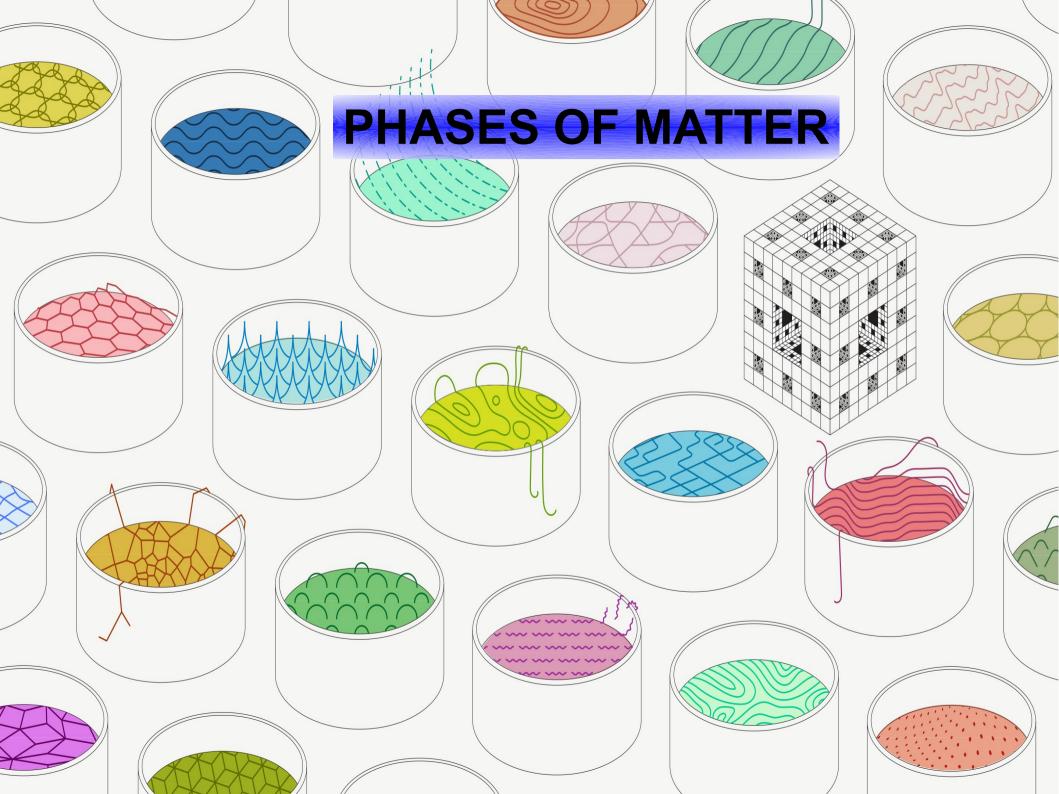
And Matteo Baggioli

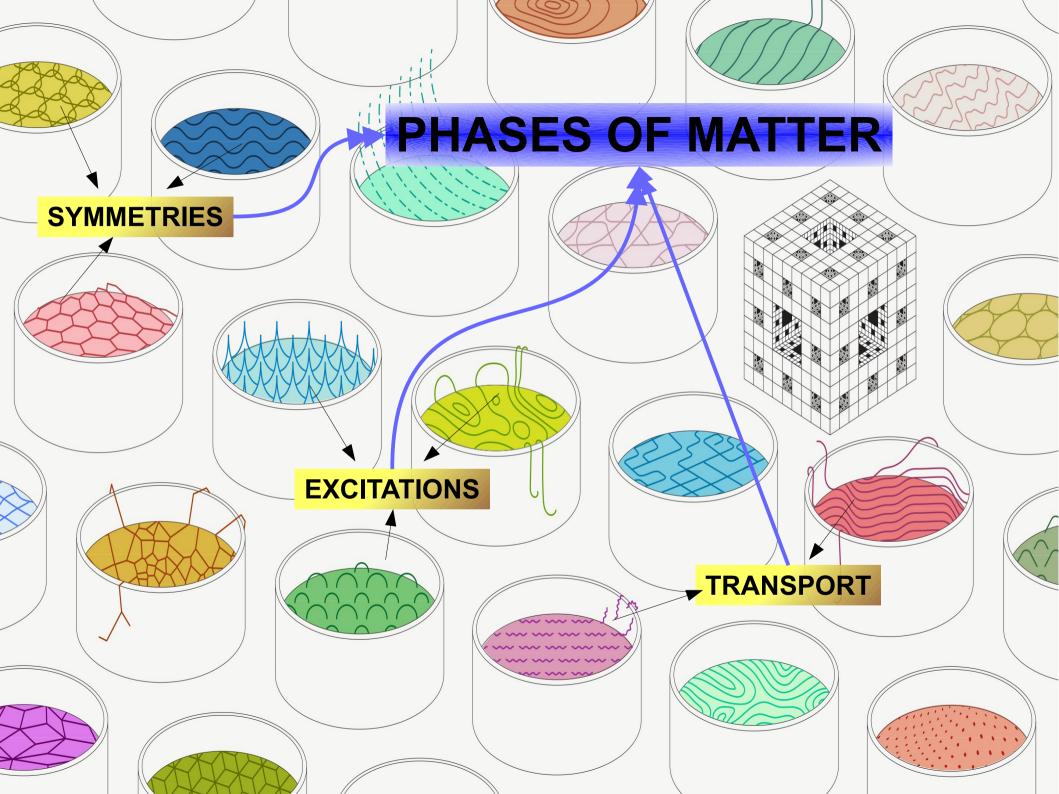
Phases of Matter & Collective Excitations (in the eyes of a high energy theorist)

Quantum Matter and Quantum Information with Holography August 23 (Sun), 2020 ~ August 31 (Mon), 2020

THANKS TO THE ORGANIZERS

AND TO





A LOT OF CONDENSED MATTER COMING !

(+ HOLOGRAPHIC APPLICATIONS, ISSUES, QUESTIONS)

[MB,Arxiv #]

[I will be sloppy with references, especially mine] [and with notations ... sorry!]

LECTURES

1

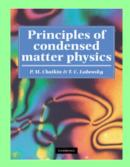
2

SOLIDS, LATTICES & SUPERLATTICES

LIQUIDS & VISCOELASTICITY

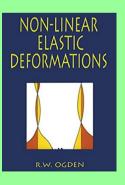
QUASICRYSTALS & INCOMMENSURATE STRUCTURES

SOLIDS, LATTICES & SUPERLATTICES



[Principles of Condensed Matter Physics, Chaikin,Lubensky, Cambridge University Press]

> [Theory of Elasticity, Volume 7, Landau- Lifshitz]



[Non-Linear Elastic Deformations, Ogden, Dover Civil and Mechanical Engineering]

arXiv:1501.03845

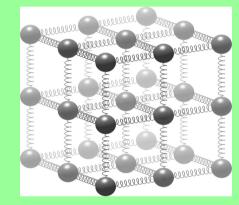
Zoology of condensed matter: Framids, ordinary stuff, extraordinary stuff

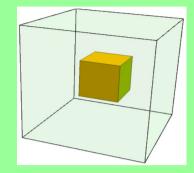
Alberto Nicolis, Riccardo Penco, Federico Piazza, Riccardo Rattazzi

What is a solid ?

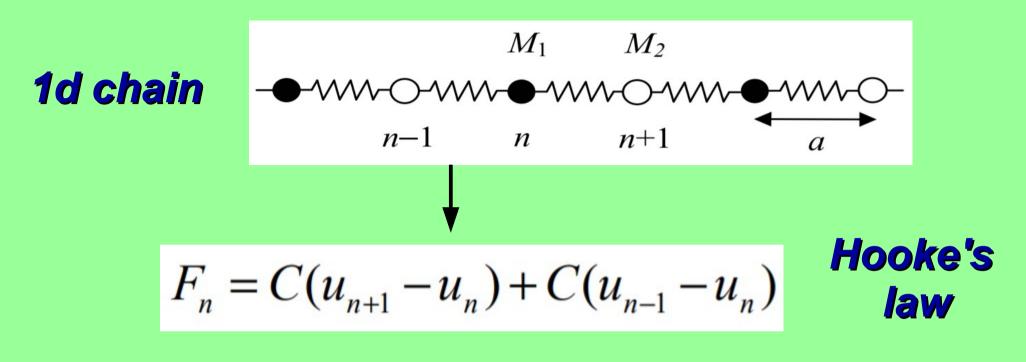
- Shape & Volume fixed
- •Rigid ----> "elastic"
- Transverse sound (phonons)

•
$$g(\omega) \sim \omega^2$$
 : Debye
• $C(T) \sim T^3$: Debye





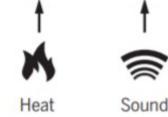
Phonons from springs



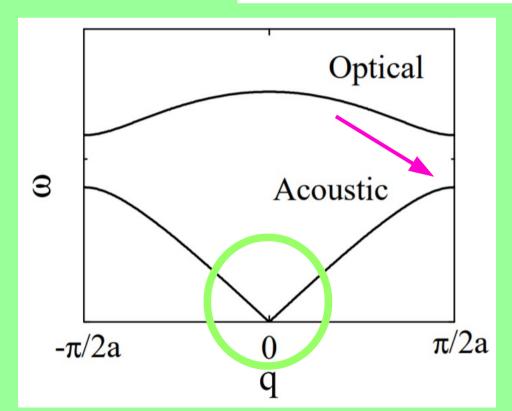
$$M_{1} \frac{d^{2}u_{n}}{dt^{2}} = -C(2u_{n} - u_{n+1} - u_{n-1})$$
$$M_{2} \frac{d^{2}u_{n+1}}{dt^{2}} = -C(2u_{n+1} - u_{n+2} - u_{n})$$

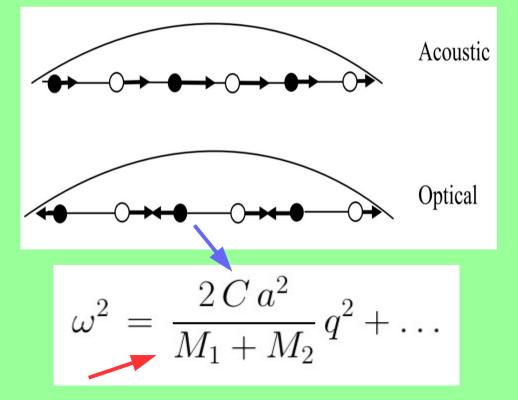
Phonons from springs

$$\begin{bmatrix} 2C - M_1 \omega^2 & -2C \cos qa \\ -2C \cos qa & 2C - M_2 \omega^2 \end{bmatrix} \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} = 0.$$



$$\omega^{2} = C \left(\frac{1}{M_{1}} + \frac{1}{M_{2}} \right) \pm C \sqrt{\left(\frac{1}{M_{1}} + \frac{1}{M_{2}} \right)^{2} - \frac{4 \sin^{2} qa}{M_{1}M_{2}}}$$





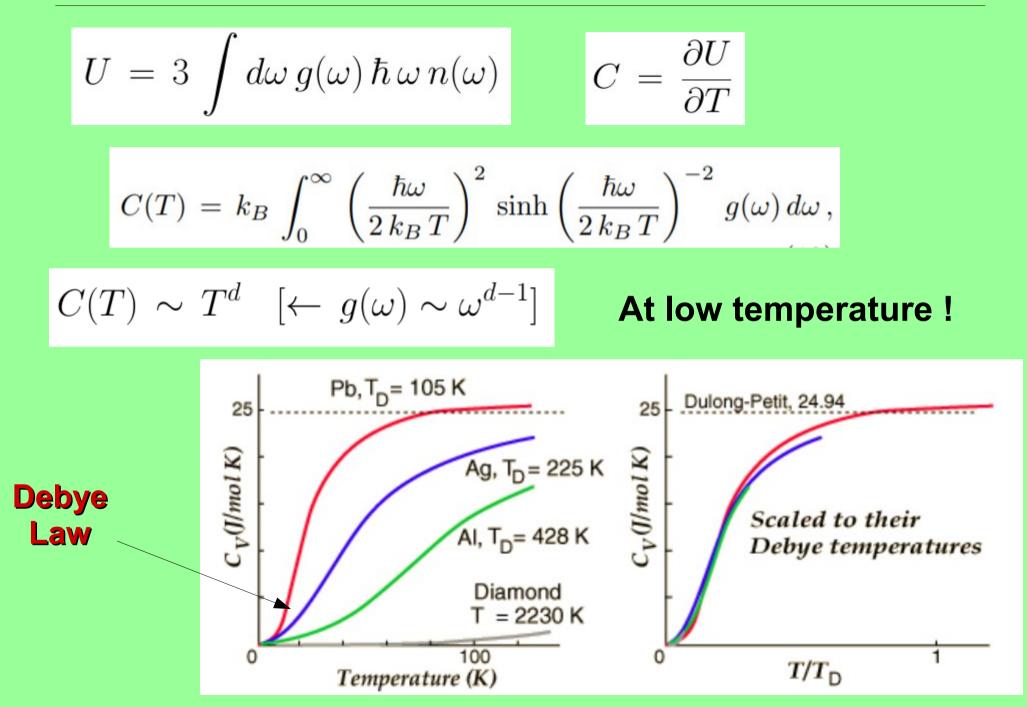
Vibrational density of states

$$N_{q
Debye model
$$g(\omega) d\omega = f(k) dk = \frac{k^2}{2\pi^2} dk$$

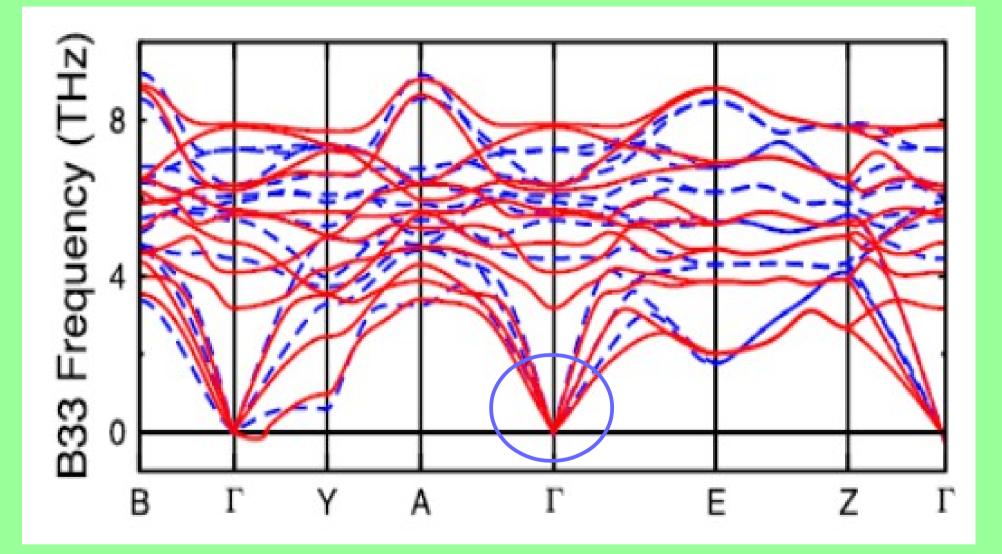
$$\omega = v k$$

$$g(\omega) = \frac{1}{2\pi^2 v^3} \omega^2$$
Van- Hove singularities
$$\frac{d\omega}{dk} = 0$$$$

Specific heat



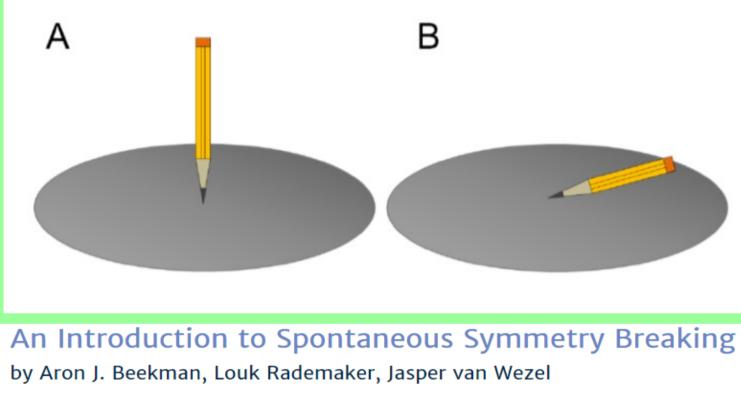
Reality check



e.g. Nickel titanium (Nitinol) https://www.youtube.com/watch?v=NcwBTn0zWHw

Towards a modern approach

Spontaneous symmetry breaking



- Published as SciPost Phys. Lect. Notes 11 (2019)

SOLID = SYSTEM THAT BREAKS SPONTANEOUSLY TRANSLATIONS

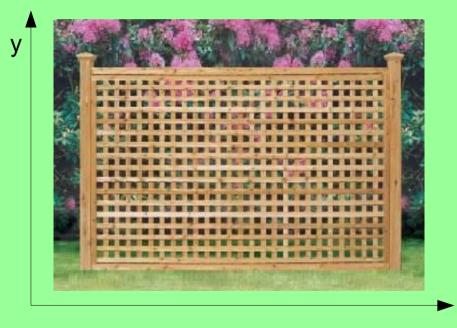
PHONONS = CORRESPONDING GOLDSTONE BOSONS

Caveats (1 example)

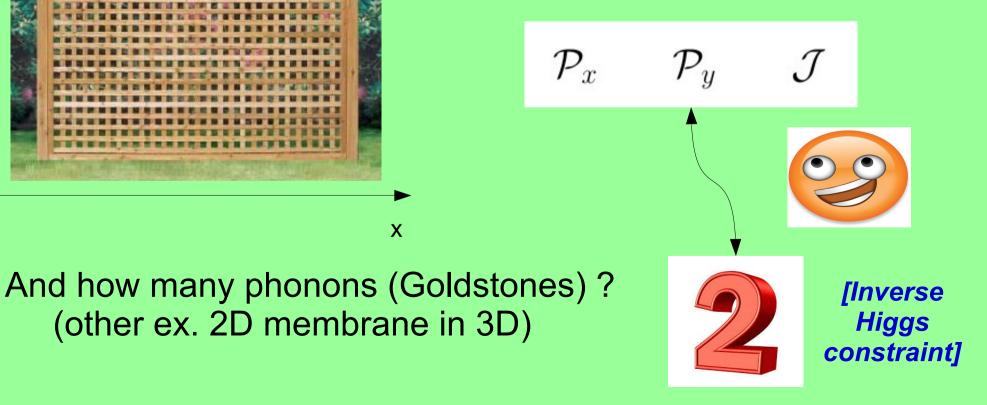
X

SPACETIME SYMMETRIES

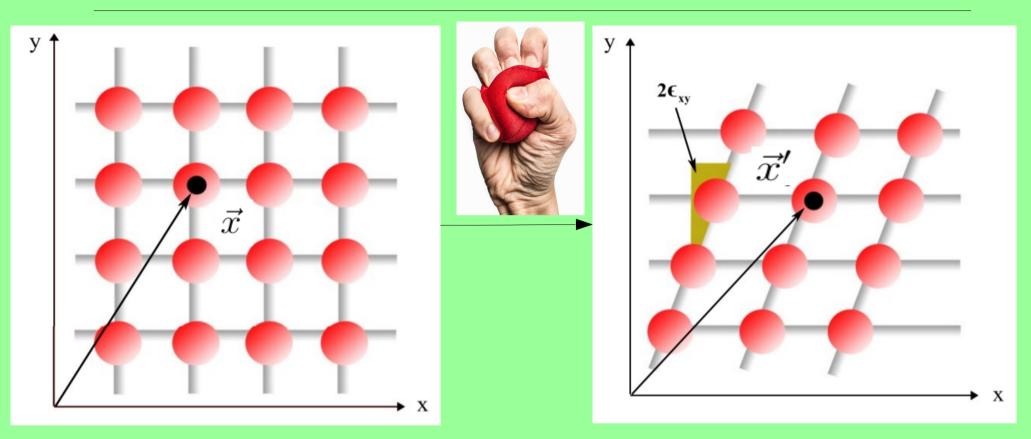
Be careful with the **Goldstone Theorem**



How many broken generators ?



Theory of elasticity

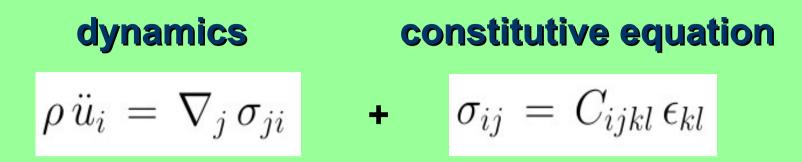


displacement
$$\vec{u} \equiv \vec{x}' - \vec{x}$$

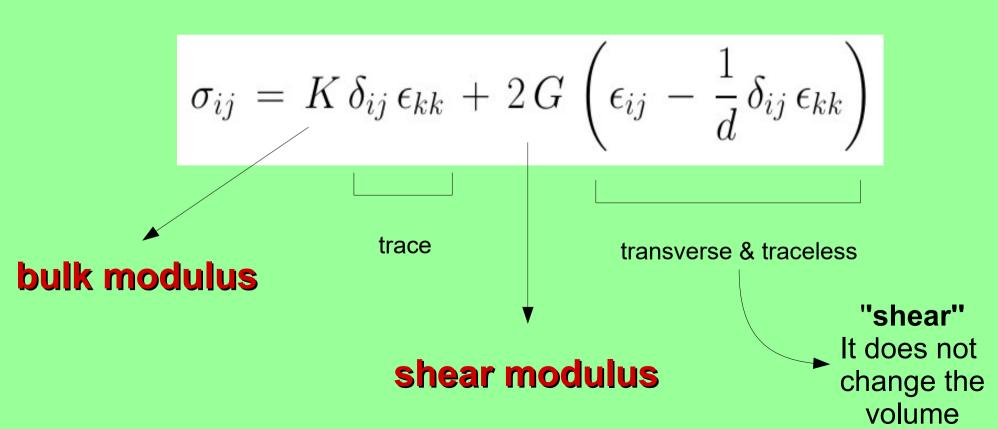
strain tensor
$$\epsilon_{ij} \equiv \frac{1}{2} \left(\partial_i u_j + \partial_j u_i \right)$$

$$u_i = \epsilon_{ij} dx^j$$

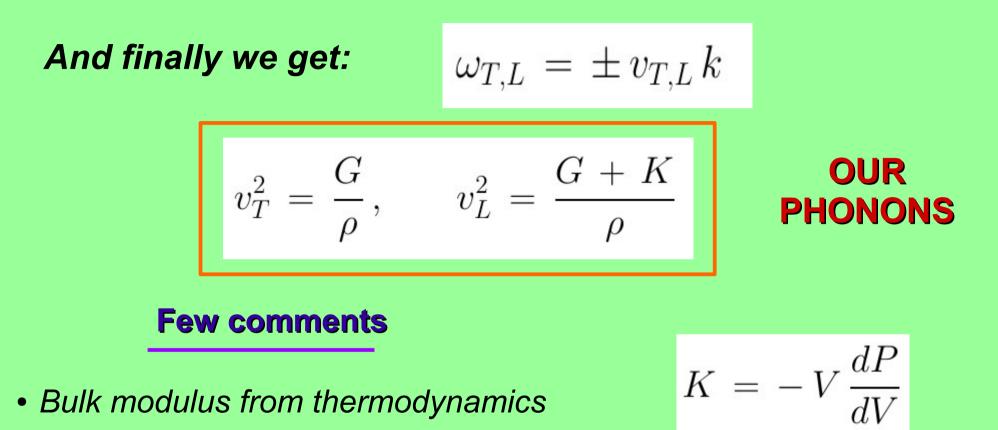
Theory of elasticity



ISOTROPIC SYSTEM



Theory of elasticity



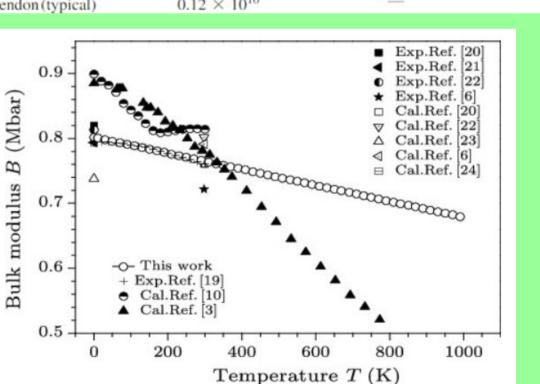
- No attenuation/dissipation
- MAAAA forever
- For relativistic theories

$$\rho \rightarrow \epsilon + p (\chi_{\pi\pi})$$

Momentum susceptibility

Some experimental data

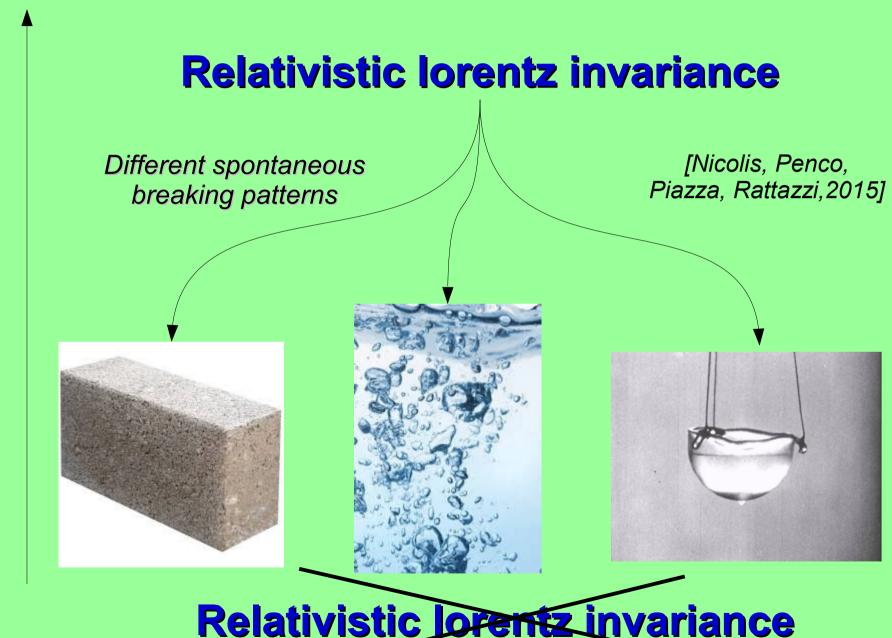
Material	Young's Modulus, Y (Pa)	Bulk Modulus, B (Pa)	Shear Modulus, S (Pa)
Aluminum	7.0×10^{10}	7.5×10^{10}	2.5×10^{10}
Brass	9.0×10^{10}	$6.0 imes 10^{10}$	$3.5 imes 10^{10}$
Copper	11×10^{10}	14×10^{10}	4.4×10^{10}
Iron	21×10^{10}	16×10^{10}	7.7×10^{10}
Lead	1.6×10^{10}	4.1×10^{10}	$0.6 imes 10^{10}$
Nickel	21×10^{10}	17×10^{10}	$7.8 imes 10^{10}$
Silicone rubber	0.001×10^{10}	0.2×10^{10}	0.0002×10^{10}
Steel	20×10^{10}	16×10^{10}	7.5×10^{10}
Tendon(typical)	0.12×10^{10}	—	—



Rigidity diminishes Increasing temperature

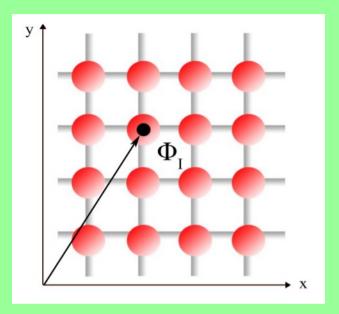
1000 Km

A systematic classification



First step to be modern

Build a field theory language



Set of "comoving coordinates"

$$\Phi^i = x^i + \phi^i(t, x)$$

Equilibrium

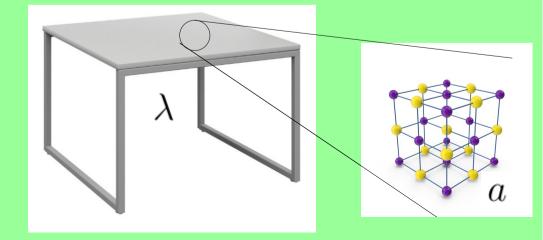
PHONONS

$$\varepsilon_{ij} = \frac{1}{2} \left(\partial_i \phi_j + \partial_j \phi_i \right)$$

Assumptions :

$$\lambda \gg a$$

Isotropy and homogeneity at large scales



The effective action

Lowest order :
$$\mathcal{I}^{IJ} = g^{\mu\nu}\partial_{\mu}\Phi^{I}\partial_{\nu}\Phi^{J}$$

 $Z = \det(\mathcal{I}^{IJ})$ $d-2 \operatorname{traces} X_{n} = \operatorname{tr}\left\{(I^{IJ})^{n}\right\}$

Most general action

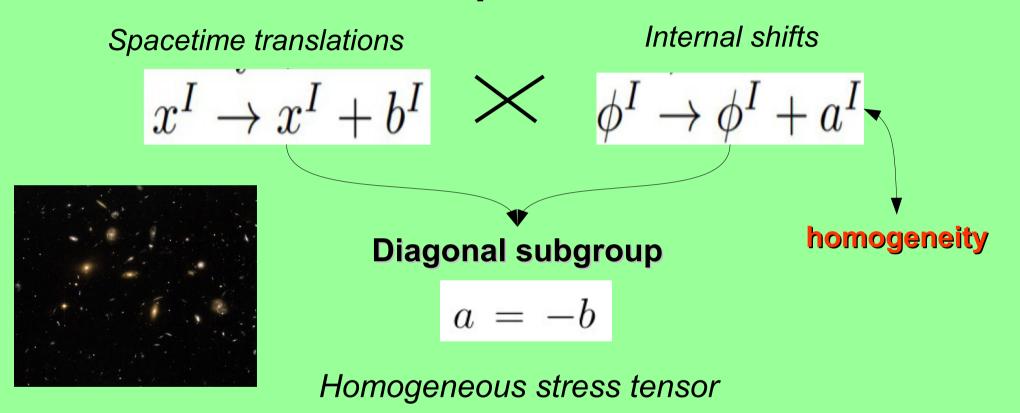
$$S = -\int d^d x \sqrt{-g} V(Z, \{X_n\})$$

For the moment flat space

Ý

The formalism

SSB pattern



$$T_{\mu\nu} = -\frac{2}{\sqrt{-g}} \frac{\delta S}{\delta g^{\mu\nu}} \Big|_{g=\eta} = -\eta_{\mu\nu} V + 2 \partial_{\mu} \phi^{I} \partial_{\nu} \phi_{I} V_{X} + 2 \left(\partial_{\mu} \phi^{I} \partial_{\nu} \phi_{I} X - \partial_{\mu} \phi^{I} \partial_{\nu} \phi^{J} \mathcal{I}_{IJ} \right) V_{Z} .$$
(5)

Some phenomenology

$$T^{tt} \equiv \rho = V,$$

$$T^{x}_{x} \equiv p = -V + XV_{X} + 2ZV_{Z},$$

$$T^{x}_{y} = 2\partial_{x}\phi^{I}\partial_{y}\phi^{I}V_{X},$$

Shear modulus

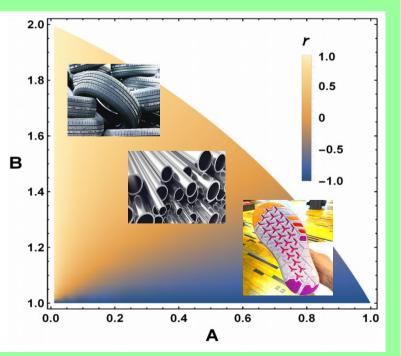
$$G = 2V_{X}$$

Bulk modulus $K = 2ZV_Z + 4Z^2V_{ZZ} + 4XZV_{XZ} + X^2V_{XX}$

$$V(X,Z) = \rho_{\rm eq} X^A Z^{(B-A)/2}$$

$$G = \rho_{\rm eq} 2^A A, \quad K = \rho_{\rm eq} 2^A B (B-1)$$

Poisson's ratio $\mathfrak{r} \equiv \frac{K-G}{K+G}$



[MB,1708.08477]

The collective excitations (phonons)

$$\phi^{I} = \phi^{I}_{\rm str} + \pi^{I}$$

and expand the action at 2nd order

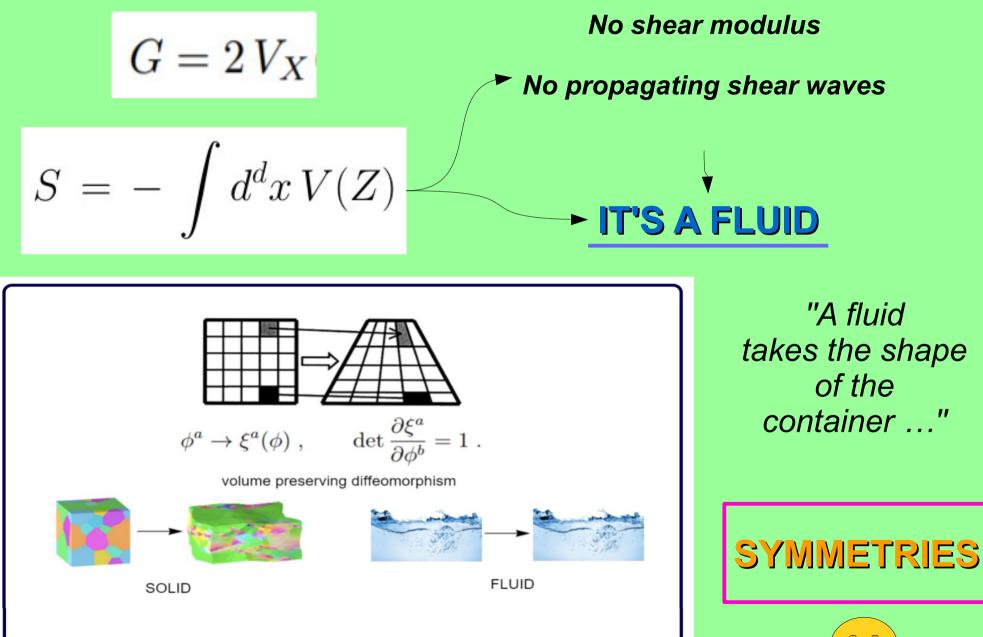
[MB,1708.08477]

$$\delta S_2 = \int d^3x \left[N_T \dot{\pi}_T^2 + N_L \dot{\pi}_L^2 + 2N_{TL} \dot{\pi}_T \dot{\pi}_L - c_T^2 (\partial_x \pi_T)^2 - c_L^2 (\partial_x \pi_L)^2 - 2c_{TL}^2 \partial_x \pi_T \partial_x \pi_L \right], \quad (A3)$$

$$\pi_{L/T} = a_{L/T} e^{i\omega t - ikx} \longrightarrow \begin{pmatrix} \#(\omega, k) \ \#(\omega, k) \\ \#(\omega, k) \ \#(\omega, k) \end{pmatrix} \begin{pmatrix} a_T \\ a_L \end{pmatrix}$$

$$\omega_{T,L} = \pm v_{T,L} k \qquad v_T^2 = \frac{G}{\epsilon + p}, \qquad v_L^2 = \frac{G + K}{\epsilon + p}$$

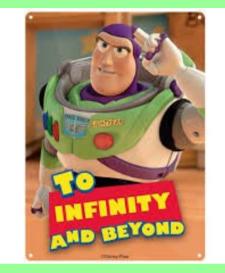
Solid VS fluids part l



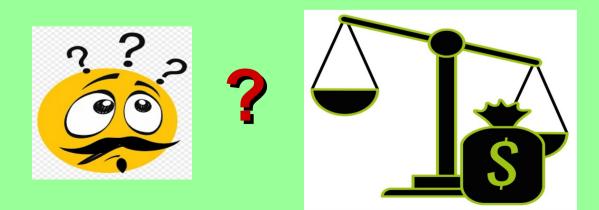
EFT is nice but ...

1) Very hard to include dissipation (problem of the field theory formalism)

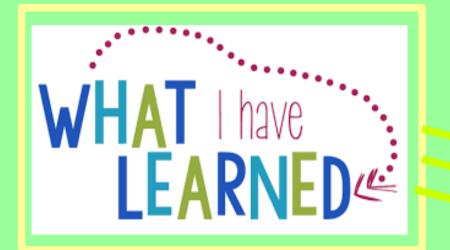
> Fundamental for attenuation, viscous effects, Viscoelastic materials, finite T effects, ...



It does not predict any transport coefficient (microscopics are needed)

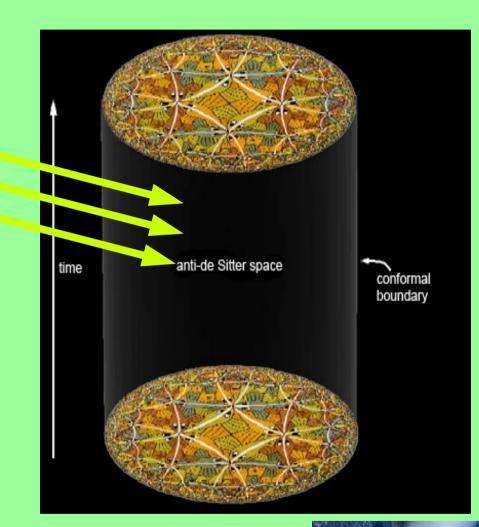


Holographic counterpart



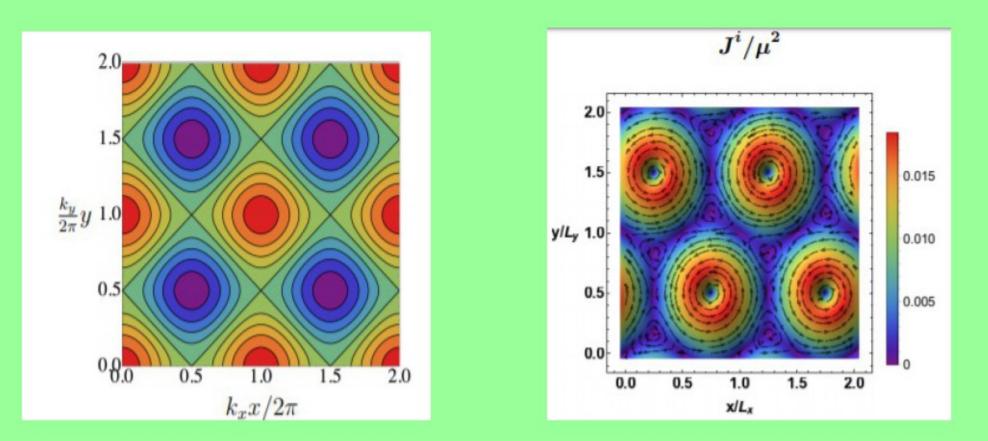
The key concept

Breaking translations Spontaneously !



OUR GOAL !

If you are strong & patient (not like me)



Black hole instabilities at finite momentum!

The solution wants to "fall" into a inhomogeneous background, "a lattice"

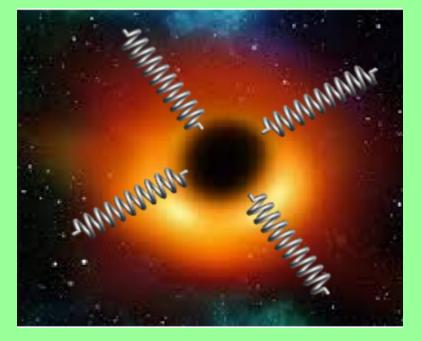
[Donos,Krikun, Andrade, Pantelidou, Li, Zaanen, Cremonini, Schalm, ...]

How to embed this into Holography

$$S = M_P^2 \int d^4x \sqrt{-g} \left[\frac{R}{2} + \frac{3}{\ell^2} - m^2 V(X) - \frac{1}{4} F^2 \right],$$

gravity

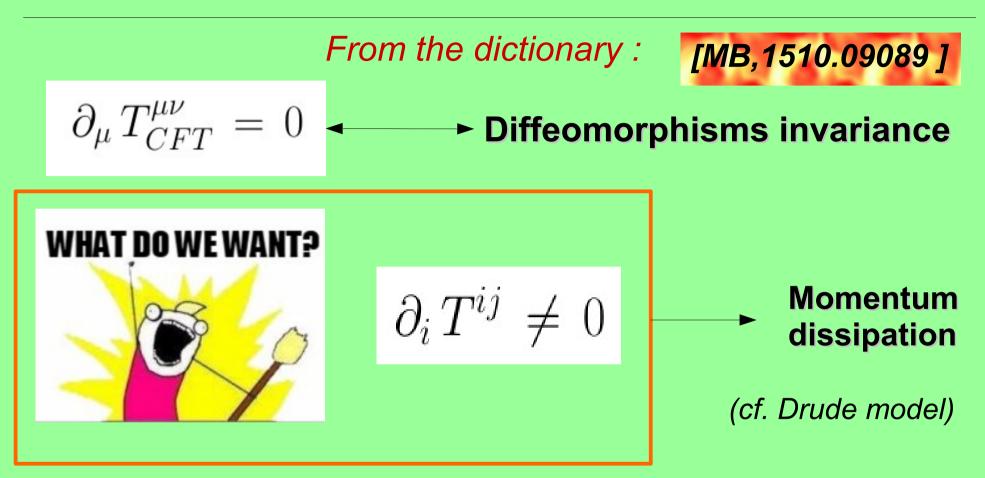
$$ds^2 = \frac{1}{u^2} \left[-f(u) dt^2 - 2 dt du + dx^2 + dy^2 \right]$$
HEY
OLD
FRIEND
HEY



Asymptotically AdS ELASTIC black hole

(analytic background = easy)

Lorentz-Violating Massive gravity



Caveats: 1) Breaking lorentz invariance (energy conserved)

2) We want to break it spontaneously !!!

Explicit VS Spontaneous

How do we do it:
$$\phi^I = x^I$$

$$V(X) = X^n$$
 $\phi^I(u, x) = \phi^I_0(x) + \phi^I_1(x) u^{5-2n} + \dots$

$$x^{I} \,=\, \phi^{I}_{0}(x) \equiv source$$

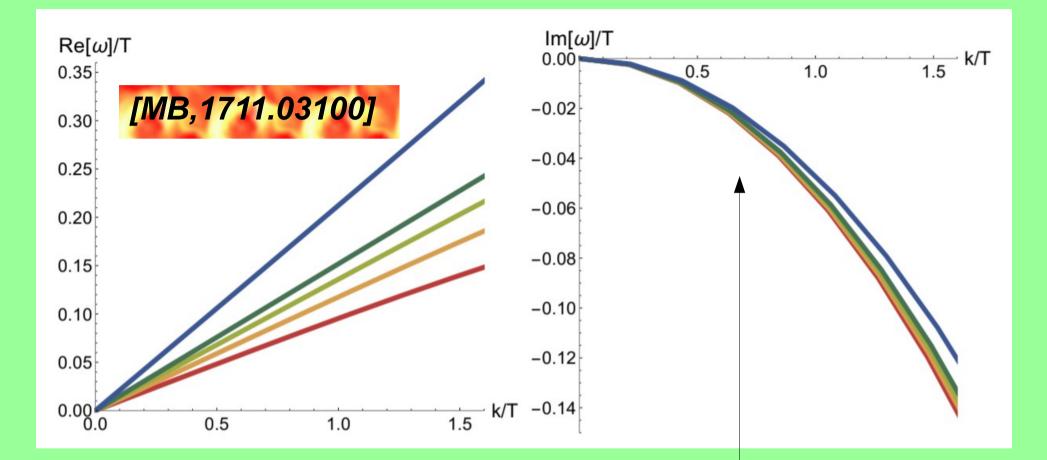
$$x^{I} \,=\, \phi^{I}_{0}(x) \equiv \langle \mathcal{O}^{I} \rangle$$

Explicit breaking

Spontaneous breaking

[MB,1711.03100]

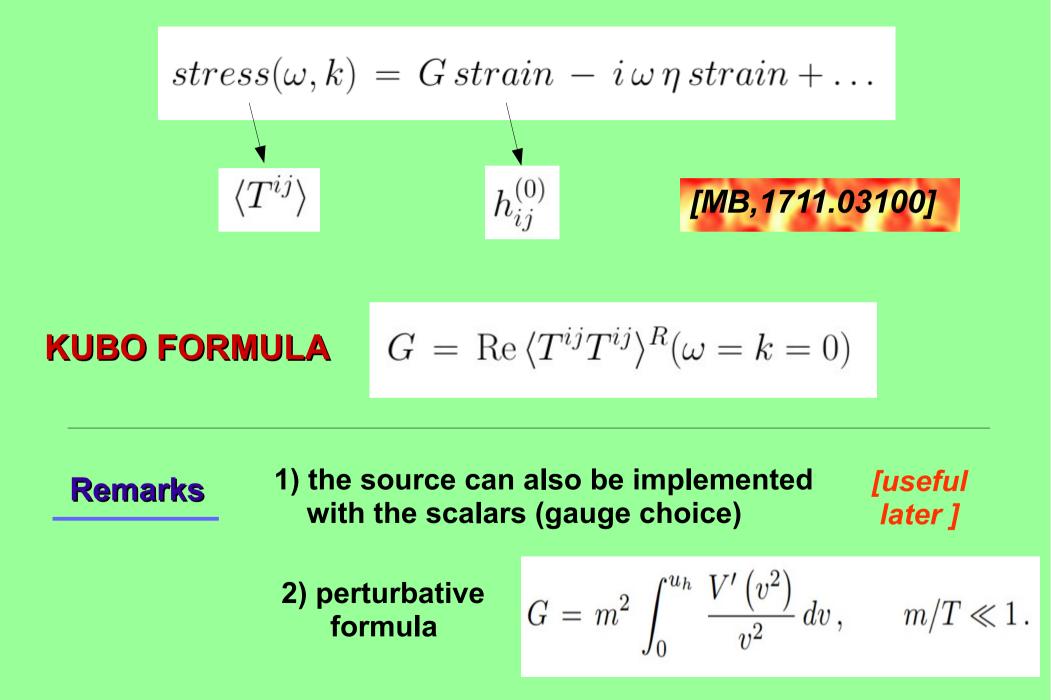
Where are the phonons



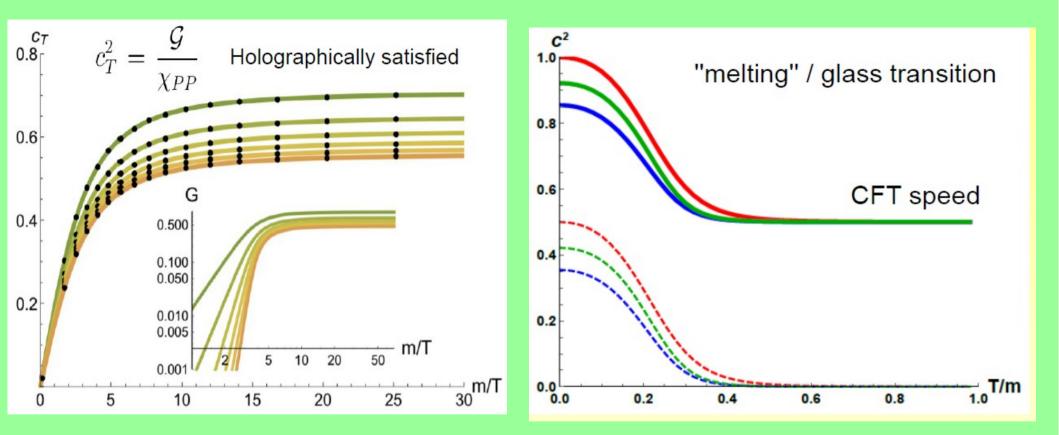
Transverse Phonons (it is a solid !)

$$\omega = v k - \left(i \frac{\Gamma}{2} k^2\right) + \dots$$

The elastic modulus



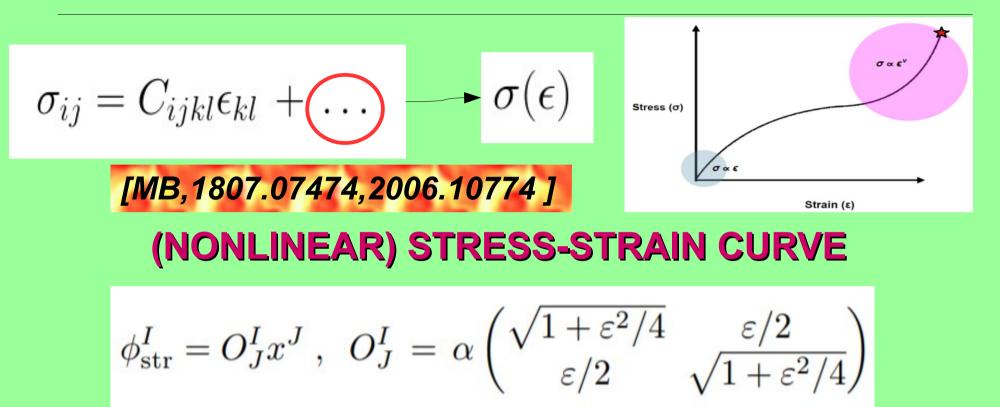
How does a holographic solid sound



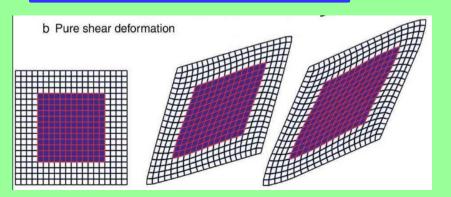
The formulas for the speeds works perfectly !

+ $v_L^2 = \frac{1}{2} + v_T^2$ Conformal symmetry [MB,1711.03100,1910.05281]

Beyond linear elasticity



BULK STRAIN $\varepsilon_{ii} = 2(\alpha - 1)$



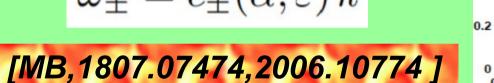
SHEAR STRAIN

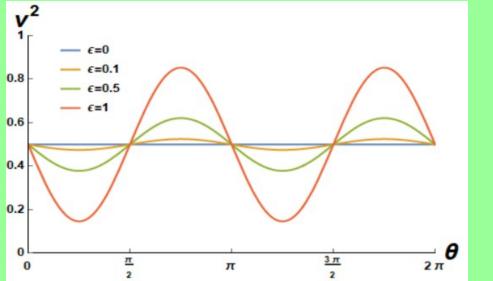
 ε

Beyond linear elasticity

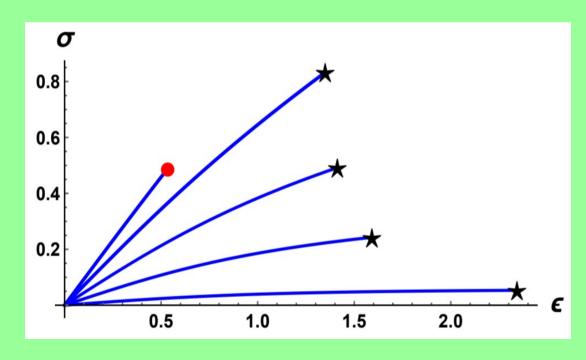
Phonon speeds become anisotropic

$$\omega_{\pm} = c_{\pm}(\alpha, \varepsilon) \, k$$





Non-linear large Deformations curves + breaking $V(X,Z) = \rho_{\rm eq} X^A Z^{(B-A)/2}$ $\sigma(\varepsilon) \sim A \varepsilon^{2A}$ $\Delta T_{ii}(\kappa) \sim (B-1) \kappa^{2B}$



Beyond holographic linear elasticity

[MB,1807.07474,2006.10774]

Same as before :

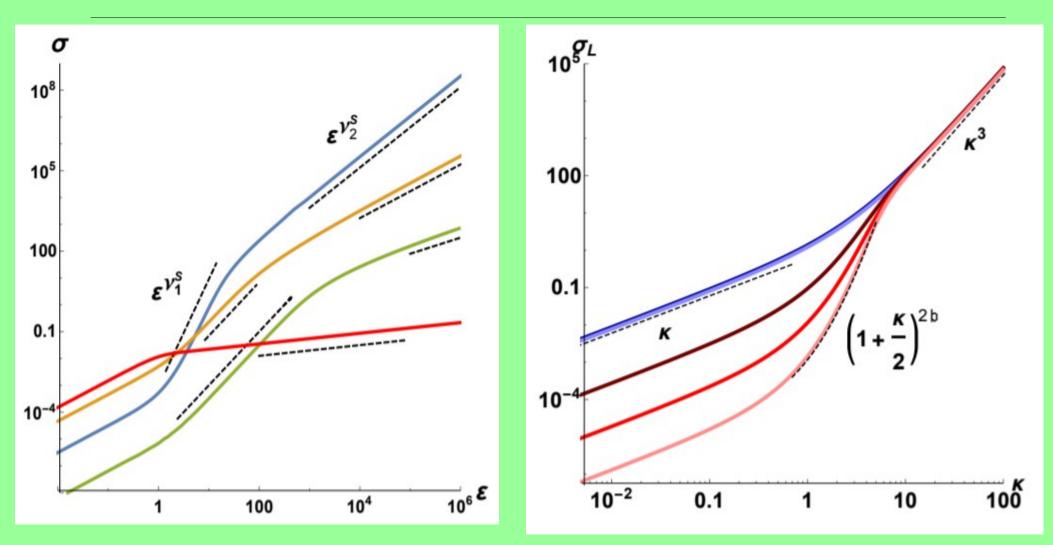
 $\Phi^I(u,x) = O^I_j \, x^j$

+ :
$$ds^2 = \frac{1}{u^2} \left(-f(u) e^{-\chi(u)} dt^2 + \frac{du^2}{f(u)} + \gamma_{ij}(u) dx^i dx^j \right)$$

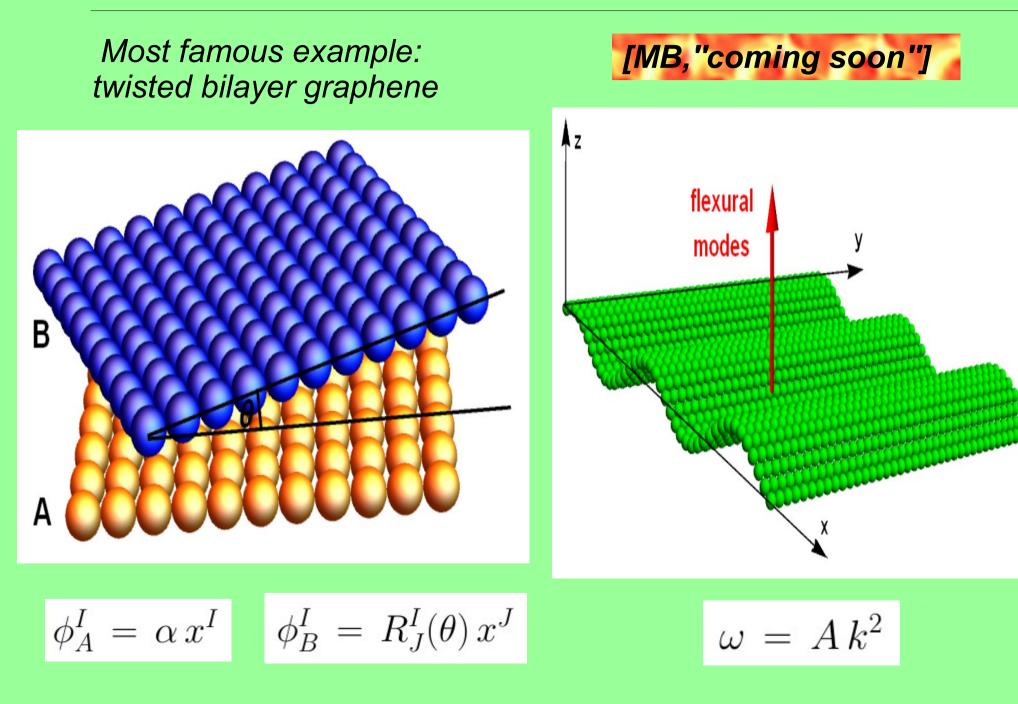
Anistropic black hole with finite background strain (spin 2 hair)

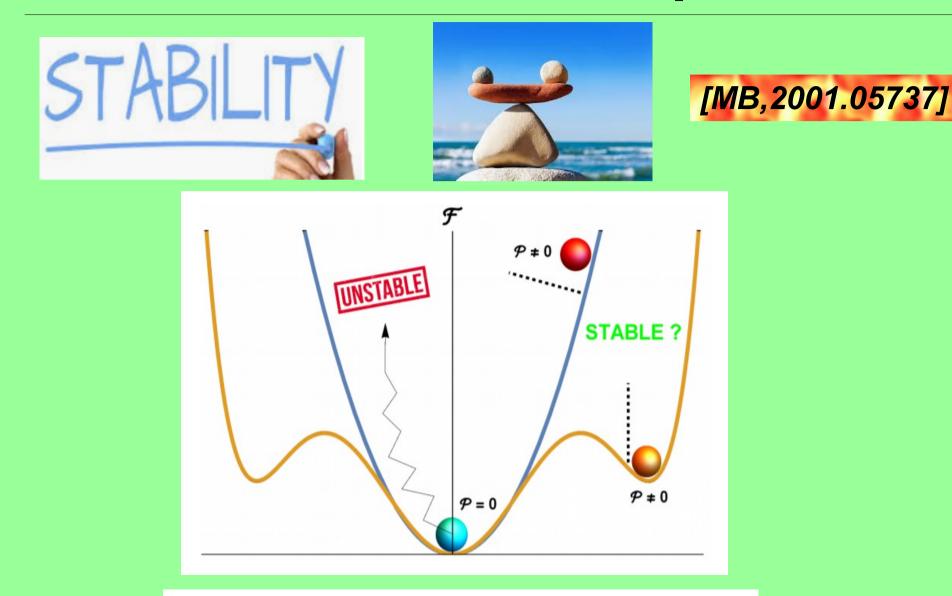
$$\widehat{\gamma} = \exp\left[h_+(u)\,\widehat{\sigma}_+ + h_\times(u)\,\widehat{\sigma}_\times\right] \qquad h_\times = h\cos\theta \qquad h_+ = h\sin\theta$$

Beyond holographic linear elasticity



A lot of phenomeology to explore + a nice example of nonlinear response In holography (cf.nonlinear conductivity) !



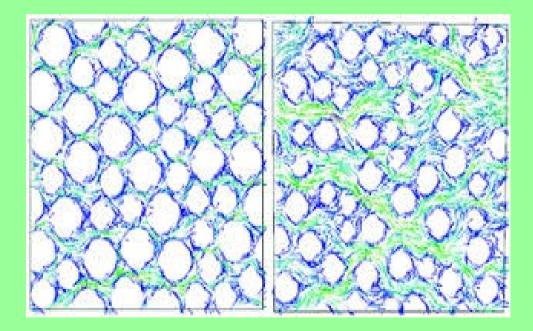


Pattern formation outside of equilibrium

M. C. Cross and P. C. Hohenberg Rev. Mod. Phys. **65**, 851 – Published 1 July 1993

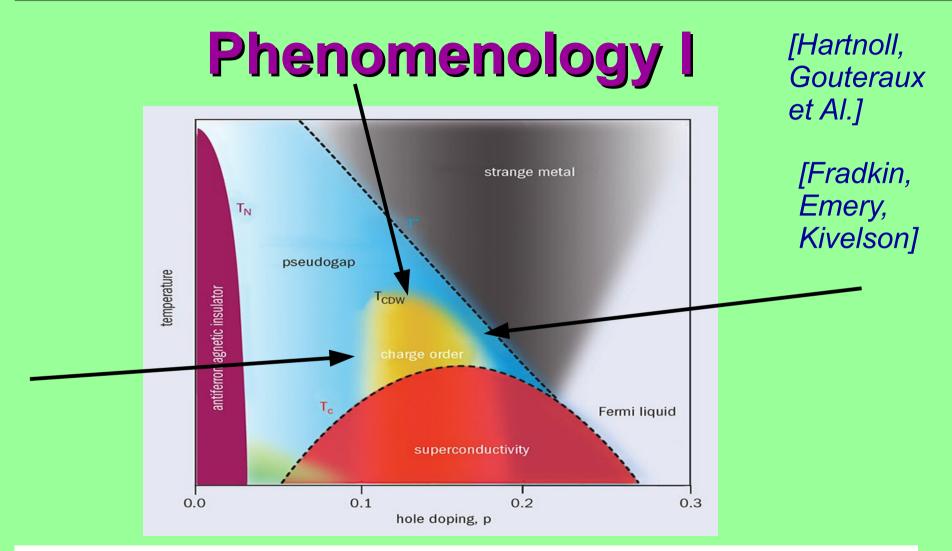
Hydrodynamics & Strain pressure

[Armas, Jain]



Unified Hydrodynamic Theory for Crystals, Liquid Crystals, and Normal Fluids

P. C. Martin, O. Parodi, and P. S. Pershan Phys. Rev. A 6, 2401 – Published 1 December 1972



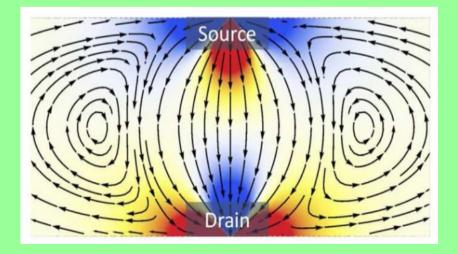
Colloquium: Theory of intertwined orders in high temperature superconductors

Eduardo Fradkin, Steven A. Kivelson, and John M. Tranquada Rev. Mod. Phys. **87**, 457 – Published 26 May 2015

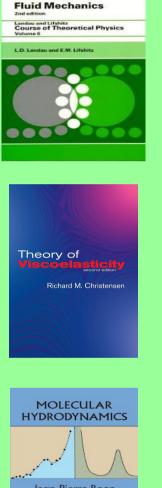
Phenomenology II

Phonons in the critical region (glassy features ?)

Phonons hydrodynamics



LIQUIDS & VISCOELASTICITY



[Fluid Mechanics, Landau & Lifshitz]

[Theory of Viscoelasticity, Christensen]

Jean Pierre Boon and Sidney Yip

[Molecular Hydrodynamics, Boon & Yip]

Lectures on hydrodynamic fluctuations in relativistic theories

Pavel Kovtun

arXiv:1205.5040

What is a liquid ?

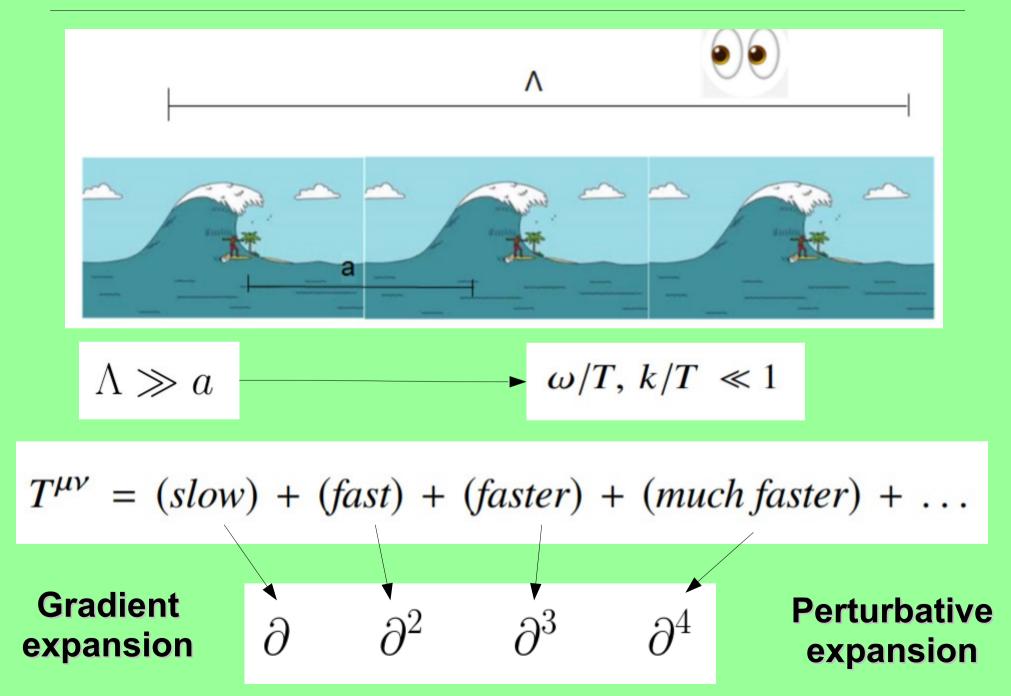
 Shape not fixed but volume fixed

 Not Rigid ----> "viscous" (response only to shear strain rate)

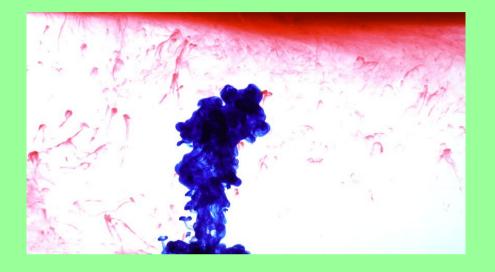
$$\sigma = \eta \dot{\epsilon}$$

Shear diffusion

Hydrodynamics



Example: diffusion



Continuity equation :

Transverse sector : Shear diffusion Dissipation Viscosity

Fick's law :

$$egin{array}{lll} rac{\partial \phi}{\partial t} +
abla \cdot \mathbf{j} = 0, & \mathbf{j} = -D(\phi, \mathbf{r}) \,
abla \phi(\mathbf{r}, t) & \ \omega = - i \, D \, k^2 \, + \, \dots \end{array}$$

Example: relativistic hydrodynamics

$$D = \frac{\eta}{sT} = \frac{1}{4\pi T}$$

Difficulties with liquids

+ symmetries

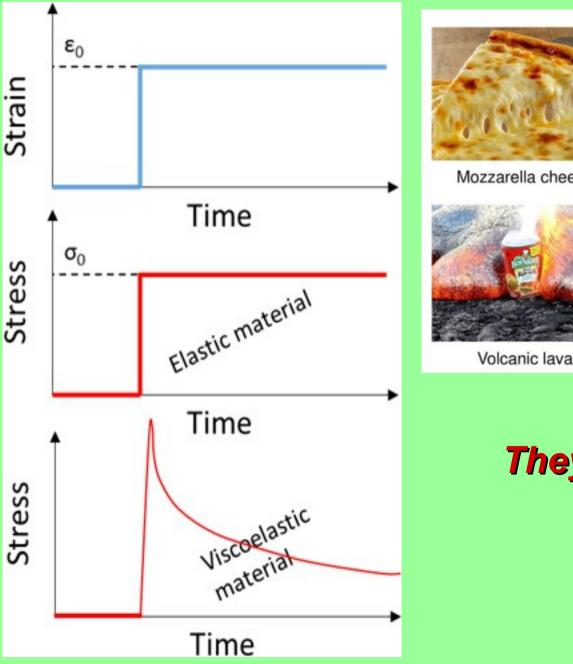
Very different from what we discussed for solids !

Where is the action ? (e.g. action for a diffusive mode)

DISSIPATION

HERMITIAN ACTION

Viscoelastic materials



Mozzarella cheese

Human skin

Turbine blades

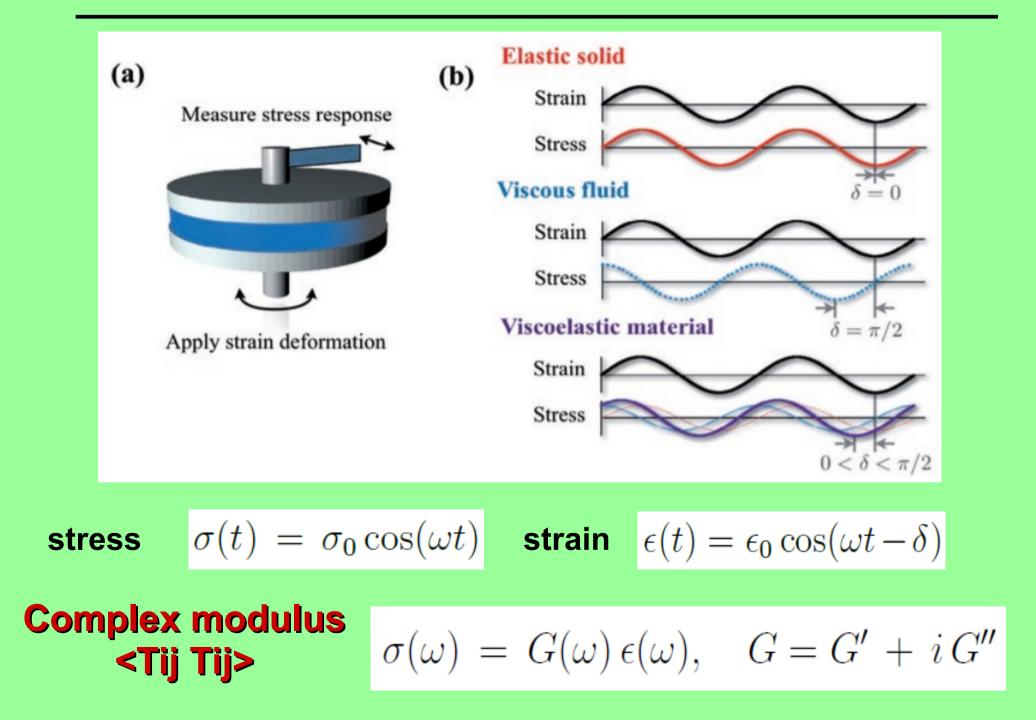
Memory foams

They combine elastic and viscous response

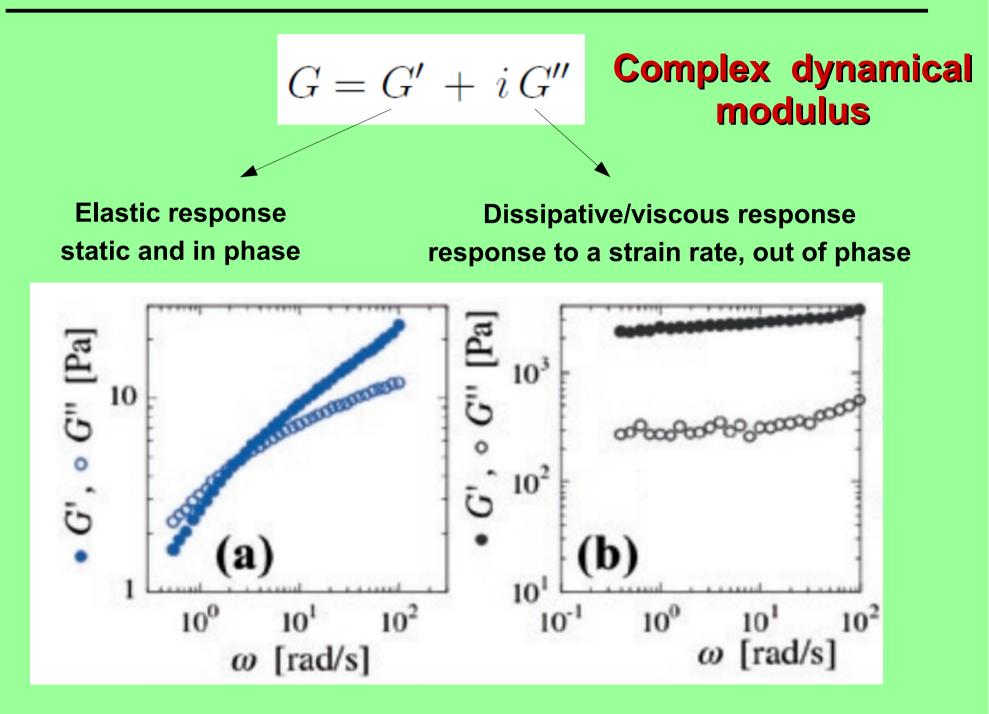
Naval ship propellers

Complex dynamics

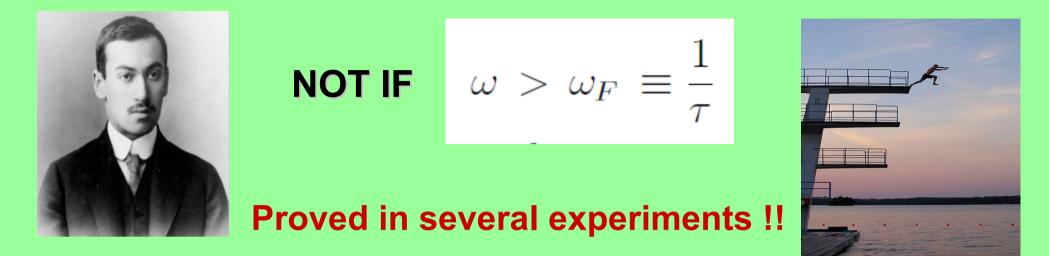
Experimental tests



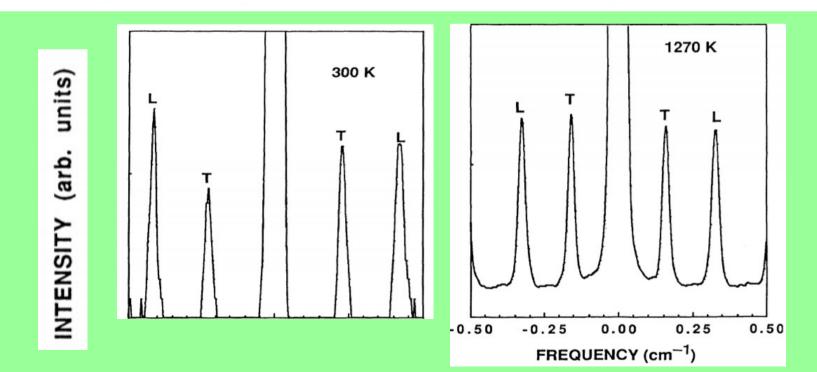
Solids VS fluids (again)

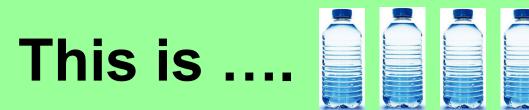


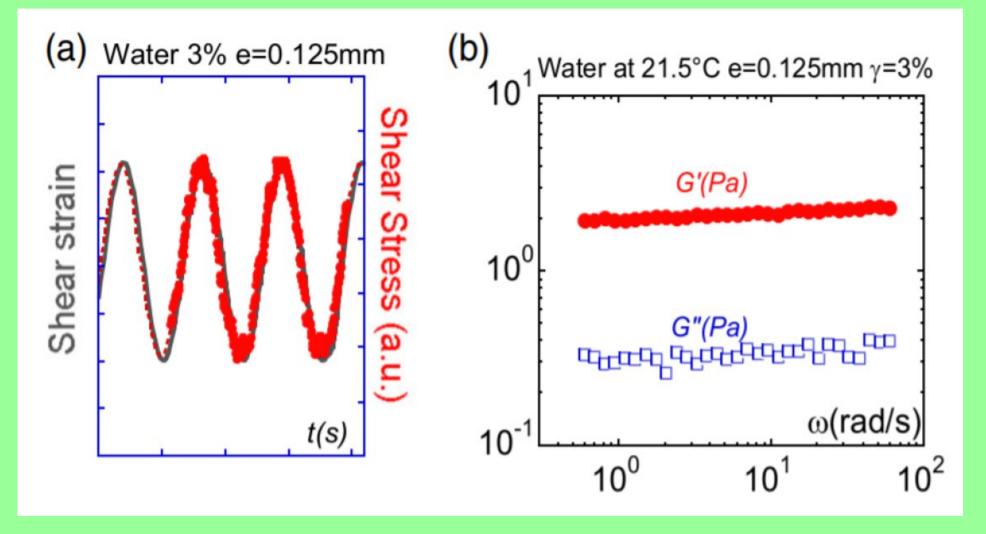
Are liquids and solids really different ?



High-frequency longitudinal and transverse dynamics in water



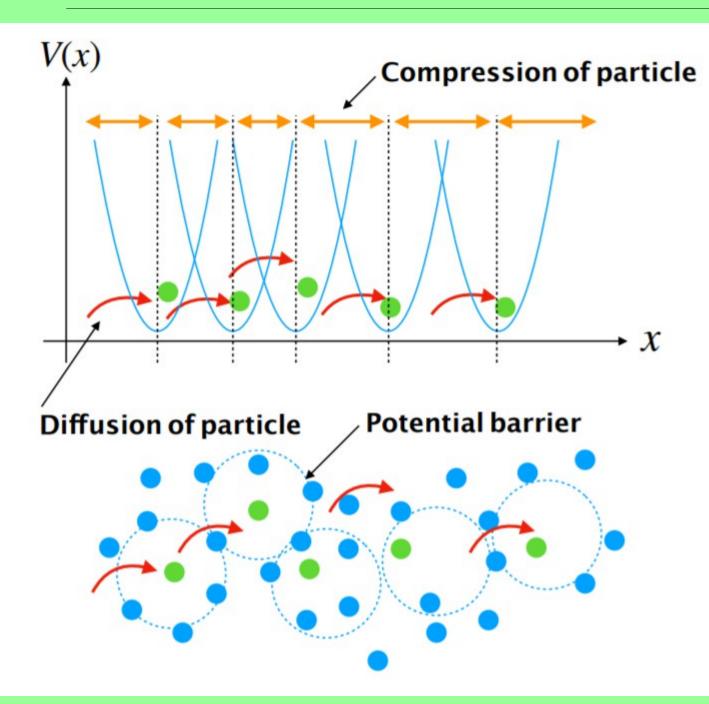




LIQUIDS SUPPORT PROPAGATING SHEAR WAVES ALSO AT LOW FREQUENCIES !!! LIQUIDS BEHAVE LIKE ELASTIC SOLIDS ALSO AT LOW FREQUENCY !!!

[Noirez et al, J. Phys.: Condens. Matt. 2012]

Let us think more about liquids

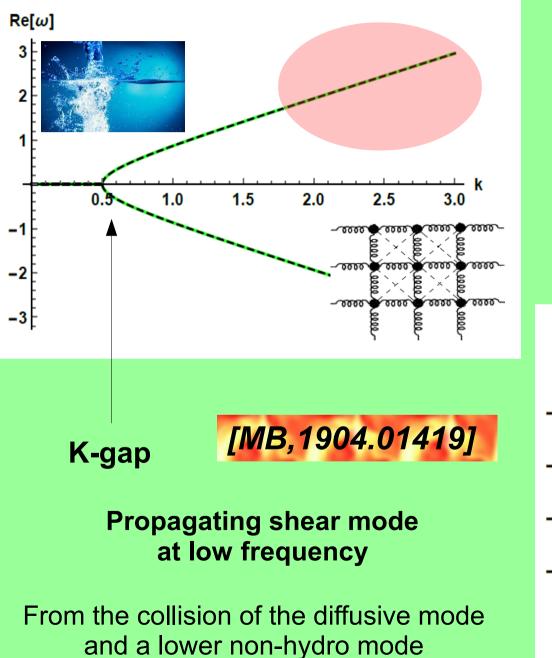


Average time of rearrengements of molecules

τ

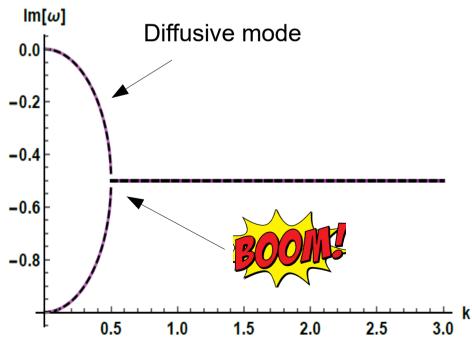
Average time of particles jumps through the potential barrier

The Maxwell-Frenkel approach

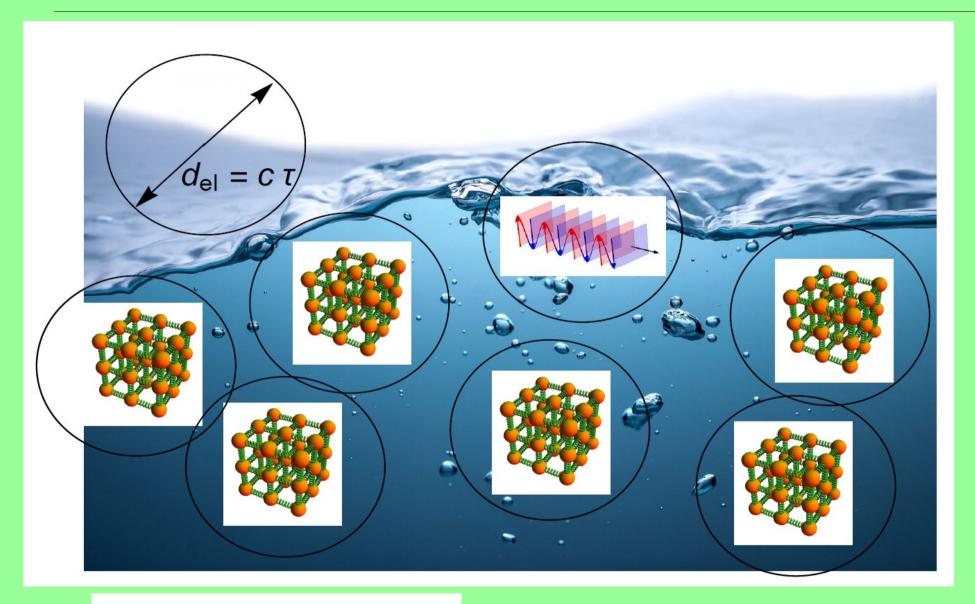


$$\omega^2 + \omega \frac{i}{\tau} - \mathcal{V}^2 k^2 = 0$$

$$\omega = -\frac{i}{2\,\tau} \pm \sqrt{\mathcal{V}^2 \,k^2 \,-\,\frac{1}{4\,\tau^2}}$$



Physical meaning [MB,1904.01419]



 $k > k_g = \frac{1}{2c\tau}$

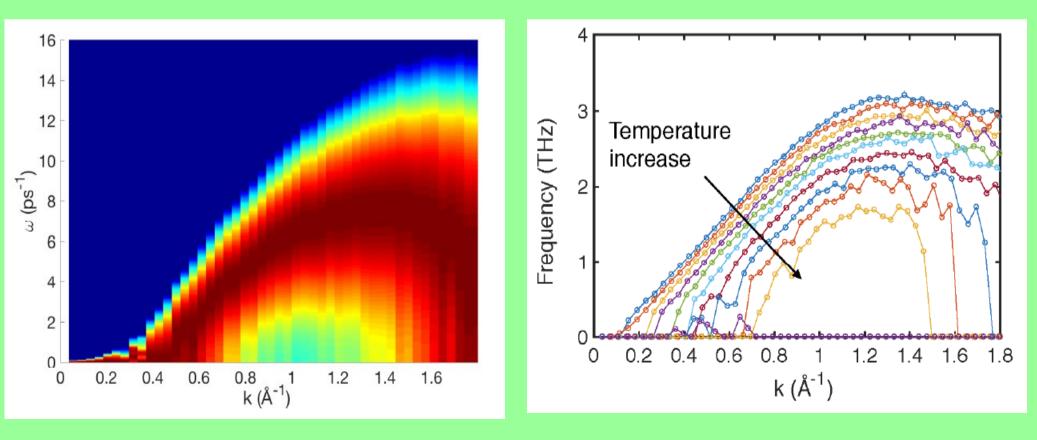
 $d_{\rm el}$ = = $c\tau$

Molecular dynamic simulations

[C. Yang, M. T. Dove, V. V. Brazhkin, K. Trachenko, PRL 2017]

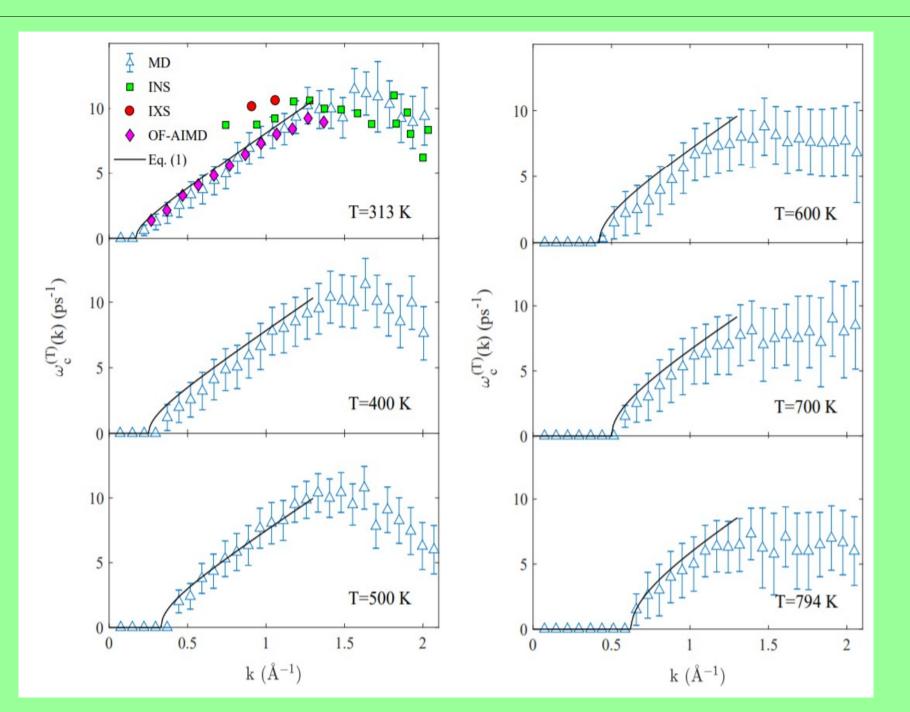
K-gap observed in molecular dynamical simulations

The K-gap increases with temperature in agreement with the idea that tau decreases.



Experiments (Ga)

[Trachenko et Al, 2020]



work W done to move the liquid.

$$W \propto Fs$$

F is the viscous force $F \propto \eta \frac{ds}{dt}$

[MB,2004.13613]

New dissipative term

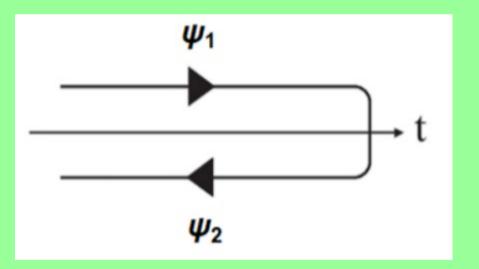
$$L_d \propto \phi_1 \frac{\partial \phi_2}{\partial t} - \phi_2 \frac{\partial \phi_1}{\partial t}$$

[It needs two scalar fields ...]

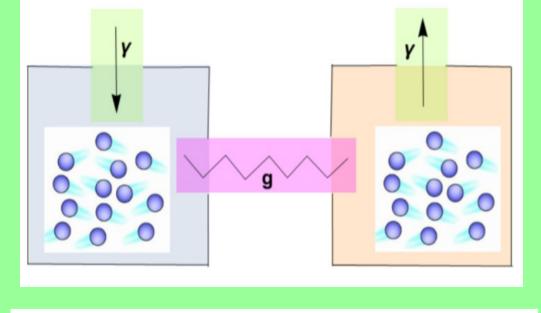
$$L_{\psi} = \frac{1}{2} \left[\left(\frac{\partial \psi_1}{\partial t} \right)^2 - c^2 \left(\frac{\partial \psi_1}{\partial x} \right)^2 - \left(\frac{\partial \psi_2}{\partial t} \right)^2 + c^2 \left(\frac{\partial \psi_2}{\partial x} \right)^2 \right] + \frac{1}{2\tau} \left(\psi_2 \frac{\partial \psi_1}{\partial t} - \psi_1 \frac{\partial \psi_2}{\partial t} \right)$$
(23)
$$H_{\psi_2} = \frac{1}{2\tau} \left(\psi_2 \frac{\partial \psi_1}{\partial t} - \psi_1 \frac{\partial \psi_2}{\partial t} \right)$$
(23)

Keldysh-Schwinger interpretation

$$e^{W(\zeta_1,\zeta_2)} = \int D\psi_1 D\psi_2 e^{i \int_{\infty}^{t} dt (\mathcal{L}(\psi_1;\xi_1) - \mathcal{L}(\psi_2;\xi_2)) + i \mathcal{L}_{1,2}(\infty)}$$



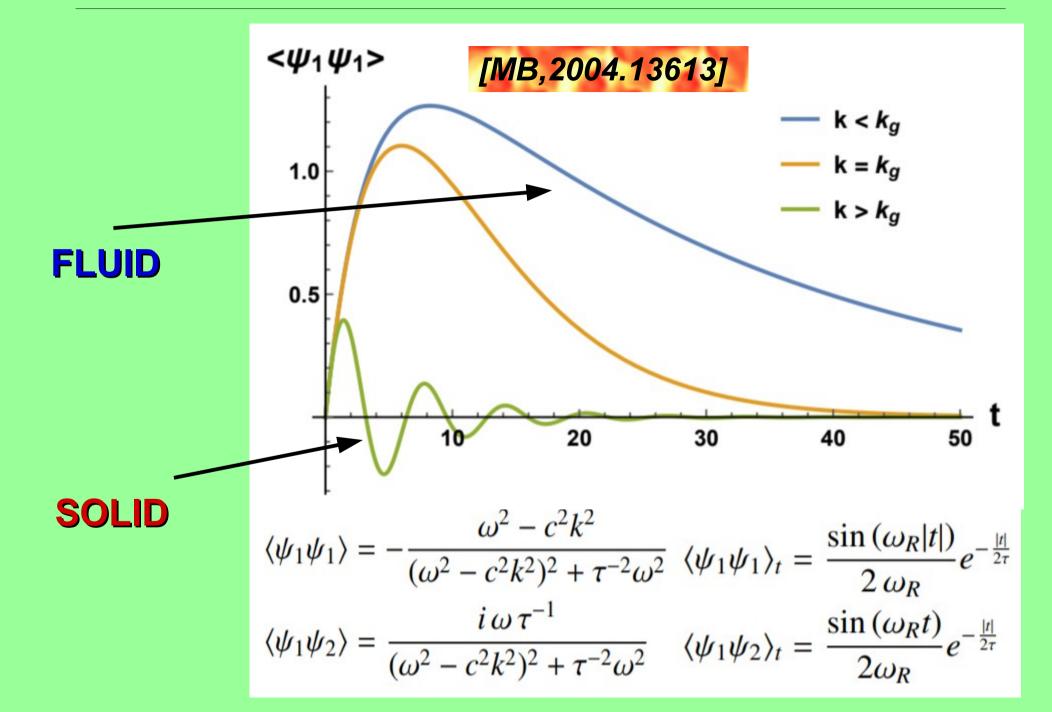
[MB,2004.13613]

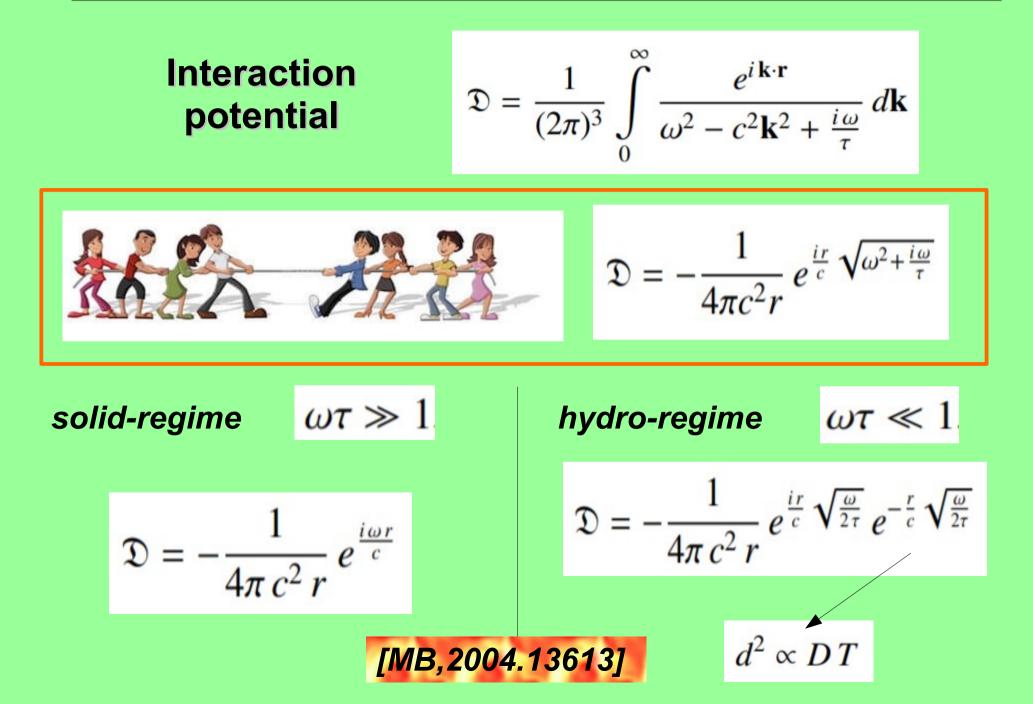


Non-hermitian (= dissipation)

PT symmetry (=unitary)

$$\frac{dO(t)}{dt} = i e^{i H^{\dagger} t} \left(H^{\dagger} O - O H \right) e^{-i H t}$$





Relativistic hydrodynamics

$$\omega \,=\, -\, i\, \frac{\eta}{\epsilon \,+\, p}\, k^2$$

SHEAR DIFFUSION (linear order)

$$|v| = \left|\frac{\partial \omega}{\partial k}\right| \sim k > c$$

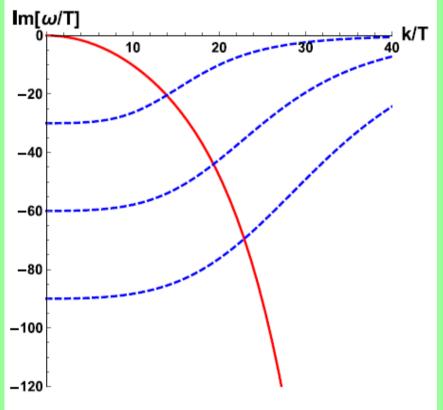
Not a real problem (in my opinion), only issue for simulations

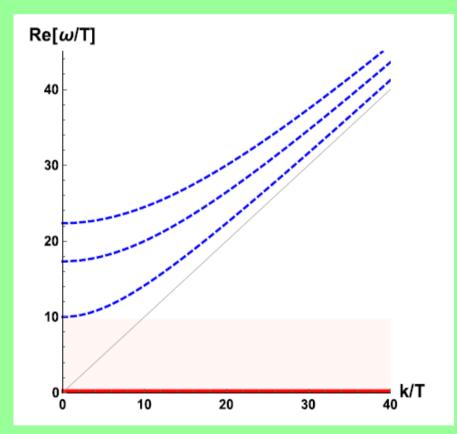
$$\omega^2 + i\omega \tau_{\pi}^{-1} = v^2 k^2, \qquad v^2 = \frac{\eta}{(\epsilon + p)\tau_{\pi}},$$

Israel-Stewart formalism → Same (telegraph) equation

Holographic inputs (step 0)

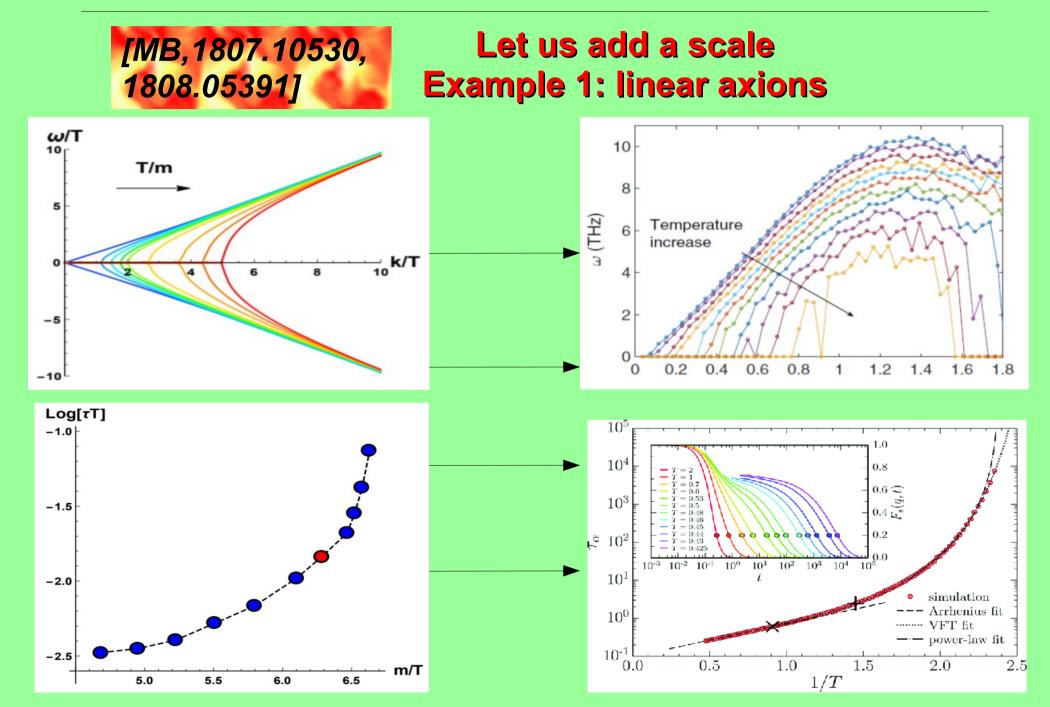
Schwarzschild Black hole ----- Relativistic hydrodynamics



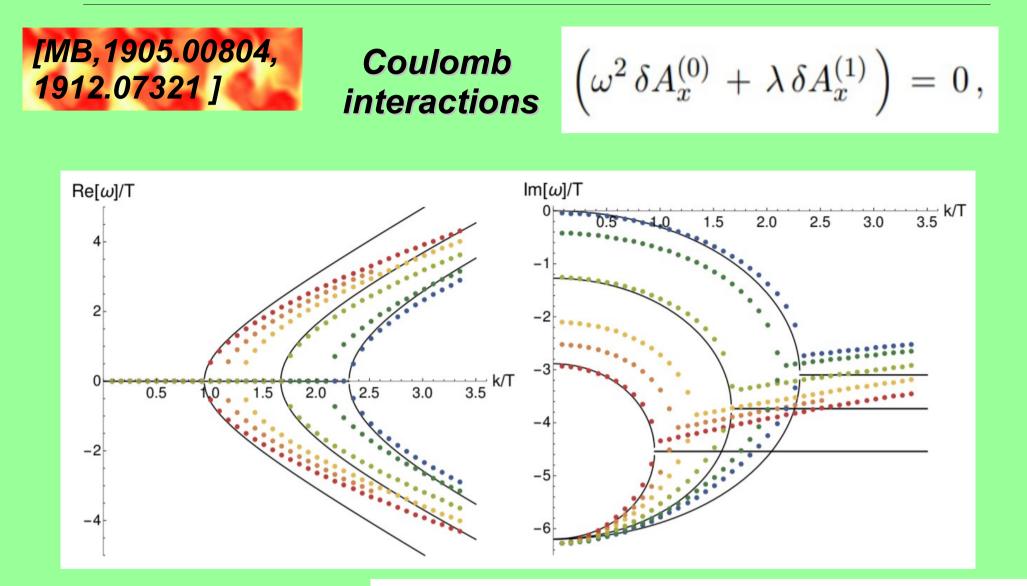


No k-gap, only crossing of modes

Holographic inputs



Holographic inputs



Relativistic magnetohydrodynamics

arXiv:1703.08757

Juan Hernandez, Pavel Kovtun

Hydro theory:

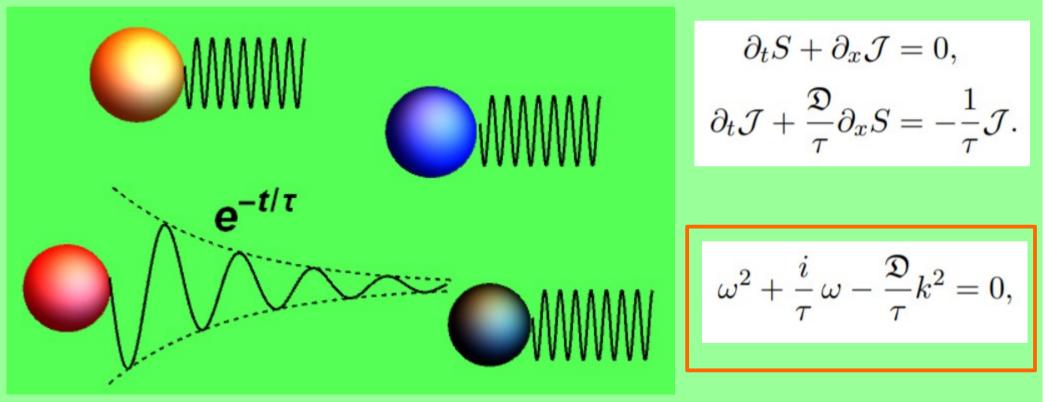
"Holographic" inputs

Holography and hydrodynamics with weakly broken symmetries

Sašo Grozdanov, Andrew Lucas, Napat Poovuttikul

arXiv:1810.10016

QUASI-HYDRODYNAMICS



1 CHARGE NOT CONSERVED BUT SLOWLY RELAXING

Another example

GENERALIZED GLOBAL SYMMETRIES (e.g. two-form dynamics)

Generalized global symmetries and holography

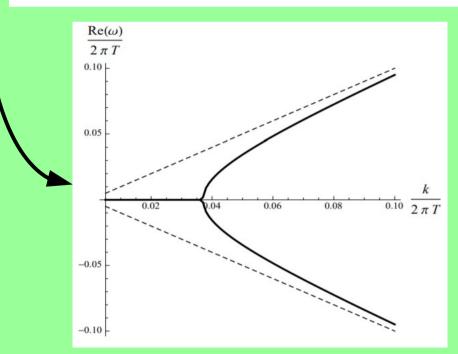
Diego M. Hofman, Nabil Iqbal

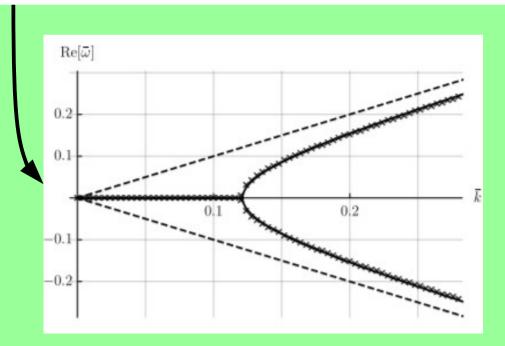
arXiv:1707.08577

Generalised global symmetries in states with dynamical defects: the case of the transverse sound in field theory and holography

Sašo Grozdanov, Napat Poovuttikul

arXiv:1801.03199

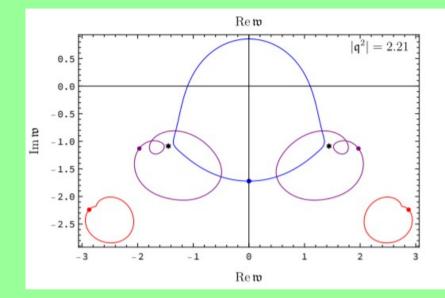


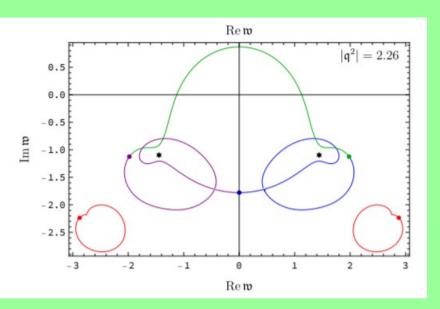


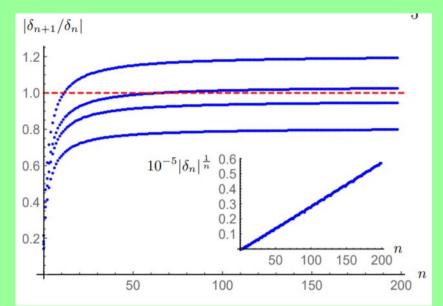
Convergenge of Hydrodynamics

Radius of convergence

Collisions in complex space

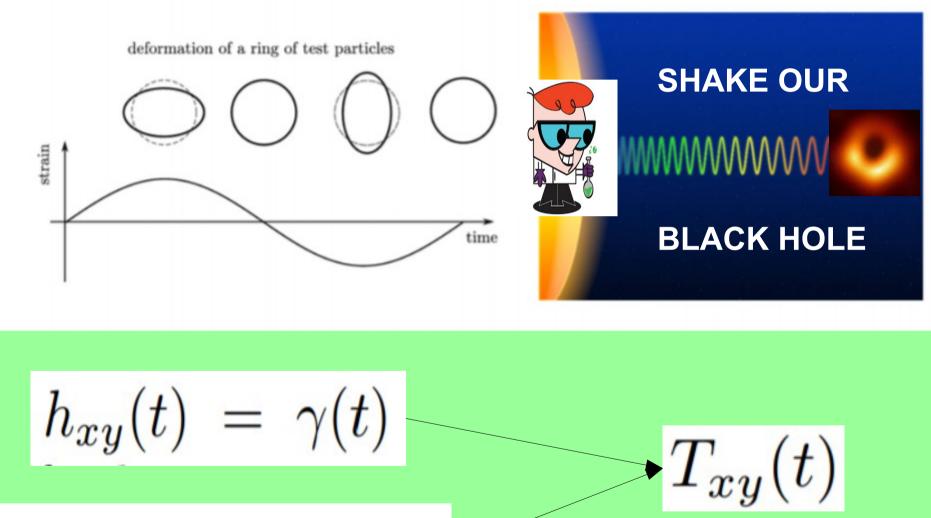




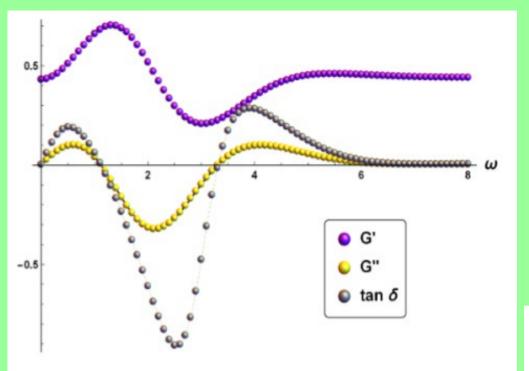


K-gap sets the radius of convergence of hydrodynamics

[Grozdanov et Al.] [Heller et Al.]



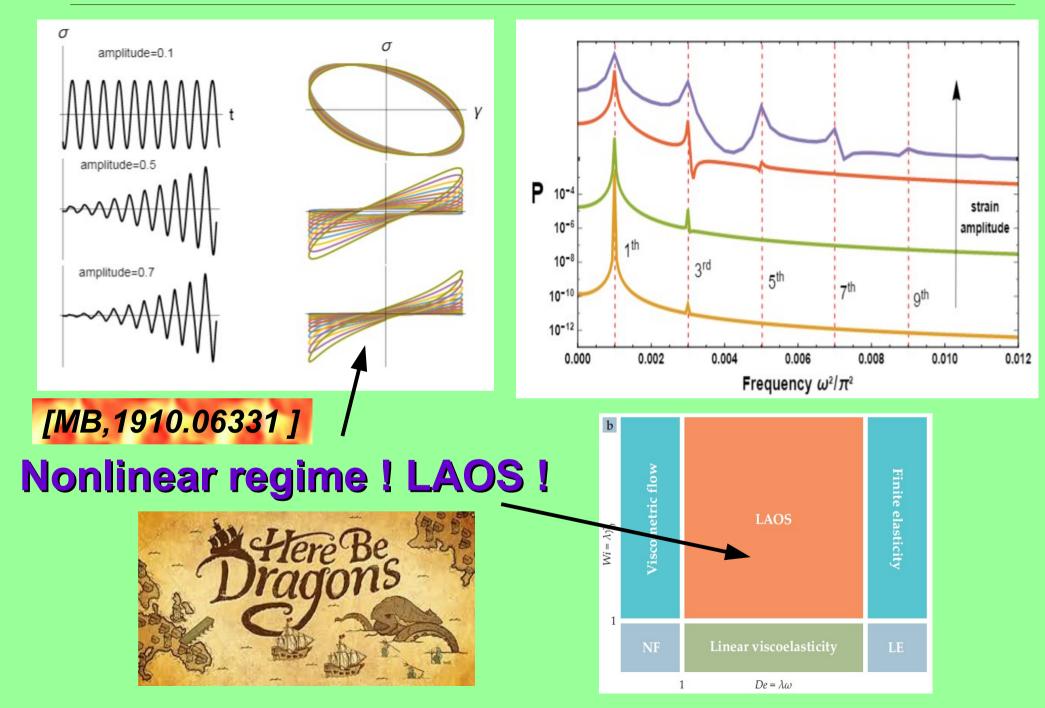
 $\gamma(t) = \gamma_0 \, \sin(2\pi\omega t)$

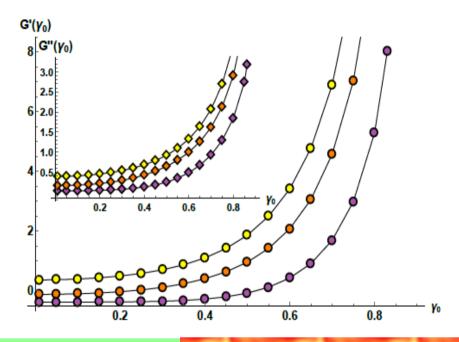


The larger the graviton mass, the more solid our system

viscosity goes to zero = the system is a solid Well-known fact, Cf. Frenkel time [MB,1903.02859, 1910.06331] G'(w) 0.50 10

At large frequencies the

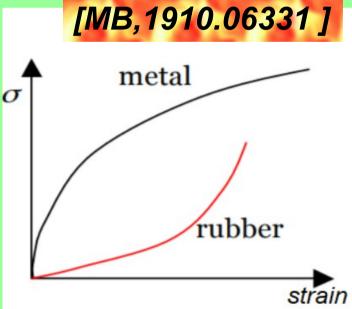


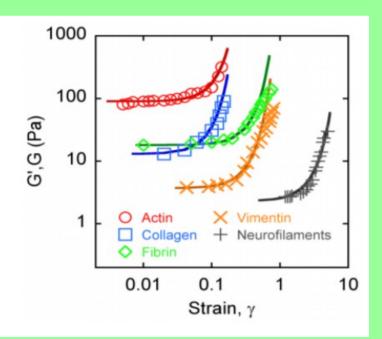


STRAIN STIFFENING

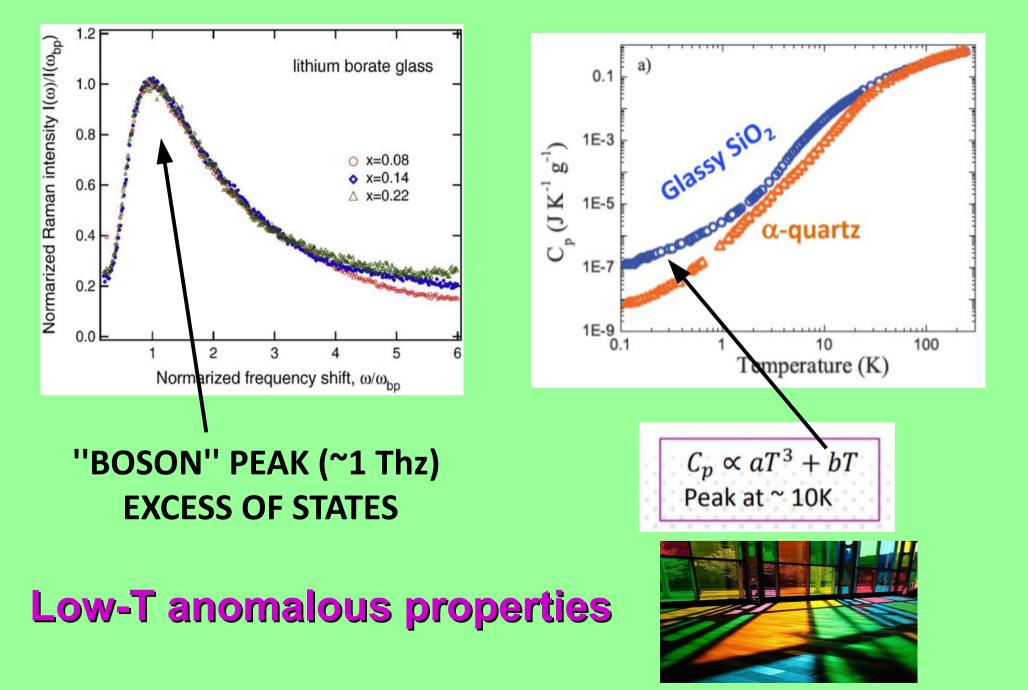
Nonlinear response similar to polymers and rubbers (not metals)

In agreement with negative thermal expansion coefficient

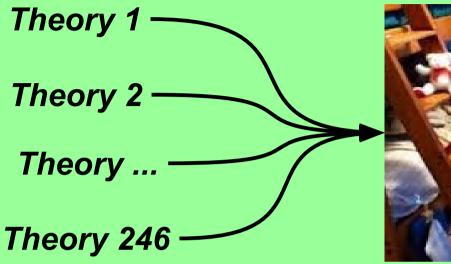




Food for curiosity : glasses



Explanations

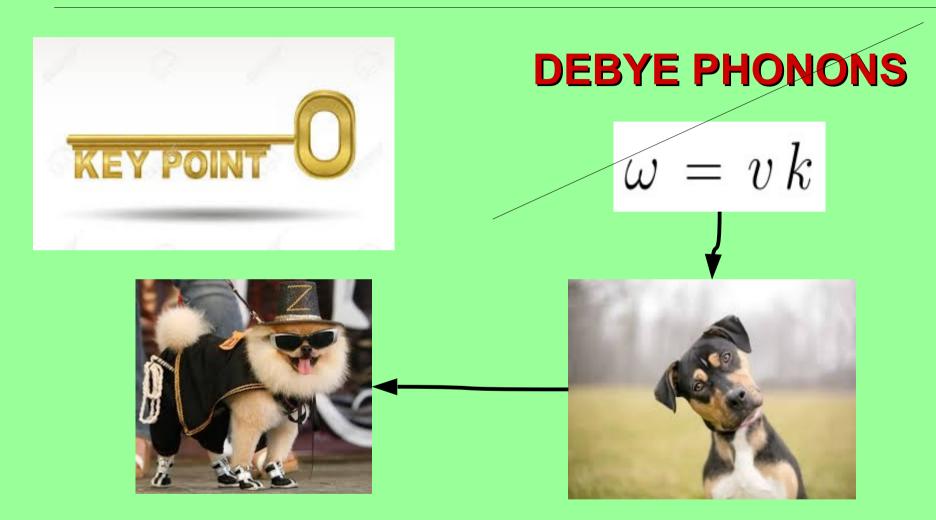


BUT

Same properties observed now in ordered crystals and in incommensurate structures !!

That cannot be the end of the story nor the universal explanation

Methods (EFT-Hydro again)



NATURE OF COLLECTIVE LOW-ENERGY DEGREES OF FREEDOM

A new paradigm

[MB,1810.09516,1911.03351]

1) Damping and anharmonicity universally induce a boson peak

(theory predicts experimental density dependence for the 1st time and confirms correlation Boson peak an loffe-Regel frequency)

2) Piling up of soft optical-like gapped mode induces a boson peak

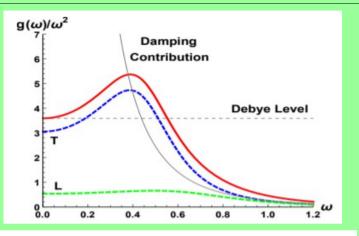
[MB,1812.07245,2008.01407]

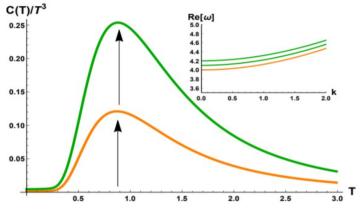
Confirmed by experiments [Moratalla et Al, Cano et Al.]

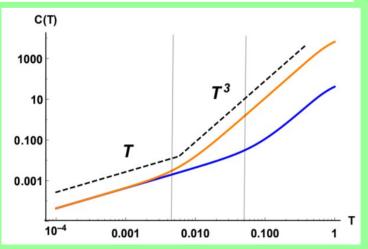
3) Low-energy diffusive modes (diffusons, phasons) give a linear in T specific heat

[MB,1905.03286,2008.01407]

Confirmed by experiments in quasicrystals [Cano et Al.]







More advanced topics/questions

HOLOGRAPHY – HYDRO WHAT CAN WE LEARN MORE?

- VISCOELASTICITY
- BROKEN SYMMETRIES
- ACTION FOR HYDRO
- DISSIPATIVE-OPEN SYSTEMS

K-GAP IS EVERYWHERE ! LOTS OF OPEN QUESTIONS ...

Physics Reports Volume 865, 15 June 2020, Pages 1-44

-		1
a PRX:	SICS REPORTS	

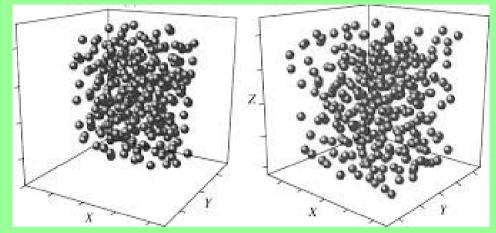
Gapped momentum states

Matteo Baggioli ª ♀ ⊠, Mikhail Vasin ^b ⊠, Vadim Brazhkin ^b ⊠, Kostya Trachenko ^c ⊠

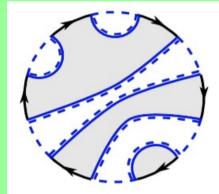
Show more 🗸

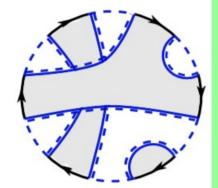
More advanced topics/questions

WHAT IS A GLASS AND ARE THOSE PROPERTIES REALLY ANOMALOUS? WHAT ABOUT THERMAL CONDUCTIVITY ?

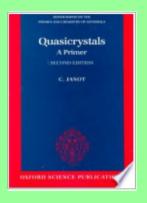


HOLOGRAPHIC GLASSES ? GRAVITY AND GLASSES (see gravity ensemble)





QUASICRYSTALS & INCOMMENSURATE



Quasicrystals: A Primer, Christian Janot

www.rsc.org/csr

TUTORIAL REVIEW

Phonons, phasons and atomic dynamics in quasicrystals[†]

Marc de Boissieu*

Hydrodynamics of icosahedral quasicrystals

T. C. Lubensky, Sriram Ramaswamy, and John Toner Phys. Rev. B **32**, 7444 – Published 1 December 1985

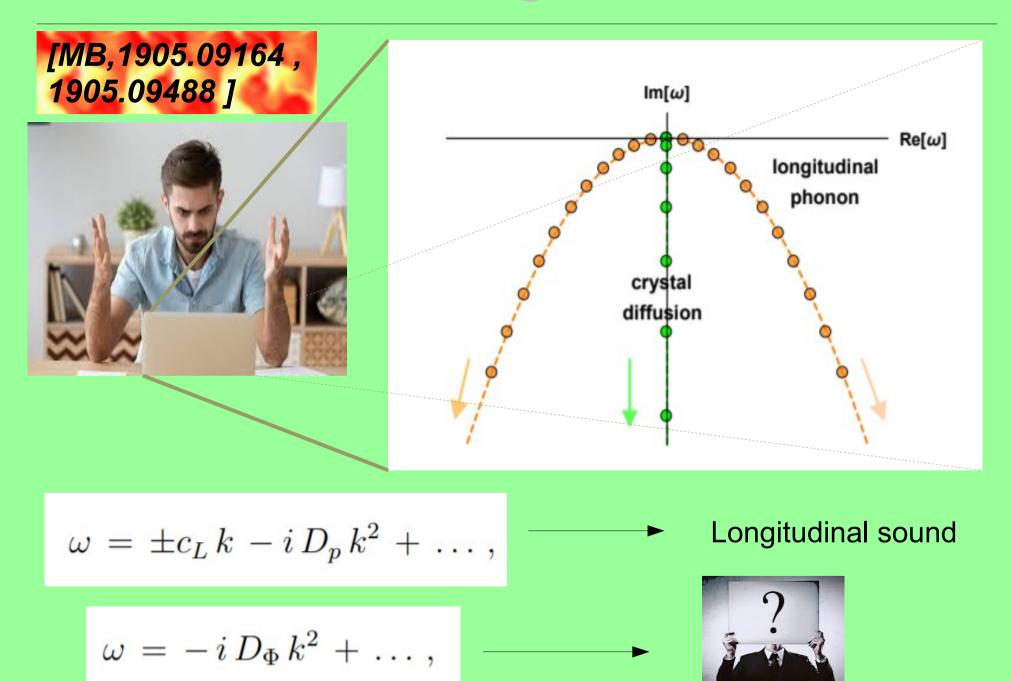
REVIEW ARTICLE

Commensurate phases, incommensurate phases and the devil's staircase

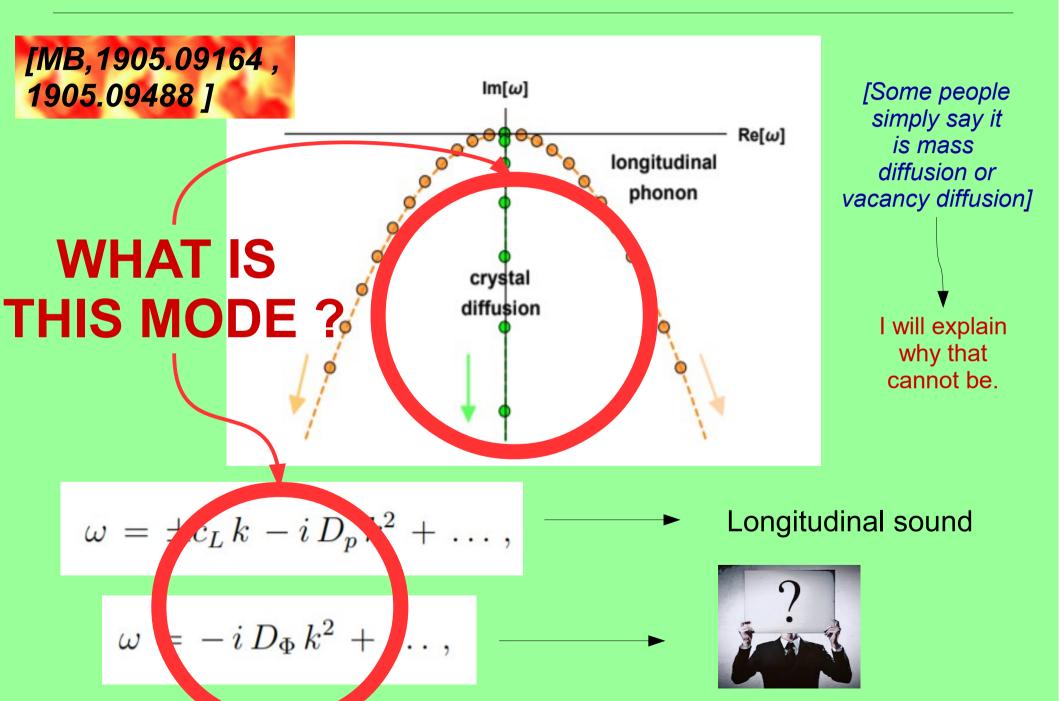
P Bak

Reports on Progress in Physics, Volume 45, Number 6

What brought me here



What brought me here



Important points

Longitudinal diffusive mode

$$\omega \,=\, -\,i\,D_{\parallel}\,k^2$$

- 1 It does not come from the breaking of translations
- 2 It comes from the SSB of the global internal symmetry

$$\phi \rightarrow \phi + a$$

[Donos, Martin, Pantelidou, Ziogas, 2019] [Amoretti, Arean, Gouteraux, Musso, 2018]

3 - It is a diffusive Goldstone boson

Other considerations

Translations are not broken to a discrete subgroup. There is no unit cell. The systems are not periodic. (e.g. Incommensurate CDW)

The mode does not come from the conservation of any local U1 current (e.g. mass diffusion, charge diffusion)

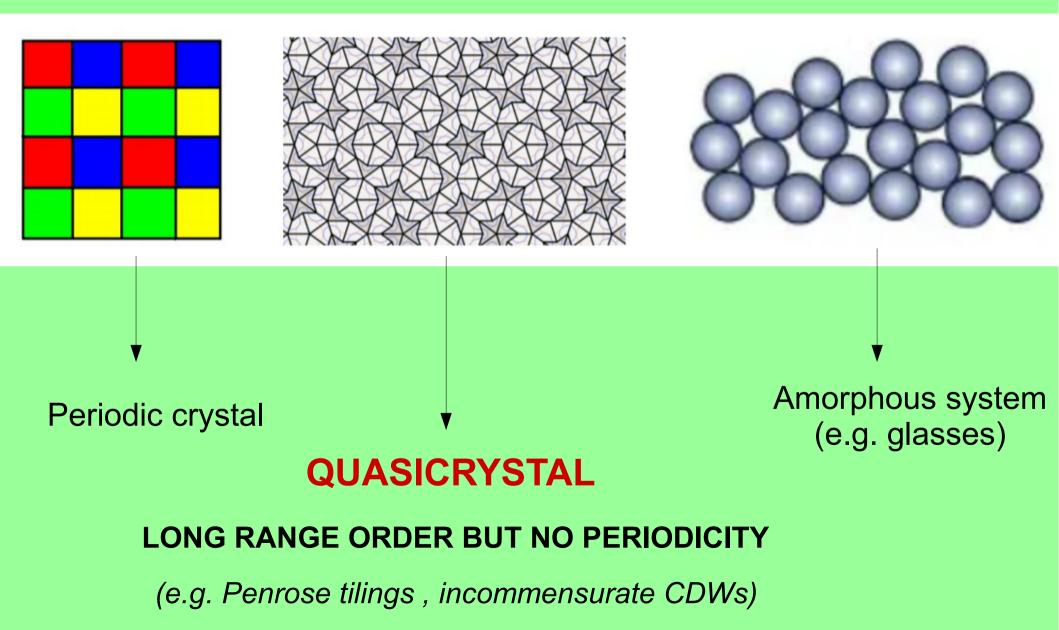
The are no commensurability effects.

[Andrade,Krikun, 2015]

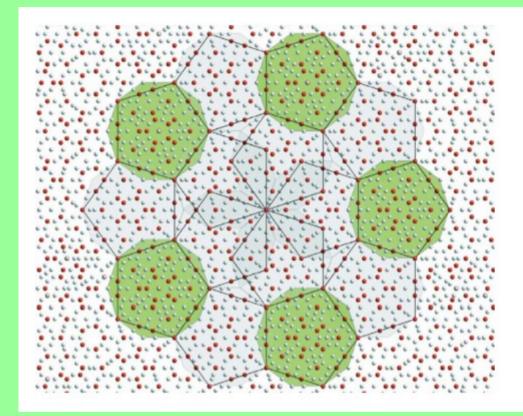
Most of the systems are metastable. Actually there is NO known Q-lattice or axion model (with SSB) which is stable in all senses (thermodynamics and dynamics)

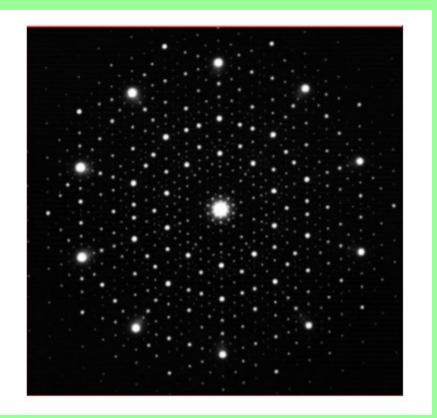
Aperiodic crystals

Real ! (cf. Nobel Prize)



Bragg peaks



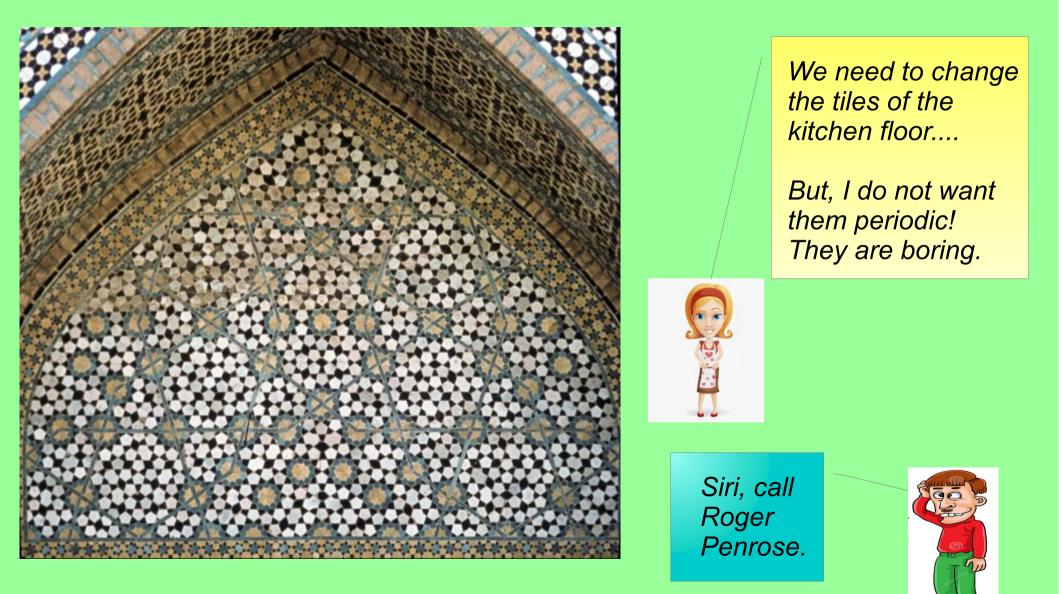


$$\rho(\vec{x}) \,=\, \frac{1}{V}\,\sum_{\vec{G}}\,\rho(\vec{G})\,e^{i\,\vec{G}\cdot\vec{r}}$$

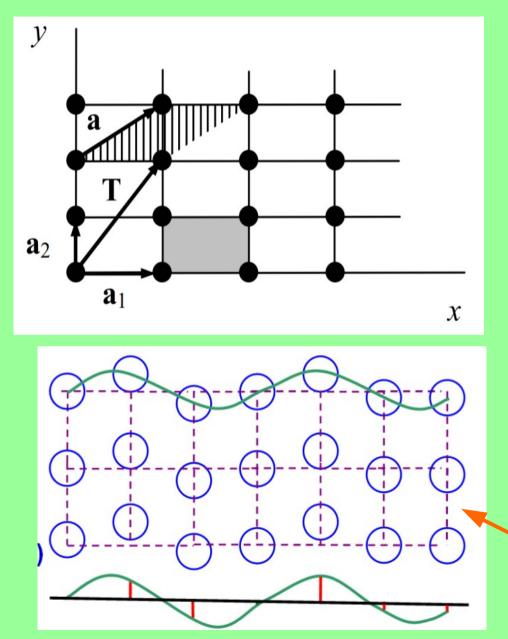
$$\vec{G} = \underbrace{n_1 \, \hat{x}_1 \, + \, n_2 \, \hat{x}_2 \, + \, n_3 \, \hat{x}_3}_{d \, \text{physical dimensions}} + \underbrace{\sum_{i=d}^{D-d} n_i \, \hat{x}_i}_{D-d}$$

Sharp bragg peaks but not periodic (+ modulated intensity)

Penrose tilings & art



Lattice structures



$$T = n_1 a_1 + n_2 a_2$$

$$Point in the crystal$$

$$simple cubic$$

$$\begin{cases} a_1 = ax \\ a_2 = ay \end{cases}$$

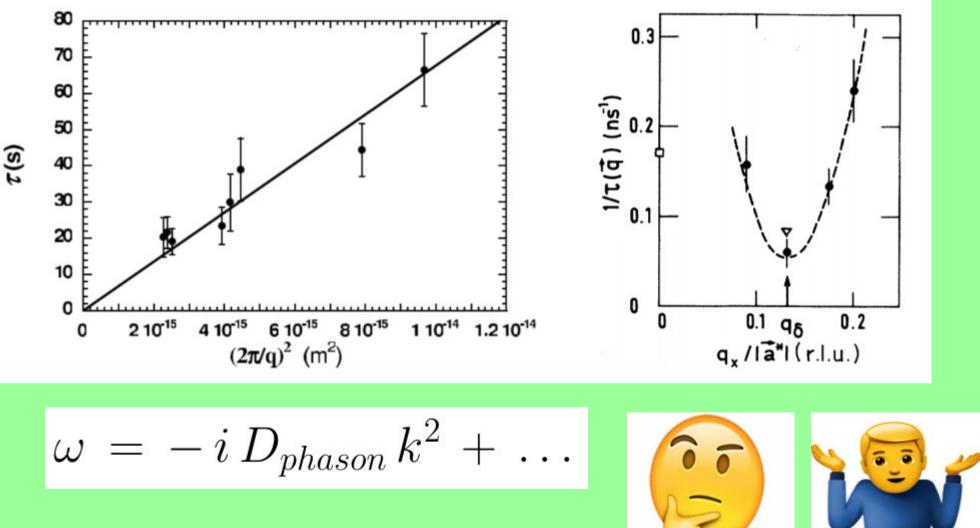
$$\vec{G} = \underbrace{n_1 \, \hat{x}_1 + n_2 \, \hat{x}_2 + n_3 \, \hat{x}_3}_{d \text{ physical dimensions}} + \underbrace{\sum_{i=d}^{D-d} n_i \, \hat{x}_i}_{D-d}$$

Alternatively the additional vectors can be recasted into phases (= modulation)

Aperiodic structure needs more vectors than d

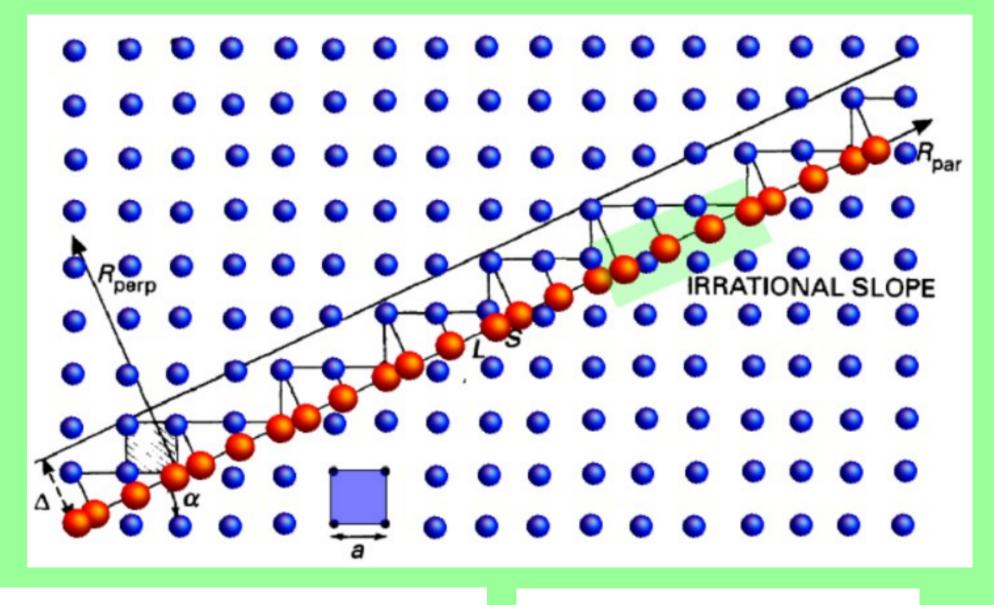
Phasons

New hydrodynamic low-energy excitation



And propagating at large wave-vector ...

The superspace formalism

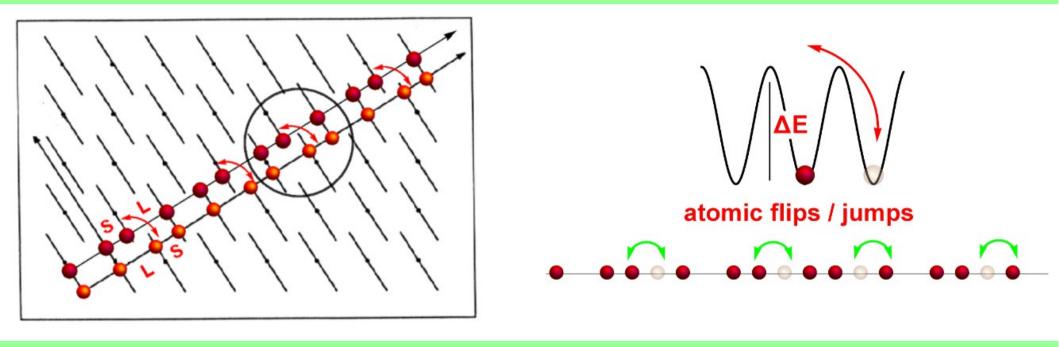


 $L = a \cos \alpha$, $S = a \sin \alpha$.

 $\dots SLLSLLSLLS \dots$

Where do phasons come from ?

Rigid translations in the internal space



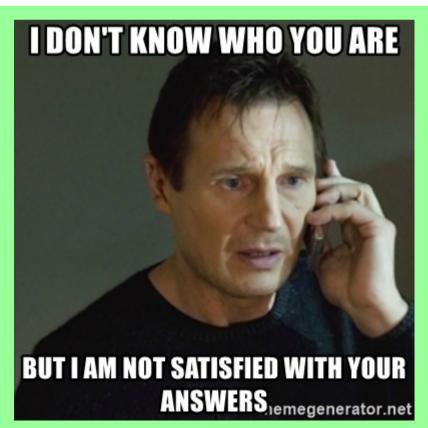
$$\dots LS \dots \longrightarrow \dots SL \dots,$$

Phason jumps (only at finite T)

Why they are diffusive

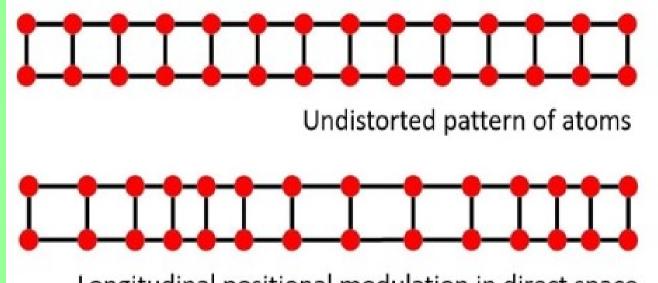
"Mode counting arguments and the Goldstone theorem lead to the prediction that phason modes are diffusive-like excitation,"

the phason shifts leave the free energy unchanged but they do not commute with the hamiltonian of the system



Find a formal & satisfactory explanation from symmetries

Incommensurate structures

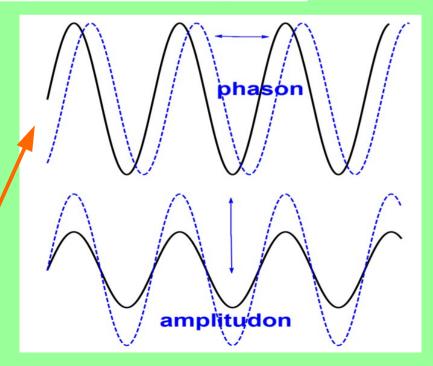


Longitudinal positional modulation in direct space

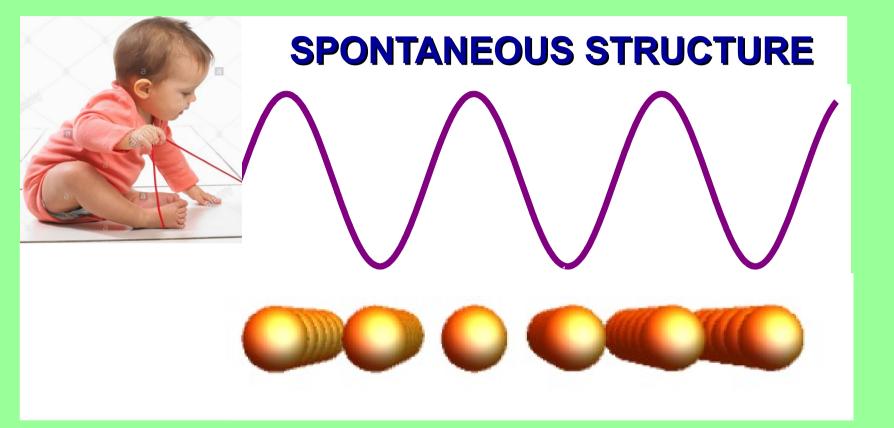
$$\rho(r) = \rho_0 + R \cos(kr + \phi(r))$$

Free energy invariant under phase shifts

Hydro-massless mode: phason



Phasons (2nd point of view)

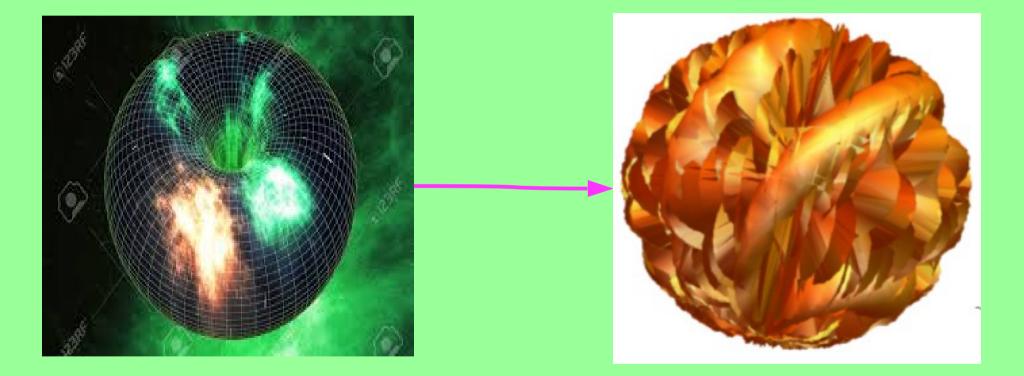


IONIC LATTICE

PHASON = free sliding of the spontaneous structure

Back to holography

Holographic spontaneous lattices (e.g. Charge density waves)



Spontaneous inhomogeneous structures

[Donos, Gauntlett, Ooguri, Park, Lippert, Jokela, Li, Zaanen, Krikun, Andrade +]

Analysis of homogeneous models

Use a global symmetry in the bulk to break translations in a homogeneous way

Axions-like models [Andrade,Withers]

$$\psi^{(0)} \propto \alpha_i x^i.$$

Shift symmetry (goldstones)

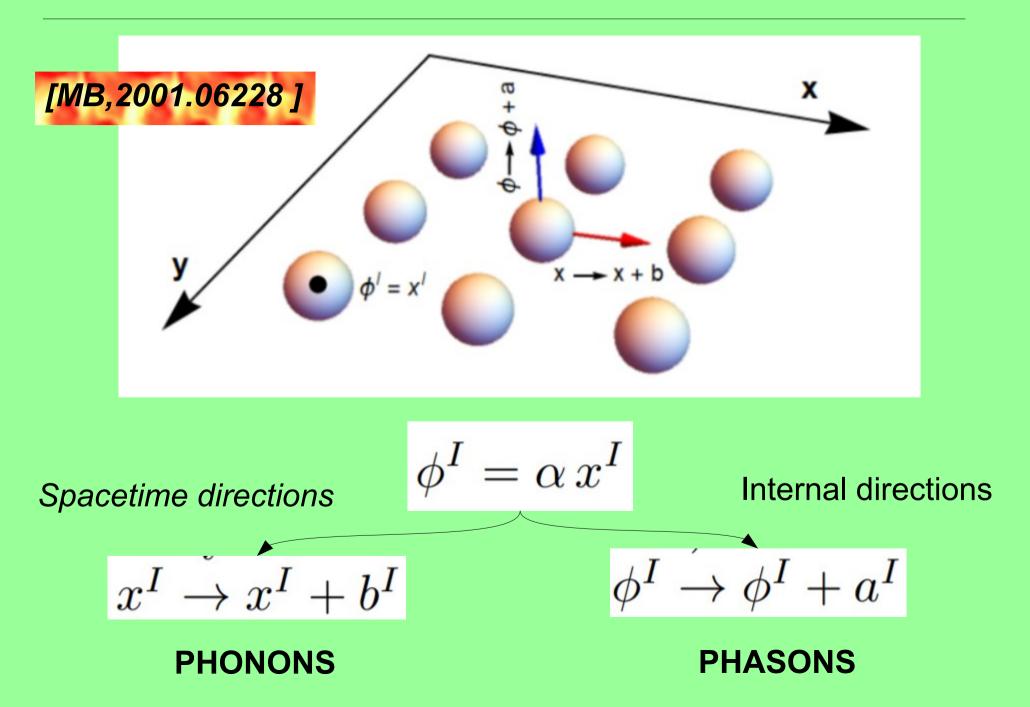
Q-lattices [Donos,Gauntlett]

$$\phi = e^{ikx_1}\varphi(r)$$

Global U(1)

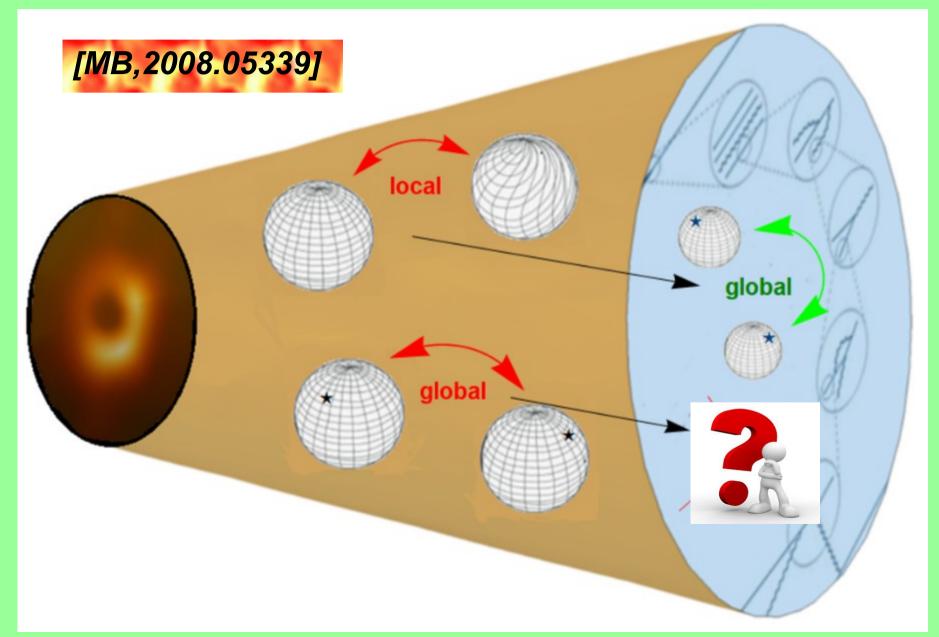
Geometry homogeneous but translations are broken !

Analysis of homogeneous models

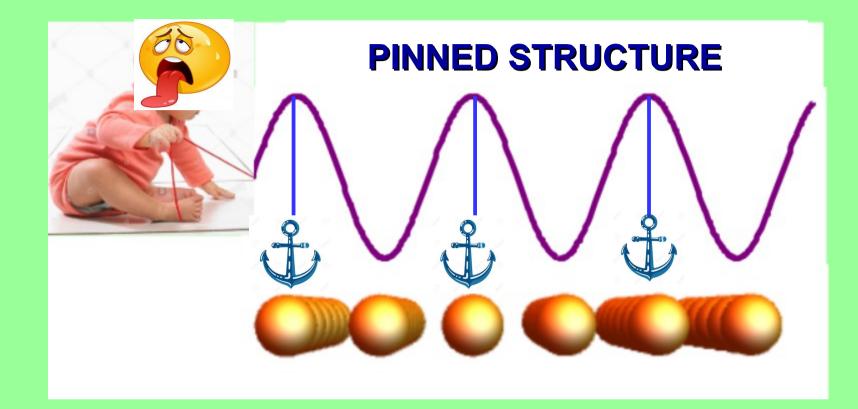


Analysis of homogeneous models

They are <u>NOT</u> the gravity dual of solids EFTs



Phase relaxation



$$\omega \, = \, - \, i \, \Omega \, + \,$$

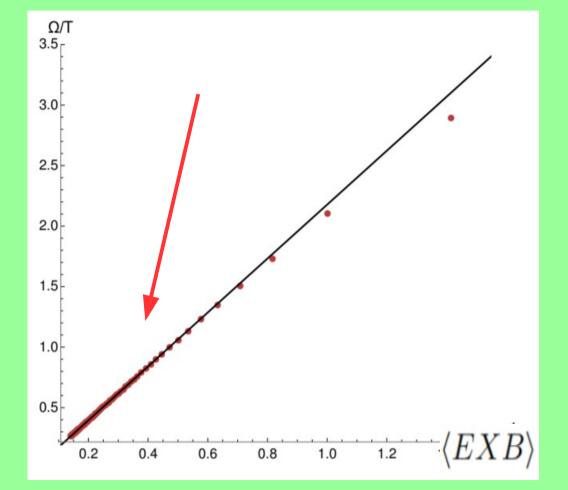
Phase is relaxed with rate Omega

Now you cant just slide freely

The phase relaxation mistery

$$\bar{\Omega} \sim \frac{\langle EXB \rangle}{\langle SSB \rangle}$$

Induced by explicit breaking !



Different from the standard phase relaxation induced by defects (e.g. dislocations)

[MB,1904.05785]

Common to many holographic models

[I would say all]

A universal relation

[Gouteraux et Al.]

Confirmed in several models with numerics and perturbative methods

$$\Omega = \chi_{\pi\pi} \omega_0^2 \Xi$$

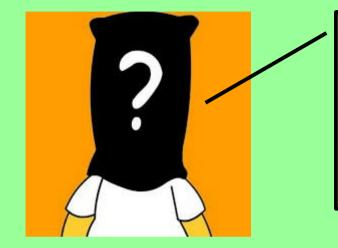
Ω/Τ 1.2 1.0 0.8 0.6 [MB,1904.05785] 0.4 ____*Μ² ξ/*Τ 0.4 0.6 0.8 1.0

Phason diffusion

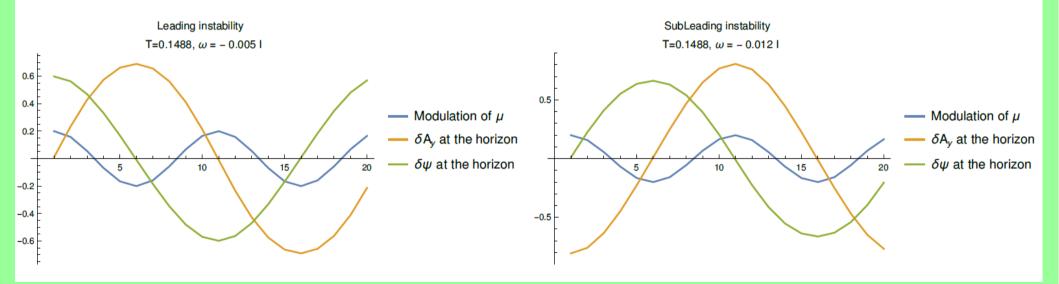
Phonon pinning frequency

Complete formal proof still absent

Inhomogeneous models

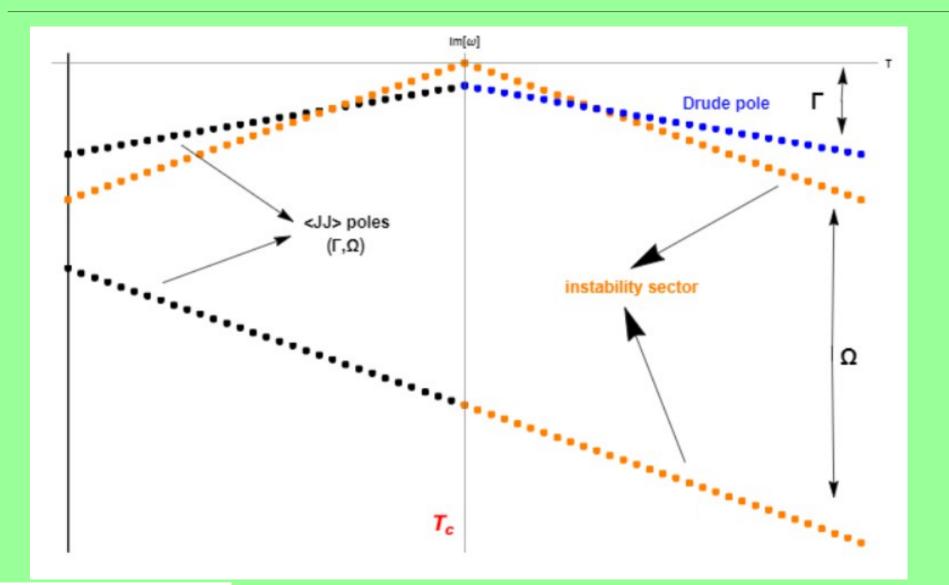


Those are toy models, not real lattices !! They are missing a lot of real physics (and probably introducing a lot of fake one ...)



Let us check in "real" lattices !

Inhomogeneous models



This is what we get !

What did we learn ?

Below Tc the hydro spectrum of homogeneous models and the inhomogeneous ones <u>ARE IDENTICAL</u> ! & in perfect agreement with hydrodynamics

$$(\Gamma - i\omega)\left(\Omega - i\omega\right) + \omega_0^2 = 0$$

1) No matter if the system is inhomogeneous at large scale physics is always homogeneous [Nicolis et Al.]

2) Homogeneous models capture well (almost) everything

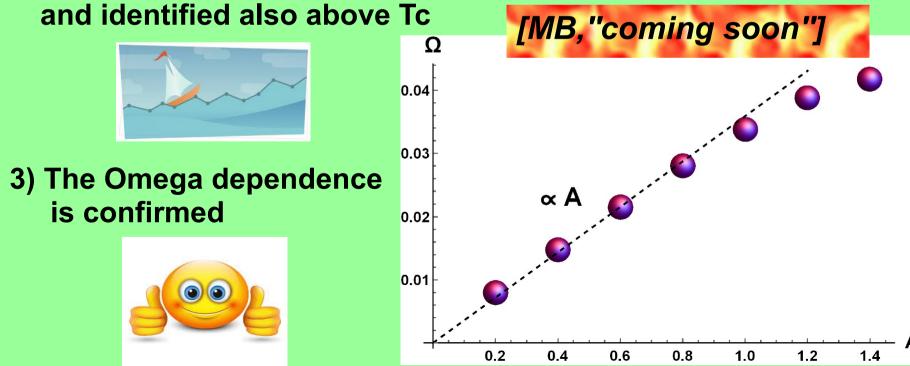
What did we learn ?

1) Physics of the model can be understood perfectly from "amplitude equation" and theory of pattern formation



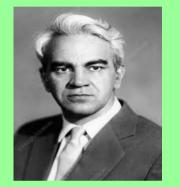
P. Coullet Phys. Rev. Lett. **56**, 724 – Published 17 February 1986

2) Omega can be really understood as phase relaxation



EFT with dissipation

$$e^{W[J_1,J_2]} \equiv \operatorname{tr}[U(+\infty,-\infty;J_1)\,\rho\,U^{\dagger}(+\infty,-\infty,J_2)]$$

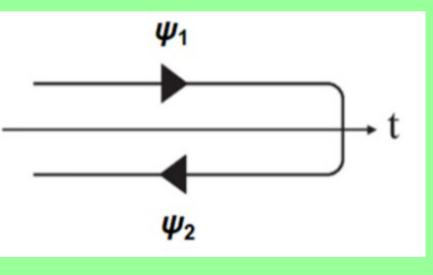


$$\int_{\mathrm{SK}} \mathcal{D}[\varphi_1 \varphi_2] e^{iI_{\mathrm{EFT}}[\varphi_1, \varphi_2; J_1, J_2]} = e^{W[J_1, J_2]}$$

$$\varphi_r \equiv \frac{1}{2}(\varphi_1 + \varphi_2), \qquad \varphi_a \equiv \varphi_1 - \varphi_2.$$
Classical field
VEV of quantum fields)

~

Thermal and quantum fluctuations (dissipation)



EFT for quasicrystals

$$\begin{split} \psi_s^A &\to \psi_s^A + \lambda^A \\ \textbf{Superspace fields} & \textbf{[MB,2008.05339]} \\ X_r^\mu &\equiv \frac{1}{2} (X_1^\mu + X_2^\mu), \quad X_a^\mu \equiv X_1^\mu - X_2^\mu, \quad \psi_r^A \equiv \frac{1}{2} (\psi_1^A + \psi_2^A), \quad \psi_a^A = \psi_1^A - \psi_2^A. \\ \mathcal{L}_{EFT} &= T^{\mu\nu} \partial_\mu X_{a\nu} + J^{A\mu} \partial_\mu \psi_a^A + \Gamma^A \psi_a^A + \frac{i}{2} M^{AB} \psi_a^A \psi_a^B \\ \textbf{Guasicrystal part} \end{split}$$

 $J^{A\mu} = F^A(\beta, Y^{AB}, Z^A) u^{\mu} + H^{AB}(\beta, Y^{AB}, Z^A) \partial^{\mu}\psi^B_r$

EFT for quasicrystals

Dissipative coefficient (non hermitian part of the action) **Phason elasticity**

EFT for quasicrystals

$$\partial_{\mu}J^{4\mu} = -\Gamma^4 \sim M^{44}$$

Only allowed at finite T (with dissipation)

PHASON SHIFT =

Symmetry with no associated conserved Noether current !

$$\langle [H, \mathcal{P}_4] \rangle \sim \left\langle H^{\dagger} \mathcal{P}_4 - \mathcal{P}_4 H \right\rangle \sim \frac{d \langle \mathcal{P}_4 \rangle}{dt} \sim M^{44}$$

Cf. DIFFUSIVE Goldstone modes in dissipative systems [Hidaka et Al.]

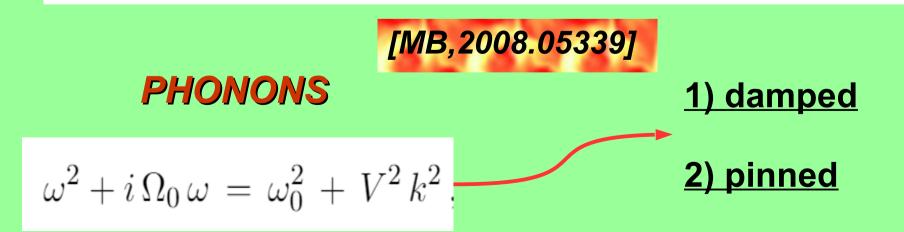
Light on the (no longer) mistery

Let us introduce explicit breaking

$$\mathcal{L}_{breaking} = \omega_0^2 X_r^{\mu} X_r^{\mu} + \omega_1^2 \psi_r^A \psi_r^A - \Omega_0 \dot{X}_r^{\mu} X_{a\mu} - \Omega_1 \dot{\psi}_r^A \psi_a^A + \dots$$

But let us retain diagonal symmetry (as in the holographic models)

$$\mathcal{L}_{breaking} = \omega_0^2 \left(X_r^{\mu} X_{a\mu} + \psi_r^A \psi_a^A \right) - \Omega_0 (\dot{X}_r^{\mu} X_{a\mu} + \dot{\psi}_r^A \psi_a^A) \dots$$



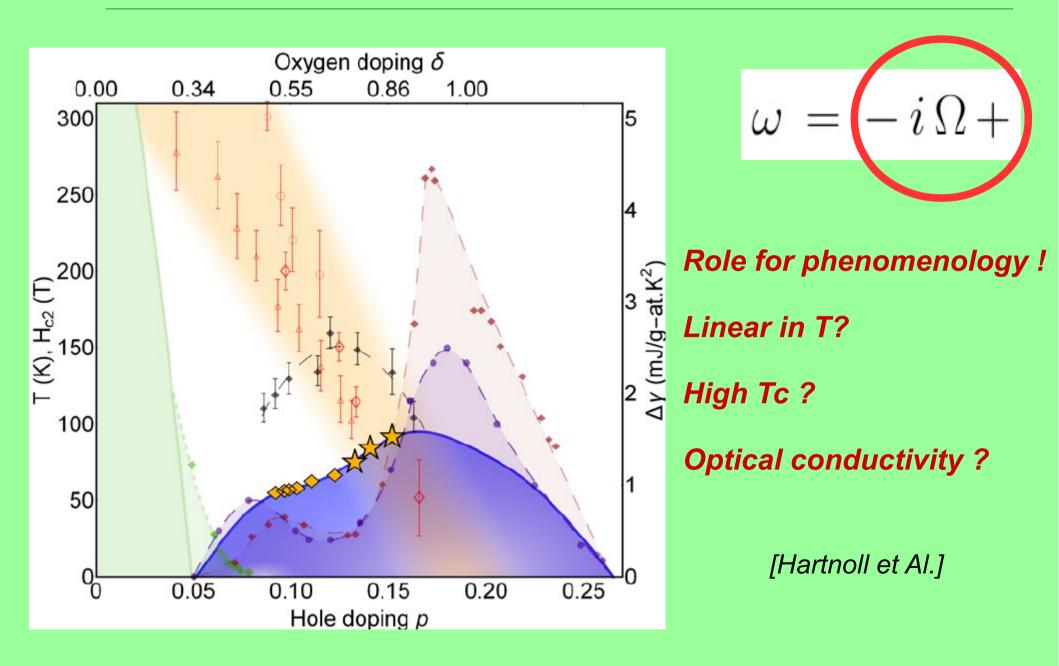
Light on the (no longer) mistery

PHASONS
[MB,2008.05339]
$$\omega^2 + i \bar{\gamma} \omega = v^2 k^2 + \omega_0^2$$
,
 $\omega^2 = -i \Omega + \mathcal{O}(k^2) = -i \frac{\omega_0^2}{\bar{\gamma}} + \mathcal{O}(k^2)$,**PHASE**
PHASE
RELAXATION

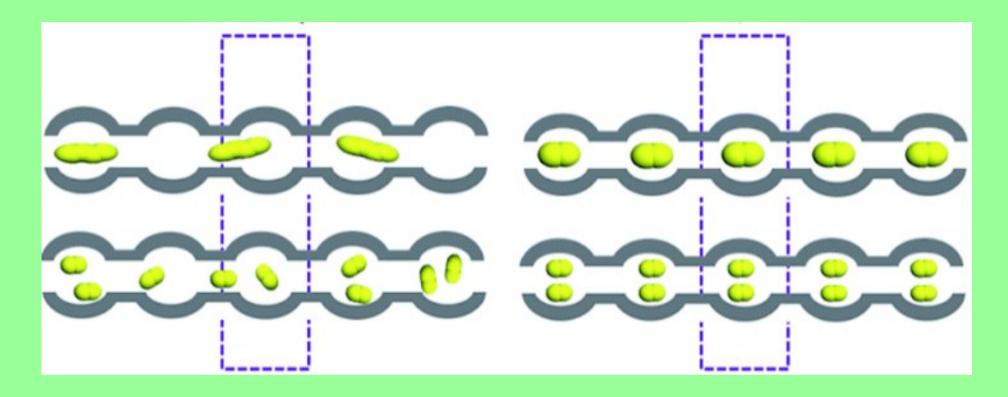
U

EXACTLY WHAT WE FIND IN HOLOGRAPHY ! IT IS SIMPLY THE SYMMETRY BREAKING PATTERN (equivalent of GMOR relation for mass)

More advanced topics/questions

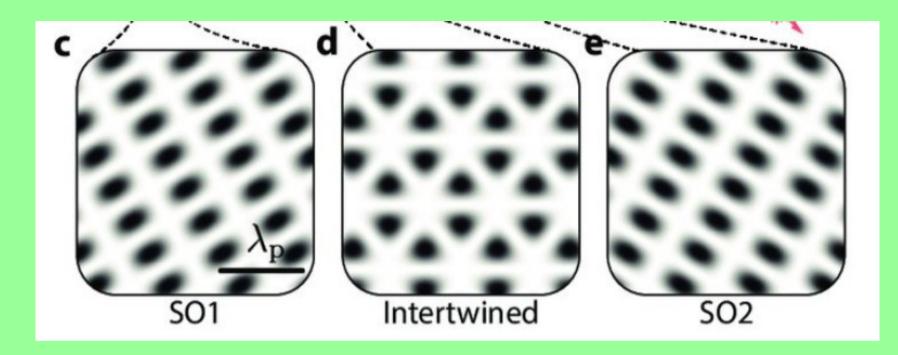


More advanced topics/questions



What happens to the phason ? Properties of the phase transition ? Holographic implementation

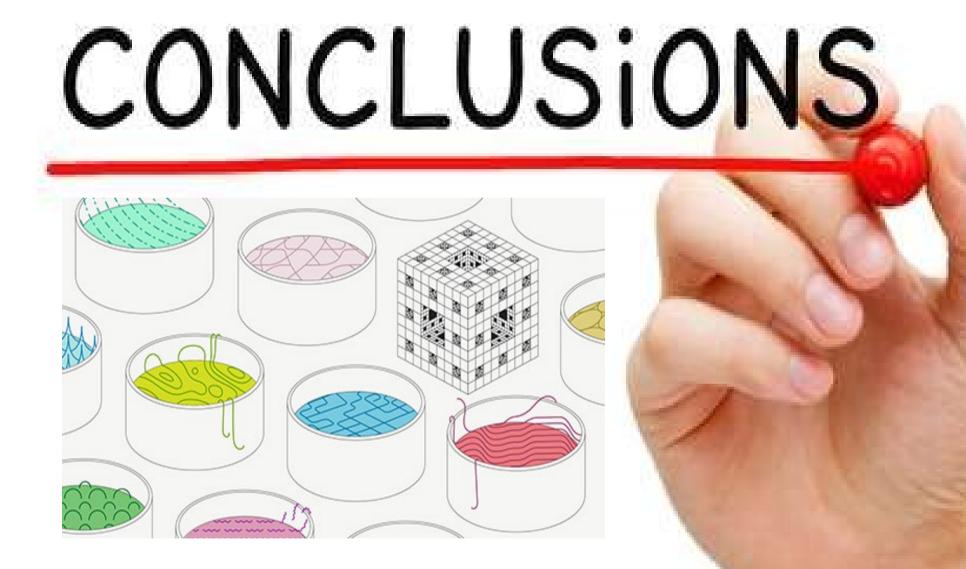
More advanced topics/questions



ORDER <----> SUPERCONDUCTIVITY

Other orders: nematicity, pair density waves, spin waves

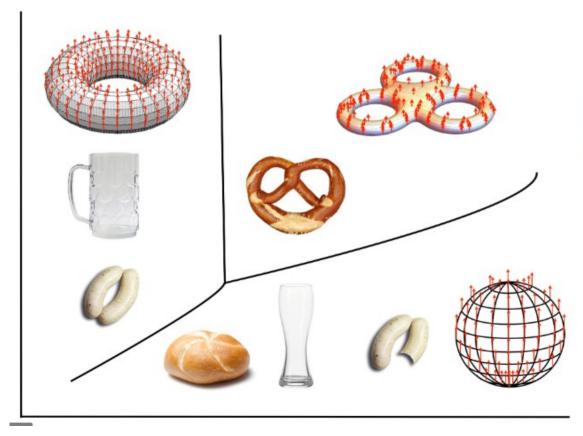
[Holography + hydrodynamics + EFT- field theory]



A lot of interesting and cool physics

CONCLUSIONS

Organizing principle: symmetries



Acknowledgments

and many more ...

ORGANIZERS

Chair Sang-Jin Sin (Hanyang U) Co-chair Keun-Young Kim (GIST) Koji Hashimoto (Osaka U) Deog-Ki Hong (Pusan Nat'l U) Ki-Seok Kim (POSTECH) Nakwoo Kim (Kyung Hee U) Ioannis Papadimitriou (KIAS)

Thanks a lot

(looking forward to coming back to Korea)

Several positions available for next year !!



If you are interested (or you know some good candidate) please contact me at : mbaggioli@ifae.es (and share the info) Quantum Matter and Quantum Information with Holography August 23 (Sun), 2020 ~ August 31 (Mon), 2020

For any questions: mbaggioli@ifae.es

