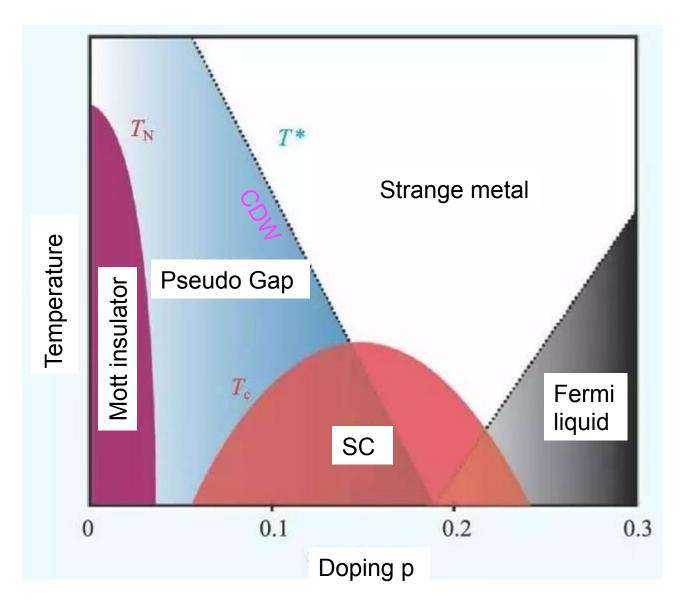


Yi Ling


Institute of High Energy Physics (IHEP,CAS) 08/26/2020, APCTP, Holography 2020

# **Outlines**

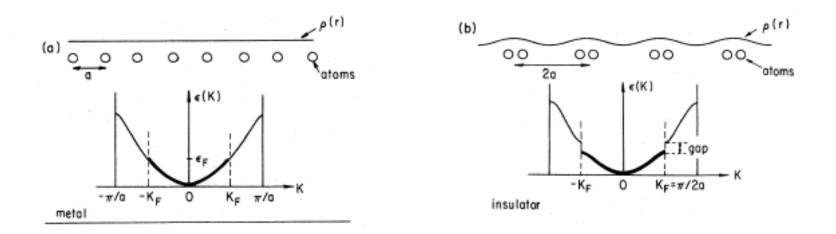
- 1. The phase diagram of high temperature superconductivity
- 2. Holographic charge density waves
- 3. Holographic superconductor induced by CDW
- 4. Summary

Yi Ling, Peng Liu, Meng-He Wu, arXiv:1911.10368

#### The Phase Diagram of High Temperature Superconductivity



### The Phase Diagram of High Temperature Superconductivity


The relations between CDW and SC is the key to understand the mechanism of high temperature superconductivity

- 1. Competitive relations
  - The suppression of the critical temperature by CDW
  - The competitions of order parameters
  - The carriers grabbed by SC from CDW
- 2, Cooperative relations
  - The positive correlation of the critical temperature
  - CDW may improve the formation of Cooper pairs via phonons
  - The formation of SC from CDW
- 3、Signaled by strong coupling

• Charge density waves

One dimensional case

$$\rho(x) = \rho_0 + \rho_1 \cos(2k_F x + \varphi)$$



The generation of CDW is a result of Peierls transition which is a typical metal-insulator transition.

Rev.Mod.Phys.Vol.60(1988),No.4

#### • CDW

#### Mechanism

The generation of CDW results from the spontaneous breaking of the translational symmetry.

|                        | Pairing | Spin         | Momentum | Broken<br>symmetry | Low-lying<br>collective<br>excitations |
|------------------------|---------|--------------|----------|--------------------|----------------------------------------|
| Single superconductor  | el-el   | S = 0        | q = 0    | gauge              | none                                   |
| Triplet superconductor | el-el   | S = 1        | q = 0    | gauge              | ?                                      |
| Charge-density wave    | el-hole | S=0          | $q=2k_F$ | translational      | phasons<br>amplitudons                 |
| Spin-density wave      | el-hole | <i>S</i> = 1 | $q=2k_F$ | translational      | phasons<br>magnons                     |

#### TABLE I. Various broken-symmetry ground states of one-dimensional metals.

• Perturbative instabilities of AdS2

A. Donos and J. P. Gauntlett, JHEP 1108, 140 (2011)

$$T = 0 \qquad AdS_2 \times R^2$$

$$ds^2 = -12r^2 dt^2 + \frac{dr^2}{12r^2} + (dx^2 + dy^2)$$

$$F = 2\sqrt{3}dr \wedge dt$$

$$\delta g_{iy} = 2\sqrt{3}h_{iy}(t,r)\sin(kx)$$

$$\delta g_{xy} = h_{xy}(t,r)\cos(kx)$$

$$\delta A_y = a(t,r)\sin(kx)$$

$$\delta \phi = w(t,r)\cos(kx)$$

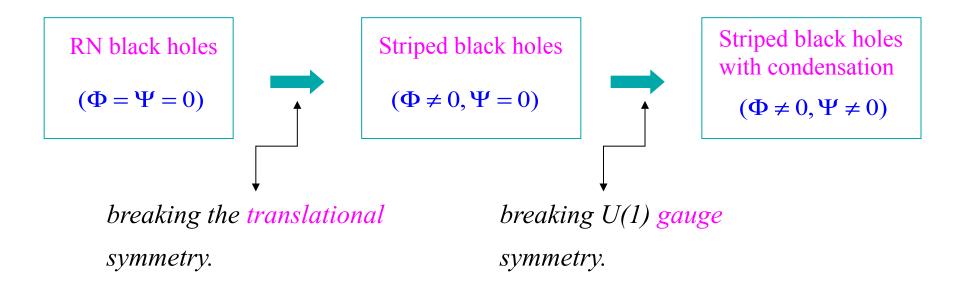
$$M^2 = \begin{pmatrix} k^2 & \frac{1}{\sqrt{3}}k & 0\\ 24\sqrt{3} & 24+k^2 & -c_1k\\ 0 & -c_1k & k^2+m^2 \end{pmatrix}$$

$$M^2 \ge -3$$

$$M^2 \ge -3$$

Could be violated !

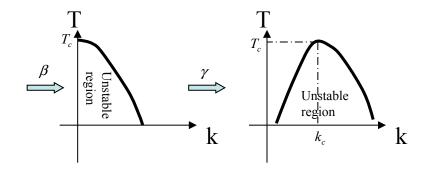
Holographic setup (D=4)


$$S = \frac{1}{2\kappa^{2}} \int d^{4}x \sqrt{-g} \left[ R - \frac{1}{2} \left( \nabla \Phi \right)^{2} - V(\Phi) - \frac{1}{4} Z_{A}(\Phi) F^{2} - \frac{1}{4} G^{2} - \frac{1}{2} Z_{AB}(\Phi) FG - \left| (\nabla - ieB) \Psi \right|^{2} - m_{v}^{2} \Psi \Psi^{*} \right]$$

$$F = dA, G = dB, V(\Phi) = -\frac{1}{L^2} + \frac{1}{2}m_s^2\Phi^2, Z_A(\Phi) = 1 - \frac{\beta}{2}L^2\Phi^2, Z_{AB}(\Phi) = \frac{\gamma}{\sqrt{2}}L\Phi$$

 $\Phi$ : The order parameter of CDW

 $\Psi$ : The order parameter of SC


The logic line:



HCDW Spontaneous breaking of translational invariance

RN black brane

Striped black holes



$$\delta\phi = w(z)\cos(kx)$$

Striped black holes

$$ds^{2} = \frac{1}{z^{2}} [-(1-z)p(z)Qdt^{2} + \frac{S}{(1-z)p(z)}dz^{2} + T(dx + z^{2}Udz)^{2} + Vdy^{2}]$$
  

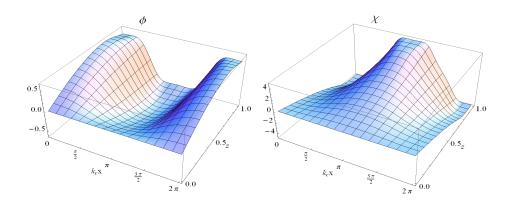
$$A = \mu(1-z)\psi dt, \quad B = (1-z)\chi dt, \quad \Phi = z\phi, \quad \Psi = \eta e^{i\theta}$$

RN black brane

e 
$$Q(x,z) = S(x,z) = T(x,z) = V(x,z) = 1, U(x,z) = 0$$

$$\psi(x,z) = 1, \qquad \chi(x,z) = 0, \qquad \phi(x,z) = 0 \qquad \Psi(x,z) = 0$$
$$\frac{T}{\mu} = \frac{48 - \mu^2}{16\pi\mu} \qquad p(z) = 4(1 + z + z^2 - z^3\mu^2 / 16)$$

• Charge density


$$B_{t} = (1-z)\chi = -\rho(x)z + 0(z^{2})$$

$$\rho(x) = \rho_1 \cos[k_c x] + \rho_3 \cos[3k_c x] + \dots$$

$$\rho_0 \cong \rho_2 \cong 0..., \ \rho_1, \ \rho_3 \longrightarrow CDW$$

#### No free electrons

• Numerical solutions



Condition for U(1) symmetry breaking

$$\left(\nabla^2 - m_v^2\right)\eta = e^2 B^2 \eta$$
  $\Psi = \eta e^{i\theta}, \quad \theta = 0$ 

**Necessary condition** 

$$\eta \neq 0 \Longrightarrow B^2 = g^{tt} B_t B_t \neq 0$$

$$B_{t} = (1-z)\chi = -\rho(x)z + 0(z^{2})$$

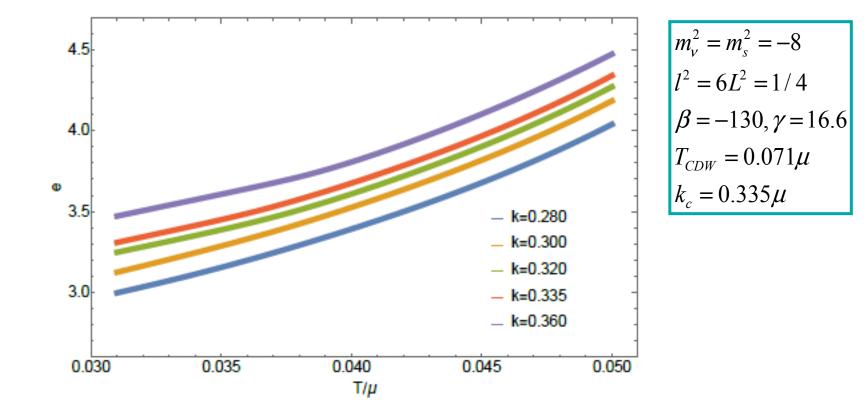
#### charges

$$\rho(x) = \rho_0 + \dots$$

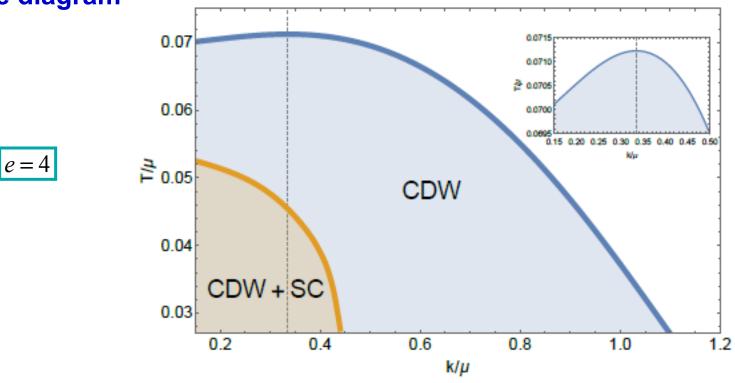
For all the previous models  $ho_0 
eq 0$ 

CDW

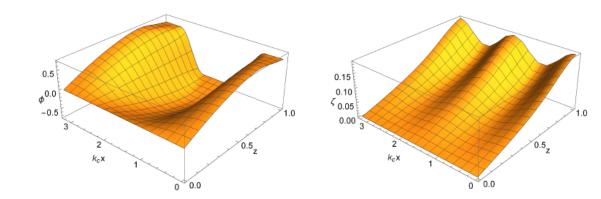
$$\rho(x) = \rho_1 \cos[k_c x] + \rho_3 \cos[3k_c x] + \dots$$


$$\rho_0 \cong \rho_2 \cong 0..., \ \rho_1, \ \rho_3 \longrightarrow CDW$$

No free electrons

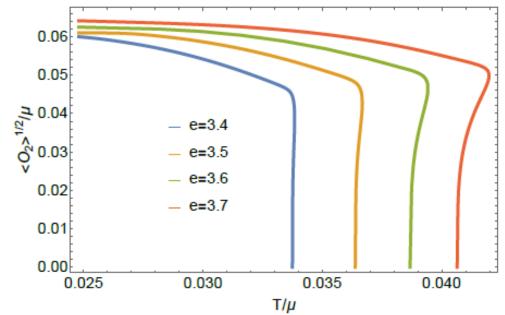

 $B_t = (1-z)\chi \neq 0$  only due to the presence of CDW!

The relation between the critical temperature and the charge

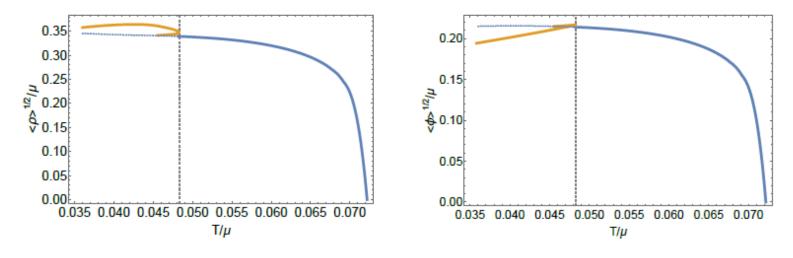

$$\left(\nabla^2 - m_{\nu}^2\right)\eta = e^2 B^2 \eta$$



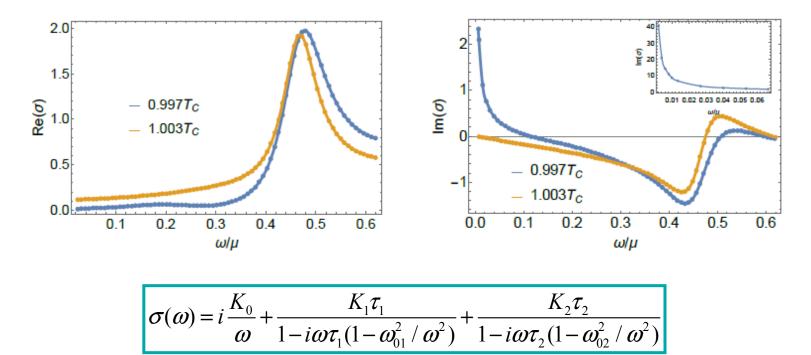
Phase diagram




The solutions of background




$$T = 0.988T_{c}$$


The condensation of SC



The leading order of the charge and the order parameter of CDW



The optical conductivity



$$b_x = (1 + j_x(x)z + ...)e^{-i\omega t}$$
$$\sigma(\omega / \mu) = \frac{4j_x^{(0)}}{i\omega}$$

21 linear equations!

$$g_{\mu\nu} = \overline{g}_{\mu\nu} + \delta g_{\mu\nu}, A_{\mu} = \overline{A}_{\mu} + \delta A_{\mu}, B_{\mu} = \overline{B}_{\mu} + \delta B_{\mu},$$
  

$$\Phi = \overline{\Phi} + \delta \Phi, \qquad \eta = \overline{\eta} + \delta \eta, \qquad \theta = 0 + \delta \theta.$$
  

$$\nabla^{\mu} \hat{h}_{\mu\nu} = 0, \nabla^{\mu} a_{\mu} = 0, \nabla^{\mu} b_{\mu} = 0. \qquad \hat{h}_{\mu\nu} = h_{\mu\nu} - h \overline{g}_{\mu\nu} / 2.$$

- A novel holographic model in which the role of CDW during the phase transition of superconductivity has been clearly disclosed.
- Superconductivity can form from the pre-existing CDW phase.
- The system is characterized by the coexistence of the CDW phase and the superconducting phase.
- CDW phase and superconducting phase can both cooperate and compete with each other.
- The pseudo-gap in CDW phase promotes the pre-formed pairs of carriers such that the formation of superconductivity benefits from the presence of CDW.

**Next**:  $\rho_0 \neq 0$ 

# Thank you !