Thermodynamics of Non-Dirac materials with Strong interaction

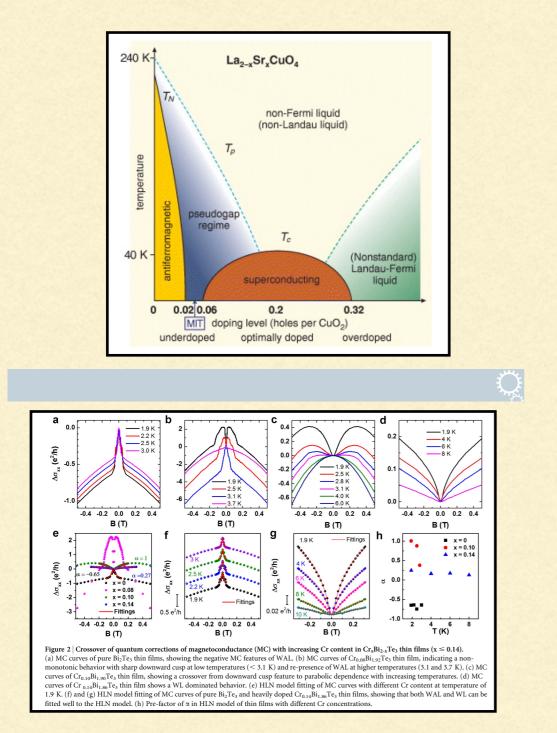
Yunseok Seo(GIST)

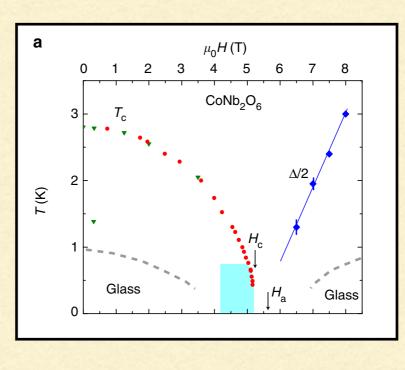
August 27, 2020

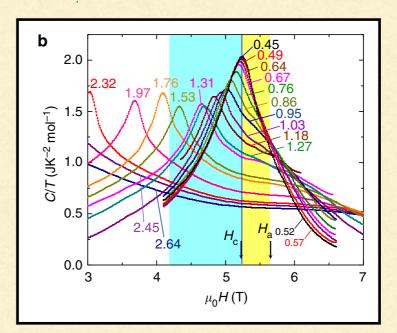
Based on: JHEP06(2020)128 with Xian-hui Ge, Geunho Song and Sang-Jin Sin And on-going work with Xian-hui Ge, Geunho Song and Sang-Jin Sin

Motivation

Strongly interacting materials







GIIT Gwangju Institute of Science and Technology

Motivation

Quantum critical models can be characterized by

- Dynamical critical exponent z: relative scaling of time and space $(t \to \lambda t, x \to \lambda^z x)$
- Hyperscaling-violation exponent. θ : deviation of the scaling of the low energy critical degrees of freedom from original space(effective theory live in $d \theta$ dimension)
- Dirac materials
 - $\circ \ z=1, \quad \theta=0$
 - Boundary geometry: AdS
 - Transport coefficient(2018), Two current model(2017), Spontaneous magnetization(2018, 2019)
- Non-Dirac materials(with magnetism)
 - $\circ \ z \neq 1, \quad \theta \neq 0$
 - What is background geometry?
 - What is the role of each exponent to the transport coefficient and other thermodynamic observables?

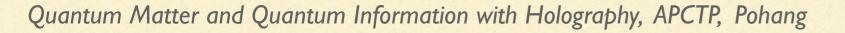
Background Geometry

Action

$$\begin{split} S_{tot} &= \int_{\mathcal{M}} d^4 x \left(\mathcal{L}_0 + \mathcal{L}_{int} \right) \\ \mathcal{L}_0 &= \sqrt{-g} \left(R + \sum_{i=1}^2 V_i e^{\gamma_i \phi} - \frac{1}{2} (\partial \phi)^2 - \frac{1}{4} \sum_{i=1}^2 Z_i(\phi) F_{(i)}^2 - \frac{1}{2} Y(\phi) \sum_{i,I}^2 (\partial \chi_I^i)^2 \right) \\ \mathcal{L}_{int} &= -\frac{q_{\chi}}{16} \sum_{I=1,2} (\partial \chi_I^{(2)})^2 \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu}^{(2)} F_{\rho\sigma}^{(2)}, \end{split}$$

Background solution

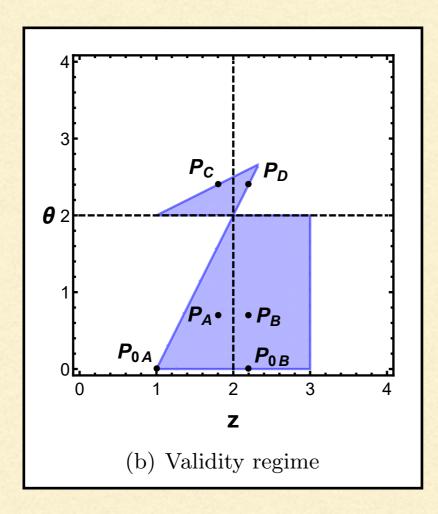
$$\begin{split} A_{1} &= a_{1}(r)dt, A_{2} = a_{2}(r)dt + \frac{1}{2}H(xdy - ydx), \\ \chi_{I}^{(1)} &= (\alpha x, \alpha y), \quad \chi_{I}^{(2)} = (\lambda x, \lambda y), \\ ds^{2} &= r^{-\theta} \bigg(-r^{2z}f(r)dt^{2} + \frac{dr^{2}}{r^{2}f(r)} + r^{2}(dx^{2} + dy^{2}) \bigg), \\ f(r) &= 1 - mr^{\theta - z - 2} - \frac{\beta^{2}}{(\theta - 2)(z - 2)}r^{\theta - 2z} + \frac{q_{2}^{2}(\theta - z)r^{2\theta - 2z - 2}}{2(\theta - 2)} \\ &+ \frac{H^{2}r^{2z - 6}}{4(z - 2)(3z - \theta - 4)} + \frac{\lambda^{4}H^{2}q_{\chi}^{2}c_{3}}{r^{6 + 2z - 4\theta}} - \frac{\lambda^{2}Hq_{2}q_{\chi}c_{2}}{r^{4 + 2z - 3\theta}}, \\ a_{1}(r) &= \frac{-q_{1}}{2 + z - \theta}(r_{\mathrm{H}}^{2 + z - \theta} - r^{2 + z - \theta}), \quad a_{2}(r) = (\mu - q_{2}r^{\theta - z}) - \frac{\lambda^{2}Hq_{\chi}c_{4}}{r^{z - 2\theta + 2}}, \end{split}$$



Background Geometry

Validity regime

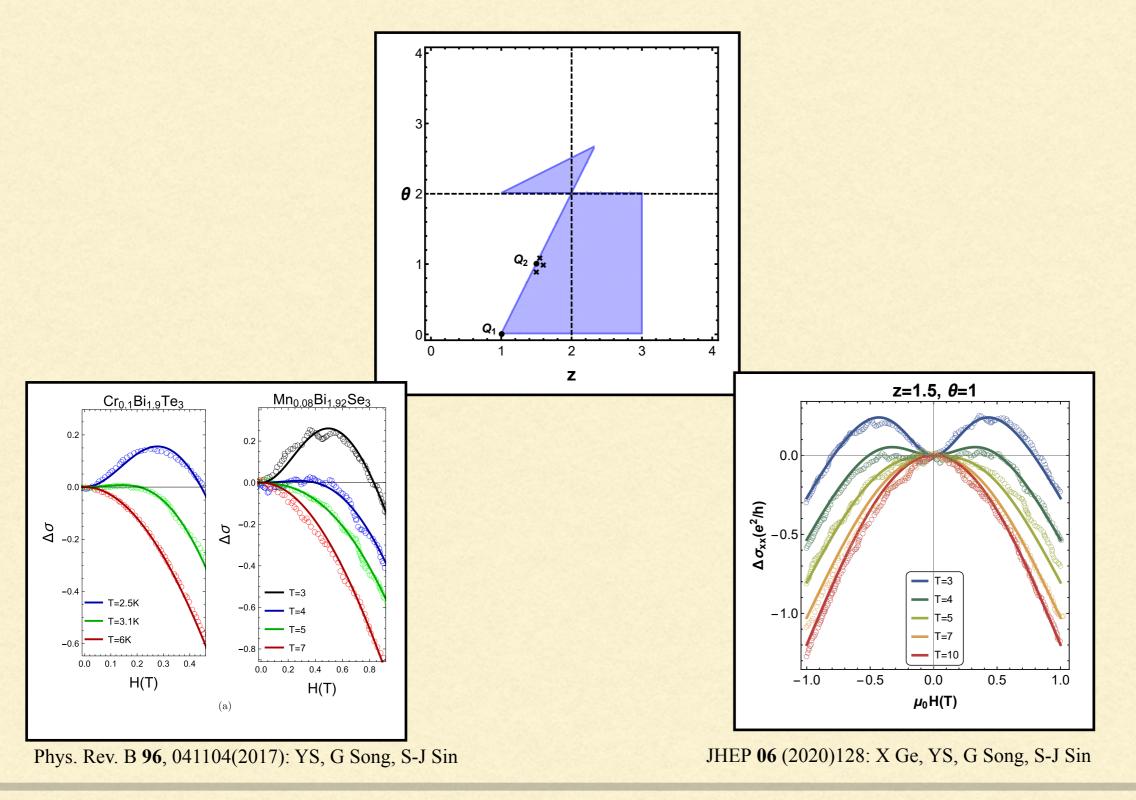
- Charge reality condition
- Null energy condition
- Asymptotic HSV geometry



$$\begin{split} A_{1} &= a_{1}(r)dt, A_{2} = a_{2}(r)dt + \frac{1}{2}H(xdy - ydx), \\ \chi_{I}^{(1)} &= (\alpha x, \alpha y), \quad \chi_{I}^{(2)} = (\lambda x, \lambda y), \\ ds^{2} &= r^{-\theta} \bigg(-r^{2z}f(r)dt^{2} + \frac{dr^{2}}{r^{2}f(r)} + r^{2}(dx^{2} + dy^{2}) \bigg), \\ f(r) &= 1 - mr^{\theta - z - 2} - \frac{\beta^{2}}{(\theta - 2)(z - 2)}r^{\theta - 2z} + \frac{q_{2}^{2}(\theta - z)r^{2\theta - 2z - 2}}{2(\theta - 2)} \\ &+ \frac{H^{2}r^{2z - 6}}{4(z - 2)(3z - \theta - 4)} + \frac{\lambda^{4}H^{2}q_{\chi}^{2}c_{3}}{r^{6 + 2z - 4\theta}} - \frac{\lambda^{2}Hq_{2}q_{\chi}c_{2}}{r^{4 + 2z - 3\theta}}, \\ a_{1}(r) &= \frac{-q_{1}}{2 + z - \theta}(r_{\mathrm{H}}^{2 + z - \theta} - r^{2 + z - \theta}), \quad a_{2}(r) = (\mu - q_{2}r^{\theta - z}) - \frac{\lambda^{2}Hq_{\chi}c_{4}}{r^{z - 2\theta + 2}}, \end{split}$$

Transport coefficient

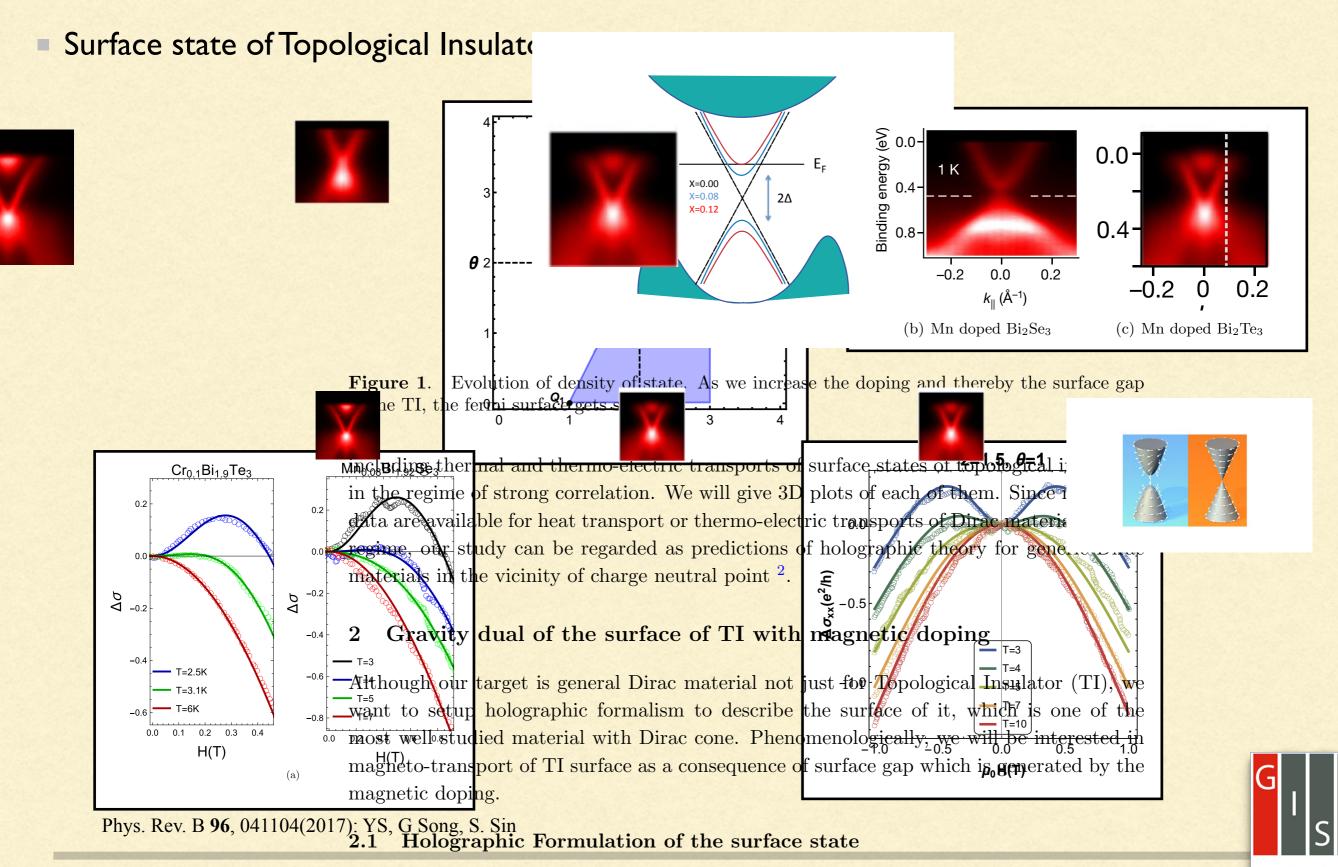
Surface state of Topological Insulator



Quantum Matter and Quantum Information with Holography, APCTP, Pohang

Gwangju Institute of Science and Technology

Transport coefficient



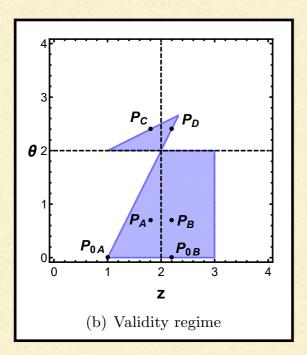
Quantum Matter and Quantum Werset at the West philes model, by a serve per of reasonings.

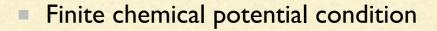
Gwangju Institute of Science and Technology

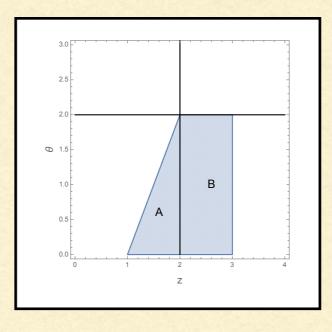
The integration of the on-shell action is divergent

$$\begin{split} S_{bulk} = \\ S_0 + S_{int} = &(2 - \theta)\Lambda^{2 + z - \theta} - \frac{1}{2}(\theta - z)q_2^2\Lambda^{\theta - z} + \frac{4z - \theta - 6}{4(z - 2)(3z - \theta - 4)}H^2\Lambda^{-4 + 3z - \theta} \\ &- \frac{\theta - z}{z - 2\theta + 2}q_{\chi}Hq_2^2\Lambda^{-2 - z + 2\theta} - \frac{3}{2(z - 3\theta + 4)}q_{\chi}^2\beta^4H^2\Lambda^{-4 - z + 3\theta}, \end{split}$$

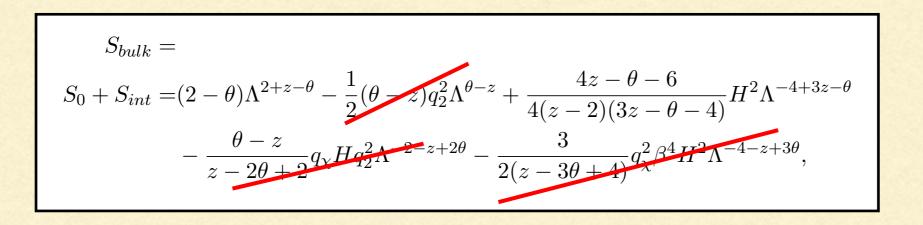
Validity regime



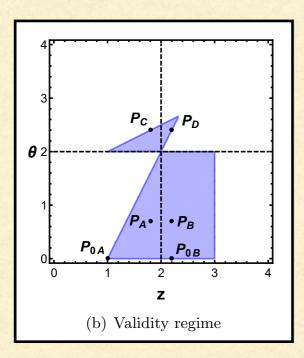




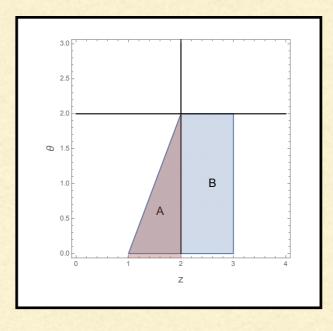
The integration of the on-shell action is divergent



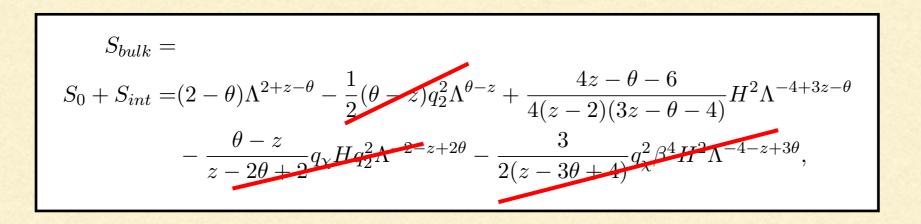
Validity regime



Finite chemical potential condition



The integration of the on-shell action is divergent



Boundary counter terms

$$S_{b} = -\int d^{3}x \sqrt{-\gamma} \left(-2K - (4z - 2\theta)e^{-\xi\phi} + (\mathcal{V}_{1}e^{\xi\phi})V_{2}e^{\gamma_{2}\phi} + \bar{\Pi}_{1}^{t}A_{1}^{t} \right) + \mathcal{V}_{2}e^{\xi\phi} \sum_{I=1}^{2} \bar{\Pi}_{\chi}^{\mu}(\partial_{\mu}\chi_{I}) \right)$$
$$K_{ij} = -\frac{1}{2}\partial_{r}\gamma_{ij} \\\bar{\Pi}_{1}^{i} = -Z_{1}\gamma^{ij}F_{rj}^{1} \\\bar{\Pi}_{\chi_{I}}^{\mu} = -Y \partial^{\mu}\chi_{I}.$$
$$ds_{B}^{2} = dr^{2} + \gamma_{ij}(r,t)dx^{i}dx^{j} \\ ds_{B}^{2} = dr^{2} + \gamma_{ij}(r,t)dx^{i}dx^{j} \\ \frac{\xi = -\frac{\theta}{2\nu}}{(2z - \theta - 2)(3z - \theta - 4)} \\ \nu_{2} = \frac{z + \theta - 3}{2(z - 2)(\theta - 2)},$$

'18: Cremonini, Cvetic, Papadimitriou

Renormalized on-shell action

$$\begin{split} S^E = &(1-\theta)m + (\theta-2)v_H^{2+z-\theta} + \frac{1}{2}(\theta-z)v_H^{\theta-z}q_2^2 + \frac{(4z-\theta-6)H^2}{4(z-2)(3z-\theta-4)}v_H^{-4+3z-\theta} \\ &- \frac{\theta-z}{z-2\theta+2}q_\chi H q_2^2 v_H^{-2-z+2\theta} - \frac{3}{2(z-3\theta+4)}q_\chi^2 \beta^4 H^2 v_H^{-4-z+3\theta}, \end{split}$$

Boundary counter terms

$$S_{b} = -\int d^{3}x \sqrt{-\gamma} \left(-2K - (4z - 2\theta)e^{-\xi\phi} + (\nabla_{1}e^{\xi\phi})V_{2}e^{\gamma_{2}\phi} + \bar{\Pi}_{1}^{t}A_{1}^{t} \right) + \nabla_{2}e^{\xi\phi} \sum_{I=1}^{2} \bar{\Pi}_{\chi}^{\mu}(\partial_{\mu}\chi_{I}) \right)$$
$$K_{ij} = -\frac{1}{2}\partial_{r}\gamma_{ij} \\\bar{\Pi}_{1}^{i} = -Z_{1}\gamma^{ij}F_{rj}^{1} \\\bar{\Pi}_{\chi_{I}}^{\mu} = -Y \ \partial^{\mu}\chi_{I}.$$
$$ds_{B}^{2} = dr^{2} + \gamma_{ij}(r,t)dx^{i}dx^{j} \\ds_{B}^{2} = dr^{2} + \gamma_{ij}(r,t)dx^{i}dx^{j} \\ \frac{\xi = -\frac{\theta}{2\nu}}{\nabla_{1} = \frac{z - \theta - 3}{(2z - \theta)(\theta - 2)}} \\\nabla_{1} = \frac{z - \theta - 3}{(2z - \theta)(\theta - 2)},$$

'18: Cremonini, Cvetic, Papadimitriou

GUIST Gwangju Institute of Science and Technology

Standard AdS/CFT

- Energy density: Boundary energy momentum tensor
- Pressure: Negative renormalized on-shell action
- Entropy: Horizon area
- Temperature: Hawking temperature of BH
- Smarr relation

$$\epsilon + \mathcal{P} = s T + \mu Q.$$

Thermodynamic First Law

Quantum Matter and Quantum Information with Holography, APCTP, Pohang

 $\delta \epsilon = T\delta s + \mu \delta Q$

$$\epsilon = T_{00}$$
$$\mathcal{P} = -S^E$$

Thermodynamic relation

$$\epsilon = z\tilde{S}^E + sT + \frac{(1+z-\theta)}{(2-\theta)}\mu Q = (2-\theta)m_z$$
$$Q = (z-\theta)a_z$$

$$\tilde{S}^E \equiv S^E + \frac{\theta(1-z)\beta^2}{z(2-z)(\theta-2)}v_H^{2-z}.$$

Thermodynamic First Law

$$\delta \epsilon = T \,\delta s + \mu \delta Q - M \delta H,$$

$$M = \frac{(\theta - 2)v_H^{-4 + 3z - \theta}}{2(z - 2)(3z - 4 - \theta)}H + \frac{q_\chi\beta^2 Q v_H^{-2 - z + 2\theta}}{2 + z - 2\theta} - \frac{q_\chi^2\beta^4 v_H^{-4 - z + 3\theta}}{4 + z - 3\theta}H.$$

Specific heat

$$c_V = T \frac{\partial s}{\partial T} = \frac{\partial \epsilon}{\partial T}$$

High temperature behavior

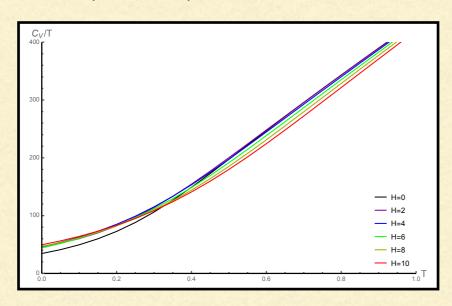
$$T^2 (z = 1, \theta = 0)$$

$$c_V \sim T^{\frac{2-\theta}{z}} \rightarrow T^{2/3} (z = \frac{3}{2}, \theta = 1)$$

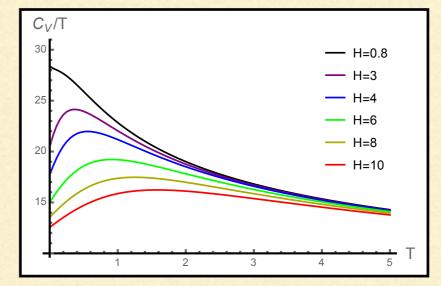
$$T (z = \frac{4}{3}, \theta = \frac{2}{3})$$

Numerical results

• (z=1, θ=0)

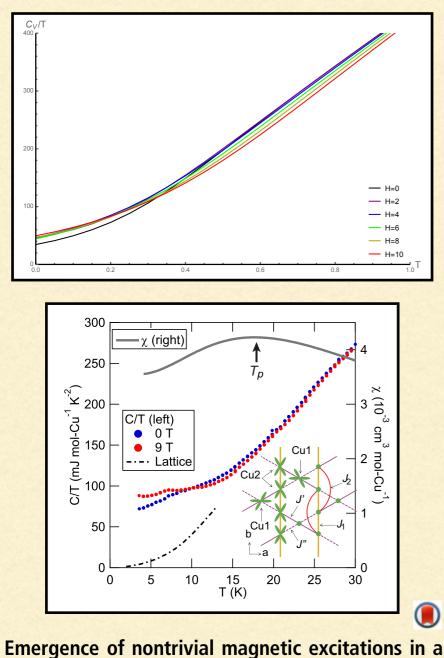


∘ (z=3/2, θ=1)



Numerical results

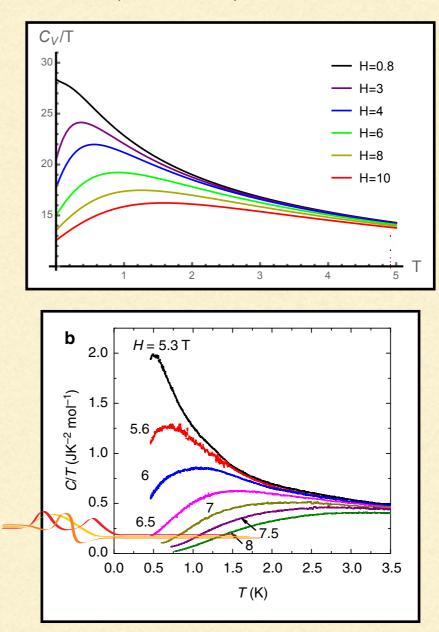
• $(z=1, \theta=0)$



Emergence of nontrivial magnetic excitations in a spin-liquid state of kagomé volborthite

www.pnas.org/cgi/doi/10.1073/pnas.1524076113

• $(z=3/2, \theta=1)$



Heat capacity peak at the quantum critical point of the transverse Ising magnet $CoNb_2O_6$

NATURE COMMUNICATIONS | 6:7611 | DOI: 10.1038/ncomms8611 |

Conclusion

- We study transport coefficient of strongly interacting non-Dirac materials via holography
- We construct renormalized on-shell action in HSV geometry
- We construct modified thermodynamic relation such that the thermodynamic 1st law of the boundary theory satisfied
- Role of (z, θ) in the thermodynamic relation: Difference of scaling behavior between time and space
- Role of extra term in pressure: Breaking diffeomorphism invariance by β

Future direction

- Holographic renormalization for other (z, θ) region
- Comparing other transport coefficient(thermal conductivity...)
- AC conductivities

Quantum Matter from the Entanglement and Holography, APCTP, Pohang

Thank you!

Quantum Matter from the Entanglement and Holography, APCTP, Pohang

• Schwartzsheild HSV $(q_2 = 0, H = 0, \beta = 0, q_{\chi} = 0)$

$$S^{E} = -v_{H}^{2+z-\theta}$$

$$s = 4\pi v_{H}^{2-\theta}$$

$$T = \frac{(2+z-\theta)}{4\pi} v_{H}^{z}.$$

Naive Smarr relation

$$\epsilon = S^E + s T = (1 + z - \theta) v_H^{2 + z - \theta} = (1 + z - \theta) m, \qquad \longrightarrow \qquad \delta \epsilon \neq T \, \delta s$$

Modified thermodynamic relation

$$\epsilon = zS^E + sT = (2 - \theta)v_H^{2+z-\theta} = (2 - \theta)m. \qquad \longrightarrow \qquad \delta \epsilon = T\delta s.$$

RNHSV $(q_2 \neq 0, H = 0, \beta = 0, q_{\chi} = 0)$

$$\begin{split} S^{E} &= -v_{H}^{2+z-\theta} + \frac{(z-\theta)}{2(\theta-z)} q_{2}^{2} v_{H}^{\theta-z} \\ s &= 4\pi v_{H}^{2-\theta} \\ T &= \frac{(2+z-\theta)}{4\pi} v_{H}^{z} + \frac{(z-\theta)^{2} q_{2}^{2}}{8\pi(\theta-2)} v_{H}^{-2-z+2\theta}. \end{split}$$

Modified thermodynamic relation

$$\epsilon = zS^E + sT + \frac{(z-\theta)(1+z-\theta)}{(2-\theta)}\mu q_2 = (2-\theta)m.$$

$$\bullet \qquad \delta \epsilon = T \, \delta s + \mu \delta Q,$$
$$Q = (z - \theta)q_2$$

Schwartzscild with momentum relaxation $(q_2 = 0, H = 0, \beta \neq 0, q_{\chi} = 0)$

$$\begin{split} S^{E} &= -v_{H}^{2+z-\theta} + \frac{(\theta-1)\beta^{2}}{(z-2)(\theta-2)}v_{H}^{2-z} \\ s &= 4\pi v_{H}^{2-\theta} \\ T &= \frac{(2+z-\theta)}{4\pi}v_{H}^{z} - \frac{\beta^{2}}{4\pi(2-\theta)}v_{H}^{-z+\theta}. \end{split}$$

Modified thermodynamic relation

$$\epsilon = z S^E + s T \neq (2 - \theta)m, \qquad \longrightarrow \qquad \delta \epsilon \neq T \, \delta s$$

Modified pressure

$$\tilde{S}^E \equiv S^E + \frac{\theta(1-z)\beta^2}{z(2-z)(\theta-2)} v_H^{2-z}.$$

$$\epsilon = z \,\tilde{S}^E + s \,T = (2-\theta)m,$$

$$\delta \epsilon = T \delta s.$$

Final thermodynamic relation

$$\epsilon = z\tilde{S}^E + sT + \frac{(1+z-\theta)}{(2-\theta)}\mu Q,$$

$$\tilde{S}^{E} \equiv S^{E} + \frac{\theta(1-z)\beta^{2}}{z(2-z)(\theta-2)}v_{H}^{2-z}.$$

Thermodynamic First Law

$$\delta \epsilon = T \,\delta s + \mu \delta Q - M \delta H,$$

$$M = \frac{(\theta - 2)v_H^{-4 + 3z - \theta}}{2(z - 2)(3z - 4 - \theta)}H + \frac{q_\chi\beta^2 Q v_H^{-2 - z + 2\theta}}{2 + z - 2\theta} - \frac{q_\chi^2\beta^4 v_H^{-4 - z + 3\theta}}{4 + z - 3\theta}H.$$

