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Dynamical geometry,
topology and dimension

* |In general relativity, geometry is dynamical

* There is in priori no reason why topology and
dimension remain well defined in the presence of

strong quantum fluctuations of geometry

e Goal:

— Quantum gravity in which dimension, topology and
geometry are dynamical

[Other related works :  Quantum graphity, Konopka, Markopoulou, Smolin (06);
Geometry from entanglement, Cao, Carroll, Michalakis(17), ..]



Model

 Fundamental degree of freedom : M x L real matrix

4. A=1,2.,M i=12,.,L (ML)
— row index (A) : flavor collection of
— column index (i) : site o  Lsites
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Frame

A decomposition of the total Hilbert space as
a direct product of local Hilbert spaces

H = @,H,
* Choice of frame is not unique H = @/H;




Local structure
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e A state is defined to have a local structure in a frame if
— there exists a mapping from the set of sites into a Riemannian manifold

— the mutual information between two points decay exponentially in the
geodesic distance between the images of the points

Iij = Sz —+ Sj — Sz'uj X €_d(m’rj)/£

[earlier use of mutual information for distance measure :
Qi (2013); Cao, Carroll, Michalakis(17)]



Examples of states
with/without local structures
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Generalized spatial diffeomorphism

In GR, s_patial diffeomorphism is generated by momentum
constraint {P {é}’P[é”pB _ P[nglf}} g . Shif

The dimension and topology of manifold is determined
from the pattern of entanglement

Generalized spatial diffeomorphism should include
— smooth diffeomorphism in any dimension and topology

— a map that takes any chosen point in the set to any other
chosen point

Lx M Mx L
SL(L,R) frame rotation éy _ %tr\(ﬂ@;) b

5 1

004 y : L x L traceless matrix (shift tensor)
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Hamiltonian constraint

* |[n GR, Hamiltonian density transforms as a
scalar density under spatial diffeomorphism

(Pl o, -z O s

{H 01, H [92]}PB = P [591,92 - & o = —Sg" (0,V,05 — :V,0,)

e A Hamiltonian that satisfies |H,H|] ~ G s

~

i — { (_fmT N %ﬁﬂ%%ﬂfﬂ”) }

lapse tensor
(symmetric matrix)
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ultra-local kinetic term

Physical meaning

In the frame in which the lapse is diagonal,
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the strength of hopping between sites j and k
is given by the strength of mutual information

formed by a third site i
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Relatively local hopping term

A/

1) 67865, ()



Constraint Algebra

Algebra of GR

LR (¢ ) r[al},, - Plzee]
[GAiﬁ [:Ikl_ — B;lrcrlm [:Imn sub-leading {P [é] ’H[e]}PB = H [350] ’
M) = ok G+ AZD%%Z | \BLE}, = Pl

&o,0, = —59" (01V,02 — 0,V ,01)
Unlike A and B, C is a dynamical variable (function of (1)7 11)
 The constraints obey a first-class quantum algebra

* Inthe continuum limit, the constraint algebra reduces to an algebra that
includes general relativity once we identify the metric as

1% 1 1ikkn 1% 1%
9 (rm) = 5 S CHET (rtt ) (rf — 1)

1,k,n
 The metric identified in this way indeed encodes information on entanglement

* However, the metric alone does not fully specify entanglement : ER & EPR



Gauge Invariant State
G,[0) = H,|0) =0

All gauge invariant states have infinite norm

— Gauge group is non-compact, and wavefunctions for gauge invariant
states are extended in the space of ¢

States to which probabilities can be assigned break the gauge
symmetry (spontaneously)

A natural object is an overlap between gauge invariant state, |0)
and a state with finite norm, |x)

<0‘X> : wavefunction of gauge invariant state written in the
basis of states with finite norm



Projection

<0\X> _ <O‘€—i€(HU<k>+Gy<k>) ..e—ie(ﬁuzﬁ@y(z))e—ie(ﬁvuﬁéy(l)) \X>

| J
i

|X(7_)> — 17'6—’& fOT dT,(I:IU(T/)‘l‘GAy(T/)) |X>

e Aseries of successive gauge transformations generates an
evolution of the state with finite norm

 The evolution describes paths along which the state with finite
norm is projected to the gauge invariant state

* The sub-Hilbert space (V) within which paths lie is determined
by global symmetry of |x) y l




( AT
.%%0 WY

AT
o%:o OO Nﬂ//)/)

()
(X)
)
OO0
:... 44

0000 NN NPNCONSINGN NN

9
AR

A O A 4 % 7 4

199994 777
KN 171777
0 .“..

(X T/ LA AL ELLS

Y

“o % I

00 7 R S S A

Initial state
with a classical 3d local structure

Three torus with nearest neighbor entanglement bonds in three-dimensional local structure



Time evolution

numerical solution for L=106%

Scale factor of space ( Jup = CL(SM,/ ) Signature of time
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One epoch of de Sitter-like
Euclidean spacetime spacetime with Lorentzian
signature




Conclusion

* A background independent quantum gravity in
which dimension, topology and geometry are
dynamical collective variables of underlying
guantum matter

e Saddle-point solution that describes a series
of de Sitter-like spacetimes



Open question

* Physical spectrum

* A background independent theory which has
a small number of low-energy modes



SUPPLEMENTARY MATERIAL



Review of GR in Hamiltonian formalism

[Arnowitt-Deser-Misner]

S = /de?’fr [W“V&gm/ — &M (r)Pu(r) — H(T)%(r)}

momentum constraint P [ﬂ = /dgfr EM(r)Pu(r)

Hamiltonian constraint Hf] = /dgr O(r) (1)

(r[e]. P[]}, = Pl

Hypersurface deformation algebra {P {ﬂ  H [8]}PB — H [ng 0: :
(o 03}, = P[in]
591 0y — —é’g‘f”\(@lv (92 — QQV 91)

(§,+,+,+) signature spatial metric




SL(L,R) frame rotation :
generalized spatial diffeomorphism

@y = (r {éy}

i Lni 24 2 A i

y : L x L traceless matrix (shift tensor)

(I) gy , covariant

e_iGy 11 eiGy gy_l 11 contravariant

g, =eve SL(L,R)



Smooth diffeomorphism from SL(L,R)

. A A . A - A
e—zGey (I)Az' 67,Gey _ ((I) €—€y> |
2 A 5A ]
if dA; varies slowly < = &7, —e? i Y
in a manifold = dA(r;) —e [@A(rz) +0 @A(rz)(ry i) + } v,

= O4ry) — € () @A (ri) — € €1 (1) 0, 2 (ry) + ...
= Z yjia Weyl scalar

f” i) E y r — r#')  shift vector

* Generalized dlffeomorphlsm includes Weyl transformations,
smooth diffeomorphism and more
* This is an active transformation in a fixed coordinate system



Example

4 A

- "',;;.i’--._ G, = tr {Gy} with

Y = ) (0,41 — 0ji-1)

generates diffeomorphism with shift
vector &(r;) = &;
in the continuum limit

) = [ anemie

tij =5 (57,] + €5|i—j|,1)




Full Constraint Algebra

i, 11 = _Z% o { [ (AT — (T (7] ) Algebra of GR
e | (T ) (T (1 7 6] P lEl},, = Pzl
L) (&7 ) (L7 (11T 5% {Ple.mor},, = 7%,
(Y (R () (AT 6 {H[el],H[ez]}PB = P &0

— (L) (L) (@ @) 5 (TLIIT) "5
M (T )R (I )™ 68 67 4 (M + 2) (T )R (T )R o o7
+2( I )R (T 7)™ e¥ 7" — 2( I )F (IIT7)** 67 o7
—2(II0T )™ (T 8 87 — 2(T0T )" (") " 67 s% | G, o7)

+W tr{ [(M — 2)(vII w — wIT T v) 4 4IIIT (vu — uv)} f[} 4 Sub-leading in 1/M




Constraint algebra in the continuum |

Gy = gijyjz"
0% .
_ g ) B i
7 —|_ a,’,,‘,;b i (T] T’L ) —|_ y ? 9(7“@) _ v—l(g
%" oC.
— ?7/, i J H ; o~ L '_1 J
sz(T ) + argb i Sy <T ) + g)/i(rz) ) 87“# i

V; : coordinate volume assigned to site i

PB




Constraint algebra in the continuum |l
%, — / dr 0, ()9 (1)
H(r;) = ‘/;—1%@;7 Ou(1i) = Vi

{ / dﬂ’(@(ﬂ)g‘x(r“)+@M(}”)gg(r”)+..), / dr@v(r)%(r)} = / A Oy, (1) (1)

PB



Constraint algebra in the continuum lI

{ / dr (eu(r)%(r) ). / ar' (0,677 (r) + )}

PB
/ dr (F*(1)2(r) + G (1) 2u(r) + . ) (0u(r)Vu0(r) = (1) V,0(r) ) + O(D?)
FI/ L 1 cgzzkkn v v
(rm) = 5 DB (1 —17),
1,kn
v _ 1 Cgmkkn o " v v
(Tm) — § m (Tn o Tm) (rk o r’i)
1,kn
 Signature and metric are determined from » GH + GVH
the collective variables —&g" = 9 ;
* There exists additional fields such as anti- Gr _ GQve
symmetric rank 2 tensor and higher spin [ a—

fields 2



Sub-Hilbert space (V)

* We consider a sub-Hilbert space with unbroken flavor

symmetry: g 0 (M=L) x O (ML) c O(M)

LXL q
D =
M-L
= XL ¢
M-L
5 P




Basis states of the V

e Basis states of the sub-Hilbert space are labeled by
collective variables : s, t;, t,

87t17t2> — /DQD(?DSO 62‘ tr{qu_'—tl(nggb)_l_tQ(@TSO)} q, ¢7 gp>,
.6.0) = Y |Pla..0)

pfes!

Collective variables :

general LXL matrix = S . Conjugate to ¢

t1: conjugate to ¢l o
LXL symmetric matrix

ty: conjugate to !y



States in 'V

* General states in the sub-Hilbert space can be written
as linear superpositions of the basis states

‘X> = /DSDt ‘S,tl,t2>x(s,t1,t2)

f

Wavefunction defined in the space of collective variables



Constraints for the collective variables

e Gauge constraints, being O(M) invariant, maps Vinto V

 Constraints can be written in terms of the collective
variables (s,t;,t,) and their conjugate variables (q,p4,p,)

H(q,8,p1,t1,p2,t2] = — <SST + Z [4tcpete — itc]>

~ . ) 1
+a <38T + Z 4t .pet. — ztc]> (¢"q+ p1+ p2) <ssT + Z (4t ypete — ztc/]> + 0 (N)
€1q,s,p1,t1,pa, ta] = (SQ—FQZthCz])

# of physical phase space variables :

2 (L% + L(L + 1)) —2((L2—1)+ L(L; 1)) = L(L+1)+2




Path integral representation of state
projection

The projection can be written as a path integration of the collective variables

<0’X> - /Ds@)Dt(O)/@S@t@q@p@v@y <0|s<°°>,t§°o),t§°°>>ei5 X(S(O)ytgo)atg)))

Different choices of lapse and shift tensors give rise to multi-fingered time



Path integral representation of state
projection

The projection can be written as a path integration of the collective variables

<0’X> - /Ds@)Dt(O)/@S@t@qu@v@y <0|s<°°>,t§oo),t§°°>>ei5 X(S(O)ytgo)atg)))

q,P1,P2

Different choices of lapse and
shift tensors give rise to multi-
fingered time

> Sltlltz

SO0 40 39,4,



Constraint Algebra in the classical limit

Poisson bracket :

{Am%:(

0A OB B 0A OB Y 0A GB_(?A 0B
dq% 0s',  0s'., 0q“ gl Opei; OtEL Oth Op,.

Constraint algebra :

{?Ziyﬁgl?}PB — ﬂzkn (57;',:7

7lm

{?ija%kl}PB _ {%Zk‘l %mn’

jmn

{%m’ %kl}PB %%kln ?TZ,

The constraint algebra is reduced to the algebra of an extended general
relativity in the continuum limit



Constraint Algebra in the classical limit

Poisson bracket :

{Am%:(

DA OB 8AaB> kl(@A 0B 9A 8B>
- + ok

0q° 0s',  0s', 0q" Opei O OtE Opes;

? k tkn gom

Constraint algebra : {?ja?l}PB — ﬂjlm ?na
7 kl L 1kl mn
(&, X" }pp = B X",

{%ija%kl}PB _ Cg%kln ?ZL’

1j

A U L

Zkl:;n k ilm l sk U= (SST ' Z [4tcp6tc B itc}) |
‘%jmn — 5]' 5mn + 5j5mn7 ‘
%ijk:ln — 4§ [Un[] Uz] [l5k] . Un[lUk‘] []52] Qij = (qTq + ch> )
m m m c ij

+4a? [U U QU VN + UM UNUN™ Q67

. Un[l Uk]m/Qm/n’ Unl [ 5i]n — Un[l Uk?] [J Ui]m/ Qm’n/ 5%]



Semi-classical state (wavepacket)

X st (S, t1,12) =

Sia [V 4]+ STyl - 297
exp (z’N tr {{}3 + Zﬂctc} — [ } A7 )

In order for (0|x) to be non-zero, the classical variables
should satisfy the classical constraints

“X p

Cﬁ?}'(‘%@azmﬂc) =0
%ij(da¢7z_&ﬂc) — O
S,t1,1




Saddle-Point EOM

= 4t.ot. —da (1.QUvt. + toUQtL.) — aUvU — yt, — ty',
46 (pt.QUv + vUQt p.)
— 4a (QUvtcp, + petvUQ) +ia (QUu + UU@)} + Dy + y' De,

= —Q@U’UUQ_T — YS,

= — [4130ch + dvt.p. — v —

= —25"v +2a (57QUv + 550UQ) + gy

tC(O) = 2, pc(o) = JHcs 5(0) = 4 and q_(O) = g



Time evolution of wavepacket

/
N\MP sty t ‘




Low-energy effective theory

* Bi-local fields propagate
(obeying local dynamics) in
the background spacetime
formed by the saddle-point
configuration

 The end points of the bi-
local fields freely propagate
to the leading order in 1/M

* Only 1/M corrections can
create "bound states’




