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Bottom-up fabrication

« An additive process: atoms and molecules are used to build up the desired objects

« Advantages:

The resolution is of atomic precision.

» Disadvantage:

The limitation of large scale uniformity when up-scaling



Top-down fabrication

» A subtractive process: material is removed to produce features of a controlled shape and size.

« Advantages:

Enable to put the desired feature / entity in an exact location

Enable mass production

» Disadvantage:

the resolution limitation due to the existing cutting tool technology (electron beam, ion beam, etc.)



Field Effect Transistor (FET) with dual gates



Motivation:
On-site Avian Influenza (Al) virus detection
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FET Fabrication Flow
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1. Active channel formation

 Wafer selection

1. Active (Si channel) etching

- « Photolithography

« Reactive ion etching (RIE)



Wafer selection
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Photolithography

v Photolithography uses light to transfer a geometric pattern from a photomask to a photosensitive chemical
photoresist on the substrate. Photolithography is the standard method of printed circuit board (PCB)

and microprocessor fabrication.



Photolithography

Clean wafers

Coat with photoresist
Soft bake

Align masks
Exposure pattern
Develop photoresist
Hard bake

Etch a window
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Typical wafer cleaning processes

TABLE 2.2 Silicon Wafer Cleaning Procedure[7, 8]

A. Solvent Removal
1. Immerse in boiling trichloroethylene (TCE) for 3 min.
2. Immerse in boiling acetone for 3 min.
3. Immerse in boiling methyl alcohol for 3 min.
4. Wash in DI water for 3 min.

B. Removal of Residual Organic/lonic Contamination
1. Immerse in a (5:1:1) solution of H,O-NH,OH-H,0,; heat solution to 75-80 “C and hold for 10 min

2. Quench the solution under running DI water for 1 min.
3. Wash in DI water for 5 min.

C. Hydrous Oxide Removal
1. Immerse in a (1:50) solution of HF-H,O for 15 sec.

2. Wash in running DI water with agitation for 30 sec.

D. Heavy Metal Clean
L Immerse in a (6:1:1) solution of H,O-HCI-H,0O, for 10 min at a temperature of 75-80 °C.

2. Quench the solution under running DI water for 1 min.
3. Wash in running DI water for 20 min.

R. C. Jaeger, Introduction to microelectronic fabrication, 2"d Edition.



Piranha cleaning

v A piranha solution is used to remove organic residues from substrates.

v" The piranha solution is made of a 3:1 mixture of concentrated sulfuric acid (H,SO,)
with hydrogen peroxide (H,0.,).

https://youtu.be/HiJNI8k1ldoc
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Coat with photoresist: Photoresist

v' A photoresist is a light-sensitive material used in photolithography to form a patterned coating on a surface.

v A positive photoresist is a type of photoresist in which the portion of the photoresist that is exposed to light
becomes soluble to the photoresist developer. (negative photoresist)
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A positive photoresist example : its solubility would change by the photogenerated acid.
The acid deprotects the tert-butoxycarbonyl (t-BOC), inducing the resist from alkali insoluble to alkali soluble.




Coat with photoresist

v Adhesion promoter such as hexamethyldisilazane (HMDS) provides good photoresist adhesion
to a variety of films.

v The actual thickness of the resist depends on its viscosity and is inversely proportional to the square root of
the spinning speed. Generally, the last two digits of the photoresist name indicate the film thickness
attained by spin coating at 4000 rpm.
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Coat with photoresist

Insert suitable sample holder ONTNU

https://youtu.be/WAFE6pZBT9c



Photolithography
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Clean wafers

Photolithography

Coat with photoresist

Soft bake

Align masks

« Power
« Exposure duration

Exposure pattern

Develop photoresist

Hard bake

Etch a window

Remove photoresist



mask /| Exposure pattern: Aligner
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R. C. Jaeger, Introduction to microelectronic fabrication, 2"d Edition.
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Develop photoresist
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Clean wafers

Photolithography

Coat with photoresist
Soft bake
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Exposure pattern

Develop photoresist
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Alpha step or ellipsometer
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Etch a window
: Reactive ion etching (RIE)

v' RIE is an etching technology. RIE is a type of dry etching. RIE uses chemically reactive plasma
to remove material deposited on wafers. High-energy ions from the plasma attack the wafer surface

and react with it.

v' Etching occurs through a combination of the chemical reaction and momentum transfer from the
etching species and is highly anisotropic.

TABLE 2.4 Plasma-Etching Sources

Matenal Source Gases
Organic Materials 0,,5F,.CF,
Polysilicon CAl,.CF,. NF,,SF,
Silicon Dioxide CF,,C,F¢, C;F;, CHF,
Silicon Nitride CF,, GF,, CHF,, SF;
Aluminum CCl,, 1, B,
Titanium COLE,, CF,
Tungsten Cl,

R. C. Jaeger, Introduction to microelectronic fabrication, 2"d Edition.



Etch a window
: Inductively Coupled Plasma-Reactive ion etching (ICP-RIE)

v ICP-RIE etching is based on the use of an inductively coupled plasma source.

v' The ICP source generates a high-density plasma due to inductive coupling between the RF antenna
and the plasma.

v' The antenna, located in the plasma generation region, creates an alternating RF magnetic field and induces
RF electric fields, which energize electrons that participate in the ionization of gas molecules and atoms at
low pressure.

R. C. Jaeger, Introduction to microelectronic fabrication, 2"d Edition.



2. Gate Dry Oxidation

1. Active (Si channel) etching

=

2. Gate dry oxidation
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Thermal oxidation of Silicon i «,W //////////

v' Upon exposure to oxygen, the surface of a silicon wafer oxidizes to form silicon dioxide. This native
silicon dioxide film is high quality electrical insulator and can be used as a barrier material during

impurity deposition. The extreme purity and perfection of the Si/SiO, interface is the ultimate reason

why silicon has been #1 semiconductor for microelectronics.




Thermal oxidation of Silicon

Deal and Grove’s model

v' Thermal oxidation of silicon is achieved by heating the wafer
to a high temperature, typically 900 to 1200 °C in an
atmosphere containing either pure oxygen(dry).

" v Oxygen move (diffuse) easily through silicon dioxide
at these high temperature. Oxygen arriving at the silicon
surface can then combine with silicon to form silicon dioxide.

v" Silicon is consumed as the oxide grows, and the resulting
oxide expands during growth.

Control factors: temperature, pressure, crystal direction

B. E. Deal, A. S. Grove, J. Appl. Phys. 36, 3770 (1965).



3. Electrode Deposition

1. Active (Si channel) etching

=

2. Gate dry oxidation

3. Electrode deposition

* Photolithography
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Metallic film deposition
: Electron-beam evaporation
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v A high-intensity beam of electrons is focused on a source target containing the material to be
evaporated. The energy from the electron beam melts a region of the target.

v Material evaporates from the source and covers the silicon wafers with a thin layer.



4. Si02 cap ox.

1. Active (Si channel) etching

=
2. Gate dry oxidation
|

3. Electrode deposition

4. SiO2 cap ox.

Wet oxidation:

a form of hydrothermal treatment
using oxygen as the oxidizer.
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Implantation

v lon implantation introduces impurity atoms into the silicon wafer and has become a workhorse technology
in modern IC fabrication.
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Schematic drawing of a typical ion implanter showing (1) ion source, (2) mass spectrometer,
(3) high-voltage accelerator column, (4) x- and y-axis deflection system, and (5) target chamber.

R. C. Jaeger, Introduction to microelectronic fabrication, 2"d Edition.



Mathematical model for ion implantation
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v' As an ion enters the surface of the wafer, it collides with atoms in the lattice and interacts
with electrons in the crystal.

v" Interaction with the crystal is a statistical process, and the implanted impurity profile can be
approximated by the Gaussian distribution function.
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Rapid Thermal Annealing (RTA)

v" Involves heating a material above its recrystallization temperature,
maintaining a suitable temperature, and then cooling.

v" In addition to removing the damage caused by the implantation, the annealing step is required to electrically
activate the implanted impurities.

v" In order to minimize diffusion of the shallow implanted profiles, rapid thermal annealing (RTA) was applied.
The RTA can achieve the desired results with annealing times that range from a few minutes down

to only a few seconds.

R. C. Jaeger, Introduction to microelectronic fabrication, 2"d Edition.



7. Cap ox etch/ passivation ox. dep
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Chemical vapor deposition (CVD)

v' CVD forms thin films on the surface of a substrate by thermal decomposition or reaction of gaseous
compounds.

v' The desired material is deposited directly from the gas phase onto the surface of the substrate.

v Polysilicon, silicon dioxide, and silicon nitride

Pressure sensor

Resistance heater (3-zone)
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8. Contact hole etch /| metal deposition
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9. S/D contact metal etch

1. Active (Si channel) etching 5. implantation 9. S/D contact metal etch
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10. H, annealing
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Direct detection of highly pathogenic viruses
from on-site samples
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Electron Shuttle
as Nanoelectromechanical System (NEMS)



Towards nanomechanical computing

' : S O ’f;«
Babbage’s mechanical computer Micro-/Nano-electromechanical System
(1921) (MEMS/NEMS)

v’ Electrically isolated system
v High-speed operation with nanoscale resonators (up to a few GHz)

v Operable at high temperature (~200 °C)

Concept of electron shuttle



Macro electron shuttle ver.1

C. Kim et al., Appl. Phys. Lett. 106, 061909 (2015)
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Macro electron shuttle ver.2

C. Kim et al., Appl. Phys. Lett. 106, 061909 (2015)



Current trace from the macro shuttle
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Shuttle mechanism for charge transfer
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The electrostatic force is at all times directed along the line of motion
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Coulomb Blockade

Isolated island: charge is quantized, Q=ne

Charging energy = addition energy : E; = —

2C
Versus level splitting d: L =100nm; Nyoms = 10°
Er y
O =~ ~ 10eV /N toms = 107 eV
Natoms

E- = 1meV

v If charging energy is not available (from external voltage sources or temperature),
electron transport is blocked.



Electron shuttles
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C. Kim et al., Phys. Rev. Lett.
105, 067204 (2013)



Electron beam lithography

v’ Electron-beam lithography (EBL) is the practice of scanning a focused
beam of electrons to draw custom shapes on a surface covered with an electron-sensitive film called a resist

v" The primary advantage of electron-beam lithography is that it can draw custom patterns (direct-write)
with sub-10 nm resolution.

https://youtu.be/PWV9pvdRBNY



Bosch process

v' The Bosch process alternates repeatedly between two modes to achieve nearly vertical structures.
v" Nearly isotropic plasma etch SF; is often used for silicon

v Deposition of a chemically inert passivation layer

hard mask
passivation layer

lie - A Il
4 ’ s fragment , ’

m' SFg fragment
4

,bﬁ’ﬂﬁ? 4
é ©

(1) (2) (3) (4) (5) (6) (7) (8)
etch passivation etch passivation etch passivation etch passivation
with bias without bias with bias without bias with bias without bias with bias without bias

Conventional Bosch etch process scheme for etching silicon



Bosch process
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Coulomb-controlled field electron emission
in a suspended metallic island

165 1.70 1.75 1.80 1.85
V__(mV)

C. Kim et al., Nano Lett. 10, 615 (2010)
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Y. W. Zhu et al., Chem. Phys. Lett. 419, 458 (2006)



Coupled electron shuttles

200 nm

1. Photo resist (PR) spin coating 2. UV expose and develop 3. Gold (Au) deposition 4. Lift off
<400 nm

5. E-beam resist (ER) spin coating 6. E-beam expose and develop 7. Au deposition and lift off 8. RIE

<20 nm
E ﬁ

C. Kim et al., Phys. Rev. Lett. 105, 067204 (2010)



I-V trace from coupled electron shuttles

» Steplike current increase at room temperature
« Charging energy E. ~ 40 meV
« Current modulation by gate voltages

C. Kim et al., Phys. Rev. Lett. 105, 067204 (2010)
C.Kimetal., ACS nano 6, 651 (2012)



Nanowire(NW)-based NEMS
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Focused lon Beam (FIB)

Charge Neutralization , Gas Assisted Etching
(Optional) poat /J' or Selective Deposition
% N (Optional) '
- & « Circuit modification
e g3
gds .
» Photomask repair
g Qs
gas « TEM sample preparation
of site specific locations

v" FIB systems use a finely focused beam of ions (usually gallium) that can be operated at low beam currents
for imaging or at high beam currents for site specific sputtering or milling.

v At higher primary currents, a great deal of material can be removed by sputtering, allowing precision milling
of the specimen down to a sub micrometer or even a nanoscale.



Pt deposition using FIB

v" FIB can also be used to deposit material via ion beam induced deposition. FIB-assisted chemical vapor deposition occurs
when a gas is introduced to the vacuum chamber and allowed to chemisorb onto the sample.

v' By scanning an area with the beam, the precursor gas will be decomposed into volatile and non-volatile components.
The non-volatile component remains on the surface as a deposition.
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https://youtu.be/vNOpzDVIiAhE



FIB Etching

v" FIB is inherently destructive to the specimen. When the high-energy gallium ions strike the sample,
they will sputter atoms from the surface.

v' Gallium atoms will also be implanted into the top few nanometers of the surface, and the surface will be made amorphous.

v' Because of the sputtering capability, the FIB is used as a micro- and nano-machining tool,
to modify or machine materials at the micro- and nanoscale.

https://youtu.be/vNOpzDVIiAhE



Lifting out using FIB

https://youtu.be/vNOpzDVIiAhE



NW-based NEMS Fabrication
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NW-based NEMS Fabrication
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NW-based NEMS Fabrication
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NW-based NEMS Fabrication
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NW-based NEMS Fabrication
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NW-based NEMS Fabrication
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NW-based NEMS Fabrication
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DNA as materials

¢ Hydrogen
© Oxygen

@ Nitrogen

© Carbon

© Phosphorus

v' Chemically stable : hereditary material in humans and
almost all other organisms

Minor groove

v' Sub-nanoscale engineering : a code made up of adenine(A),
cytosine(C), guanine(G), and thymine (T)

Major groove

v’ Self-assembly : enable to make nano-structure intentionally

v Abundant : cost-effective

Pyrimidines Purines

R. G. Endres et al., Rev. Mod. Phys. 76, 195 (2004)



Studies on electrical properties of DNA

Class 1: DNAs an insulator at room temperature, as found by Braun et al. (1998),
de Pablo et al. (2000), Strom et al. (2001), and Zhang et al. (2002).

SFM tip (gold covered)

Gold Ao
\‘ \ Y ' A-DNA

AZ=27 nm
<>
’
>

19  Mica substrate  The lower limit for the resistivity ~ 106 Q cm
2um

P. J. de Pablo et al., Phys. Rev. Lett. 85, 4992 (2000)



Studies on electrical properties of DNA

Class 1: DNAs an insulator at room temperature, as found by Braun et al. (1998),
de Pablo et al. (2000), Strom et al. (2001), and Zhang et al. (2002).

Class 2: DNA s a true wide-bandgap semiconductor at all temperature, as measured by
Porath et al. (2000) and by Rakitin et al. (2001).

Current (nA)

* Poly(G)-poly(C) DNA molecules (30 bp)

« ~ 8 nm separation

. « without any functional group at the termini
e of the double helix

Voltage (V)
D. Porath et al., Nature 403, 635 (2000)



Studies on electrical properties of DNA

Class 1: DNAs an insulator at room temperature, as found by Braun et al. (1998),
de Pablo et al. (2000), Strom et al. (2001), and Zhang et al. (2002).

Class 2: DNA s a true wide-bandgap semiconductor at all temperature, as measured by
Porath et al. (2000) and by Rakitin et al. (2001).

Class 3: DNA is Ohmic or nearly Ohmic at room temperature and is insulating at low temperatures,
as found by Fink and Schonenberger, Cai et al. (2000), Tran et al. (2000), Rakitin et al. (2001),
Yoo et al. (2001), and Hartzell et al. (2003).
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K.—H. Yoo et al., Phys. Rev. Lett. 87, 635 (2001)



Studies on electrical properties of DNA

Class 1: DNAs an insulator at room temperature, as found by Braun et al. (1998),
de Pablo et al. (2000), Strom et al. (2001), and Zhang et al. (2002).

Class 2: DNA s a true wide-bandgap semiconductor at all temperature, as measured by
Porath et al. (2000) and by Rakitin et al. (2001).

Class 3: DNA is Ohmic or nearly Ohmic at room temperature and is insulating at low temperatures,
as found by Fink and Schonenberger, Cai et al. (2000), Tran et al. (2000), Rakitin et al. (2001),
Yoo et al. (2001), and Hartzell et al. (2003).

Class 4: DNA s truly metallic down to low temperature, as suggested by Kasumov et al. (2001). - superconductivity
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around 1K 6 : , - 10t 10" 100 107
0 200 400 600 T(K)

A. Y. Kasumov et al., Science 291, 280 (2001)



Direct electrical measurements on single-molecule
genomic DNA using single-walled carbon nanotubes

(A)

S. Roy et al., Nano Lett. 8, 26 (2008).

» A novel platform based on SWNT nanoelectrodes
for directly probing the dc conductivity in DNA.

- 80 base pairs (~27nm) of single- and double stranded DNA
- Covalent bonding between an amine-terminated ssDNA
and a carboxyl-functionalized SWNT

« Application of the back-gate voltage revealed that
the bridging DNA molecule forms a p-type semiconducting
channel between the SWNT electrodes
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S. Roy et al., Nano Lett. 8, 26 (2008).



Backbone charge transport
in double-stranded DNA

Thiol-GNP
contact
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Metal-metal
contact

» Electrical measurements through individual conjugates of 30 nm long dsDNA
molecules with two gold nanoparticles (dimer)
: the 3’ end of each of the DNA strands is bonded to one of the GNPs through a C; thiol linker.

» Dielectrophoresis trapping of the dimer

R. Zhuravel et al., Nat. Nanotech. doi.org/10.1038/s41565-020-0741-2 (2020)



Backbone charge transport
in double-stranded DNA

oo

- [
= r
2L
O /‘ O : Poly(dG)—poly(dC) dsDNA
—4 [ .
One nick in one of the backbones [ One-nick dsDNA
S = Random sequence dsDNA
st [y ——— Two-nick dsDNA
_-H:"..................|.........|.........|.........|.........
-5 0 2 4 6
One nick in each backbone V (volts)

» |-V curves of the different types of dimers at 5K.

* One nick in one of the backbones has no impact on the current, whereas two nicks suppress the current
below the noise floor.

R. Zhuravel et al., Nat. Nanotech. doi.org/10.1038/s41565-020-0741-2 (2020)



Safety

v Follow the guideline (Acid, Gas, etc.)
v Apply safety tools (guard, gloves, safety glass etc.)

v Remember buddy system



Summary

« Discussed top-down and bottom-up approach
* Inctroduced fabrication processes for field effect transistor (FET) with dual gates
* Introduced fabrication processes for electron shuttles as Nanoelectromechanical systems (NEMS)

« Briefly discussed the possibility of DNA as a material for self-assembled nanostructure



Thanks



Dielectrophoresis (DEP)

v" Motion of a particle is produced by the interaction of a non-uniform electric field with the induced effective dipole moment
of the particle. A force is exerted on a dielectric particle when it is subjected to a non-uniform electric field.

v' The strength of the force depends strongly on the medium and patrticles electrical properties, on the particles shape
and size, as well as on the frequency of the electric field.

A B Clausius-Mossotti factor

x_,/: \ Time-averaged DEP force/
e

S 1 b e
. - i = + -- -
— B

Positive DEP : Real (fo) >0
Particles attracted towards high fields

\ 4

Microelectrodes — Electric filed lines * Induced Charges Neg_ative DEP : Real (fCM) < O
O cell == Forces Particles repelled from high fields



Coulomb Blockade

Source-drain bias voltage control

Current [

Ceq
\
AE

Gate voltage control

4 Coulomb-Blockade Oscillations
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