{\mathrm{R}}(r)
angle_Q$ $- ig\langle \mathcal{T}^{ ext{R}}_{rr}(r)ig
angle_Q$ ₹ 4 [GeV/fm³ $-ig\langle \mathcal{T}^{\mathrm{R}}_{tt}(r)ig
angle_Q$ ₮ 2 0 -2 0.0 0.2 0.3 0.4 0.5 0.6 0.1 $r \, [\mathrm{fm}]$ Not reliable

Yanagihara+, in prep. Quenched QCD 48^3x12 (T≈1.4T_c) fixed t, a Spherical Coordinates • Energy density $-\langle T_{44}\rangle = \varepsilon$

• Longitudinal pressure

 $-\langle T_{rr}\rangle = -\overline{p(r)}$

Transverse pressure

 $|-\langle T_{tt}\rangle$

Screening massStrong coupling const.

Correlation Functions

EMT Correlator: Motivation

□ Transport Coefficient Kubo formula → viscosity $\eta = \int_0^\infty dt \int_0^{1/T} d\tau \int d^3x \langle T_{12}(x, -i\tau)T_{12}(0, t) \rangle$

Karsch, Wyld, 1987 Nakamura, Sakai, 2005 Meyer; 2007, 2008

Borsanyi+, 2018 Astrakhantsev+, 2018

Energy/Momentum Conservation $\langle \bar{T}_{0\mu}(\tau) \bar{T}_{\rho\sigma}(0) \rangle$: τ-independent constant

■ Fluctuation-Response Relations $c_V = \frac{\langle \delta E^2 \rangle}{VT^2}$ $E + p = \frac{\langle \bar{T}_{01}^2 \rangle}{VT} = \frac{\langle \bar{T}_{11} \bar{T}_{00} \rangle}{VT}$

τ-independent plateau in all channels → conservation law
 Confirmation of fluctuation-response relations
 New method to measure c_v
 Similar result for (41;41) channel: Borsanyi+, 2018

Perturbative analysis: Eller, Moore, 2018

Fluctuation-Response Relations

 $\langle T_{44}(\tau)T_{44}(0)\rangle$

$$\langle T_{41}(\tau)T_{41}(0)\rangle$$

New measurement of c_v

c_V/T^3									
$T/T_{\rm c}$	$C_{44;44}(\tau_m)$	Ref.[19]	Ref.[11]	ideal gas					
1.68	$17.7(8)(^{+2.1}_{-0.4})$	$22.8(7)^*$	17.7	21.06					
2.24	$17.5(0.8)(^{+0}_{-0.1})$	$17.9(7)^{**}$	18.2	21.06					

Confirmation of FRR $E + p = \frac{\langle \bar{T}_{01}^2 \rangle}{VT} = \frac{\langle \bar{T}_{11} \bar{T}_{00} \rangle}{VT}$

2+1 QCD: Taniguchi+ (WHOT-QCD), 1711.02262

Future Study

Shear and bulk channel
 Correlation function at nonzero momentum
 Controlling flow time dependence

Viscosity

Classifying Topological Sector via Machine Learning

<u>Masakiyo Kitazawa</u>, Takuya Matsumoto, Yasuhiro Kohno (Osaka University)

MK, Kohno, Matsumoto, to appear

Topological Charge in YM Theory

 $Q = \int d^4x q(x)$: integer

 $q(x) = -\frac{1}{32\pi^2} \operatorname{tr}[F_{\mu\nu}\tilde{F}_{\mu\nu}]$

Interests / applications

Instantons
Axial U(1) anomaly
Axion cosmology
Topological freezing

q(x) in SU(3) YM, β =5.8, 8⁴, t/a²=2.0

Topology on the Lattice

Distinct topological sectors on sufficiently fine lattices

Definitions of Q on the lattice:
 fermionic: Atiyah-Singer index theorem
 gluonic: q(x) after smoothing
 cooling, smearing
 gradient flow
 Luscher, Weisz, 2011

Good agreement b/w various definitions
 Faster algorithm is desirable!

Luscher, 1981

Machine Learning

Input: q(x)

4-dimensional field

Capture "instanton"-like structure?Acceleration of the analysis of Q?

Machine Learning

Input: q(x)

4-dimensional field

Capture "instanton"-like structure?Acceleration of the analysis of Q?

Machine Learning

Input: q(x)

4-dimensional field

Output

topological charge

Why q(x) rather than link variables?

to reduce the input data
 to skip teaching SU(N) and gauge invariance

Lattice Setting

□ SU(3) Yang-Mills
 □ Wilson gauge action
 □ 2 lattice spacings with same physical volume
 □ LT_c~0.63
 □ ⟨Q²⟩ ≃ 1.1

Gradient flow for smoothing

β	N ⁴	N _{conf}
6.2	164	20,000
6.5	24 ⁴	20,000

20,000 confs. in total

Training: 10,000

Validation: 5,000

Test: 5,000

distribution of Q

Q	-5	-4	-3	-2	-1	0	1	2	3	4	5
$\beta = 6.2$	2	17	235	1325	4571	7474	4766	1352	240	18	0
$\beta = 6.5$	0	5	105	1080	4639	8296	4621	1039	202	13	0

Neural Network Setting

convolutional neural network by CHAINER framework
 supervised learning
 convolutional layer: 4-dim., periodic BC
 regression analysis / round off to obtain integer
 activation: logistic

answer of Q
 Q(t) @ t/a²=4.0
 round off

Trial 1: Topol. Charge Density

Input: q(x) in 4-dim space
 Data reduction to 8⁴ (average pooling)

GAP=Global Average Pooling Translational invariance is respected in this NN.
Trial 1: Topol. Charge Density

Input: q(x) in 4-dim space
 Data reduction to 8⁴ (average pooling)

\Box Result: best accuracy for $\beta = 6.2$: **37.0%**

Accuracy of each topological sector (%)

Q	-4	-3	-2	-1	0	1	2	3	4	total
t/a ² =0	0	0	0	0	37.2	0	0	0	0	37.0

Trial 2: Topol. Density @ t>0

Input: q(x,t) in 4-dim space at nonzero flow time
 Data reduction to 8⁴ (average pooling)

Accuracy of each topological sector (%)

Q	-4	-3	-2	-1	0	1	2	3	4	total
t/a ² =0	0	0	0	0	37.2	0	0	0	0	37.0
t/a ² =0.1	0	0	31.6	39.1	41.4	38.9	19.0	0	0	40.3
t/a ² =0.2	0	40.0	46.4	53.8	55.9	52.3	48.1	50.0	0	53.7
t/a ² =0.3	0	91.3	72.9	76.3	79.0	74.8	68.1	70.0	50.0	76.1

Benchmark Simple estimator from Q(t)

1) Naïve: $Q = \operatorname{round}[Q(t)]$ **2)** Improved: $Q = \operatorname{round}[cQ(t)]$
c>1: optimization param.

Q = 0

3) zero:

0.0

 $\beta = 6.2, \text{ imp.}$ $\beta = 6.2, \text{ naive}$ $\beta = 6.2, Q = 0$ $\beta = 6.2, Q = 0$ $\beta = 6.5, \text{ imp.}$ $\beta = 6.5, \text{ naive}$ $\beta = 6.5, Q = 0$

0.4

 t/a^2

0.5

0.6

0.7

0.8

0.2

0.1

0.3

Distribution of Q(t)

.019), Wuhan, China, June 21, 2019

37th intern

Comparison: NN vs Benchmark

accuracy at $\beta = 6.2$

	ML (Trial 2)	naïve	improved
t/a ² =0	37.0	27.3	27.3
t/a ² =0.1	40.3	38.3	38.3
t/a ² =0.2	53.7	54.0	54.6
t/a ² =0.3	76.1	69.8	77.3

Machine learning cannot exceed the benchmark value.
 NN would be trained to answer the "improved" value.
 No useful local structures found by the NN.

Trial 3: Multi-Channel Analysis

□ Input: q(x,t) in four-dimensional space **at t/a²=0.1, 0.2, 0.3**

Trial 3: Multi-Channel Analysis

Input: q(x,t) in four-dimensional space at t/a²=0.1, 0.2, 0.3

Res	ult				
	machine	learning	ben	chmark @ t/a ² =	=0.3
β=6	.2	93.8		77.3	
β=6	.5	94.1		71.3	

non-trivial improvement from the benchmark!!

Is this a non-trivial result?

We can estimate the answer from Q(t) by our eyes...

Result	O(t)	Trial 3 (4dim)	benchmark
β=6.2	95.5	93.8	77.3
β=6.5	95.7	94.1	71.3

Good accuracy is obtained only from Q(t)

Using different flow times

t/a²=0.3, 0.25, 0.2 gives the best accuracy.
 Better accuracy on the finer lattice.
 More than three t values do not improve accuracy.
 error: variance in 10 independent trainings

Reducing the Training Data

Smaller training data will reduce numerical cost for the training.

Training data	10,000	5,000	1,000	500	100
β=6.2	95.9(2)	95.9(2)	95.9(2)	95.5(3)	90.3(7)
β=6.5	99.0(2)	99.0(2)	98.9(2)	98.9(1)	90.2(8)

1000 configurations are enough to train the NN successfully!
 Numerical cost for the training is small.

Versatility

Analyze configurations with a different parameter set

	analyzed data						
		β=6.2	β=6.5				
ning ta	β=6.2	95.9(2)	98.6(2)				
train da	β=6.5	95.6(2)	99.0(2)				

NNs trained for β=6.2 and 6.5 can be used for another parameter successfully.
 Universal NN would be developed!
 Note: same physical volume

Trial 5: Dimensional Reduction

Optimal dimension between d=0 and 4? q₃(x, y, z) = \$\int d\tau q(x)\$

d-dimensional CNN

Input: q_d(x) after dimensional reduction

3-channel analysis: t/a²=0.1, 0.2, 0.3

Summary and Outlook

Topological charge can be estimated with high accuracy from Q(t) at 0.2<t/a²<0.3 with the aid of the machine learning technique.
 On the finer lattices, the better accuracy.
 Applications: checking topological freezing, etc.

No local structure captured by NN
 No "Instanton"-like structure? Or too noisy data?

Future Study
 Continuum limit / volume dependence
 High T configurations where DIGA is valid

Summary

Lattice simulations are not simple subjects.
 There are plenty of subjects in this community.
 Thermodynamics
 Thermodynamics under various conditions
 EMT distribution inside hadrons
 ...

Two Special Cases with PBC $1/T \ll L_x = L_y = L_z$ $1/T = L_x, \ L_y = L_z$ $\frac{1}{T}$ L_y, L_z $\overline{L}_y, \overline{L}_z$ L_x $T_{11} = T_{22} = T_{33}$ $T_{44} = T_{11}, \ T_{22} = T_{33}$ In conformal ($\Sigma_{\mu}T_{\mu\mu}=0$) $\underline{p_1}$ - 1 $\frac{p_1}{-} = -1$ p_2 p_2

Fermion Propagator

$$S(t, x; s, y) = \langle \chi(t, x) \overline{\chi}(s, y) \rangle$$
$$= \sum_{v, w} K(t, x; 0, v) S(v, w) K(s, y; 0, w)^{\dagger}$$

$$\left(\partial_t - D_\mu D_\mu\right) K(t, x) = 0$$

- propagator of flow equation
- Inverse propagator is needed

N_f=2+1 QCD Thermodynamics

Taniguchi+ (WHOT-QCD), PR**D96**, 014509 (2017)

- N_f=2+1 QCD, Iwasaki gauge + NP-clover
- m_{PS}/m_V ≈0.63 / almost physical s quark mass
- T=o: CP-PACS+JLQCD (ß=2.05, 28³x56, a≈o.o7fm)
- T>0: 32³xN_t, N_t = 4, 6, ..., 14, 16):
- T≈174-697MeV
- $t \rightarrow o$ extrapolation only (No continuum limit)

Dual Superconductor Picture

Nambu, 1970 Nielsen, Olesen, 1973 t 'Hooft, 1981

Abelian-Higgs Model

Yanagihara, Iritani, MK, in prep.

Abelian-Higgs Model

 $\mathcal{L}_{AH} = -\frac{1}{4} \overline{F_{\mu\nu}^2 + |(\partial_\mu + igA_\mu)\phi|^2 - \lambda(\phi^2 - v^2)^2}$

GL parameter: $\kappa = \sqrt{\lambda}/g$ $\begin{cases}
\Box \text{ type-I: } \kappa < 1/\sqrt{2} \\
\Box \text{ type-II: } \kappa > 1/\sqrt{2} \\
\Box \text{ Bogomol'nyi bound:} \\
\kappa = 1/\sqrt{2}
\end{cases}$

Infinitely long tube degeneracy $T_{zz}(r) = T_{44}(r)$ Luscher, 1981 momentum conservation $\frac{d}{dr}(rT_{rr}) = T_{\theta\theta}$

Stress Tensor in AH Model infinitely-long flux tube

Bogomol'nyi bound : $\kappa = 1/\sqrt{2}$

 $T_{rr} = T_{\theta\theta} = 0$

de Vega, Schaposnik, PR**D14**, 1100 (1976).

Stress Tensor in AH Model infinitely-long flux tube

No degeneracy bw T_{rr} & T_{θθ}
 T_{θθ} changes sign

conservation law $\frac{d}{dr} (rT_{rr}) = T_{\theta\theta}$

Stress Tensor in AH Model infinitely-long flux tube

No degeneracy bw T_{rr} & T_{θθ}
T_{θθ} changes sign

Inconsistent with lattice result $T_{rr} \simeq T_{ heta heta}$

Left: $T_{zz}(o)$, $T_{rr}(o)$ reproduce lattice result **Right:** A parameter satisfying $T_{rr} \approx T_{\theta\theta}$

> No parameters to reproduce lattice data at R=0.92fm.

Numerical Setup

SU(3) YM theoryWilson gauge action

 $N_t = 16, 12$ $N_z/N_t = 6$ $2000 \sim 4000$ confs.
Even N_x

No Continuum extrap.

Same Spatial volume

- 12X72²X12 ~ 16X96²X16
- 18x72²x12 ~ 24x96²x16

T/T_c	β	N_z	N_{τ}	N_x	$N_{\rm vac}$
1.12	6.418	72	12	12, 14, 16, 18	64
	6.631	96	16	16, 18, 20, 22, 24	- 96
1.40	6.582	72	12	12, 14, 16, 18	64
	6.800	96	16	16, 18, 20, 22, 24	128
1.68	6.719	72	12	12, 14, 16, 18, 24	64
	6.719	96	12	14, 18	64
	6.941	96	16	16, 18, 20, 22, 24	- 96
2.10	6.891	72	12	12, 14, 16, 18, 24	72
	7.117	96	16	16, 18, 20, 22, 24	128
2.69	7.086	72	12	12, 14, 16, 18	-
$\simeq 8.1$	8.0	72	12	12, 14, 16, 18	-
$\simeq 25$	9.0	72	12	12, 14, 16, 18	-

Simulations on OCTOPUS/Reedbush

Extrapolations $t \rightarrow 0, a \rightarrow 0$ $\langle T_{\mu\nu}(t)\rangle_{\text{latt}} = \langle T_{\mu\nu}(t)\rangle_{\text{phys}} + C_{\mu\nu}t + \left[D_{\mu\nu}(t)\frac{a^2}{t}\right]$ O(t) terms in SFTE lattice discretization FlowQCD2016 **This Study** 🖉 Small t extrapol. 🕂 1 Continuum strong strong discretization discretization effect effect

Small-t Extrapolation $T/T_c = 1.68$

•
$$P_x$$
, • P_z , $L_1T = 3/2$
• P_x , • P_z , $L_1T = 9/8$
• P_x , • P_z , $L_1T = 1$

Filled: N_t=16 / Open: N_t=12

Small-t extrapolation

- Solid: N_t=16, Range-1
- Dotted: N_t=16, Range-2,3
- Dashed: N_t=12, Range-1

□ Stable small-t extrapolation □ No N_t dependence within statistics for $L_xT=1$, 1.5

Small-t Extrapolation $T/T_c = 1.68$

•
$$P_x$$
, • P_z , $L_1T = 3/2$
• P_x , • P_z , $L_1T = 9/8$
• P_x , • P_z , $L_1T = 1$

Filled: N_t=16 / Open: N_t=12

Small-t extrapolation

- Solid: N_t=16, Range-1
- Dotted: N_t=16, Range-2,3
- Dashed: N_t=12, Range-1

□ Stable small-t extrapolation □ No N_t dependence within statistics for $L_xT=1$, 1.5