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Relativistic hydrodynamics

• Hydrodynamics: small perturbations close to thermal equilibrium, 

long wave length and long time limit;

• Dynamics determined by conservation equations

• Constitutive equations:



Hydrodynamic modes

• Poles at w=0 due to conservation of

energy momentum

• Propagating modes:

• Diffusive modes:

• Crossing point in the real part of the 

eigenvalues at E=k=0
• To first order in k:

In the plane of complex ω, there are two poles, when the denominator vanishes. In the limit
of small momenta, the poles are at ω = ±|k|vs − iγsk2/2, corresponding to weakly damped
sound waves. We can combine the contributions from π⊥ and π∥ into one retarded function
for momentum density,

GR
πiπj(ω,k) =

(

δij −
kikj
k2

)

ηk2

iω − γηk2
+

kikj
k2

w̄(k2v2s − iωγsk2)

ω2 − k2v2s + iωγsk2
. (2.21)

For completeness, the other retarded functions are

GR
ϵπi(ω,k) = GR

πiϵ(ω,k) =
w̄ ωki

ω2 − k2v2s + iωγsk2
,

GR
ϵϵ(ω,k) =

w̄ k2

ω2 − k2v2s + iωγsk2
.

Evaluating the imaginary parts of the retarded functions, we find the Kubo formulas

σ = − ω

k2
ImGR

nn(ω,k→0) , (2.22a)

η = − ω

k2

1

d−1

(

δij −
kikj
k2

)

ImGR
πiπj(ω,k→0) , (2.22b)

2d−2

d
η + ζ = −ω

3

k4
ImGR

ϵϵ(ω,k→0) . (2.22c)

The positivity condition (2.15) implies that η ! 0, ζ ! 0, and σ ! 0, consistent with the
requirement that small hydrodynamic fluctuations decay (rather than grow) with time. Using
the relation (2.14), the above Kubo formulas can be equivalently expressed in terms of either
the symmetrized correlation functions Gab, or the spectral functions ρab.

The Kubo formulas can be also written in terms of correlation functions of spatial currents,
rather than charge densities. To do so, we demand that the correlation functions of conserved
currents satisfy

kµGJµJν(ω,k) = 0 ,

kµGTµνTαβ
(ω,k) = 0 .

For the conductivity, we then find

σ =
1

2Td
GJiJi(ω,k=0) =

1

2T
GJxJx(ω,k=0) . (2.23a)

In writing down this expression, we have used the relation (2.14) between the symmetrized
and retarded functions, as well as time-reversal invariance which by Eq. (2.16) implies GJ0Ji =
GJiJ0, and rotation invariance which implies that at zero spatial momentum GJiJj must be
proportional to δij. A similar argument gives Kubo formulas for shear viscosity

η =
1

2T

1

d2+d−2
Hmi

nj GTmi,Tnj
=

1

2T
GTxyTxy , (2.23b)

and for the bulk viscosity

ζ =
1

2T

1

d2
δmiδnj GTmi,Tnj

=
1

2Td

(

GTxxTxx+(d−1)GTxxTyy

)

=
1

2T

(

GTxxTxx− 2d−2
d GTxyTxy

)

,

(2.23c)
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Note that GR(t,k) is only non-zero for t > 0, hence GR(ω,k) is an analytic function in
the upper half-plane of complex ω. We can then analytically continue GR(ω,k) to lower
half-plane. Now the density induced by the external source becomes

⟨n(t,k)⟩ = −µ0(k)

∫

dω

2π
GR

nn(ω,k)
e−iωt

iω + ε
.

We multiply both sides by eizt (with Im z > 0), and integrate over t from 0 to ∞, which gives

⟨n(z,k)⟩ = −µ0(k)

∫

dω

2π

GR
nn(ω,k)

(iω + ε) (i(ω−z) + ε)
.

To do the integral, we close the contour in the upper-half plane where GR is analytic. There
are two poles inside the contour, at ω = iε, and ω = z + iε, thus

⟨n(z,k)⟩ = −µ0(k)
GR

nn(z,k)−GR
nn(z=0,k)

iz
, (2.7)

where the argument of GR is understood to be slightly above the real axis. Now comparing
with equation (2.3), we find:

GR
nn(z,k)−GR

nn(z=0,k) =
−izχ

−iz +Dk2
.

The only missing piece is GR(z=0,k). It is easy to find if one looks at Eq. (2.6) at t=0,

⟨n(t=0,k)⟩ = −µ0(k)

∫ ∞

0

dt′ e−εt
′
GR

nn(t
′,k) = −µ0(k)G

R
nn(z=0,k) .

So in the small-k limit we can identify GR
nn(z=0,k) = −χ, which gives the retarded function

GR
nn(z,k) =

χDk2

iz −Dk2
.

This function is analytic in the upper-half plane of complex z as it should be. We can
define GR(ω,k) in the whole complex plane as the analytic continuation of GR(z,k) from the
upper-half plane. In the lower half-plane, the retarded function has a pole at ω = −iDk2,
corresponding to the diffusive mode.

Given the above expression for the retarded function, we can deduce the standard Kubo
formula for the diffusion constant,

Dχ = − lim
ω→0

lim
k→0

ω

k2
ImGR

nn(ω,k) .

2.2 Canonical approach to hydrodynamic response functions

The above example of diffusion allows for a simple generalization when there are several fields
present. Let ϕa(t,x) be the set of hydrodynamic variables which have microscopic operator
definitions, such as the charge density J0, momentum density T 0i etc. We add the sources λa
to the Hamiltonian as

δH = −
∫

ddx λa(t,x)ϕa(t,x) .
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Looking for topological modes in hydrodynamics: 
motivation
• Quantum gapless topological states: Weyl semimetal; topological nodes

• Classical topological states: sounds/optics
• Possible experimental observational effects?
• Implications to other topological systems
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Outline
• Effective Hamiltonian
• Engineering the Hamiltonian: making it gapped, separating the
nodes
• Non-conservations: gravitons; non-inertial reference frames,
symmetry;
• Transports, second order effects;
• Topological invariants: orthogonal adjacent states;
• Holography
•More general systems with two sectors of energy momentum;
• Summary and open questions



Hydrodynamic modes, dynamics determined by the conservation equation

I: Looking for topological modes in hydrodynamics:

effective Hamiltonian

x, we have the following set of equations

∂t δϵ+ ikxπx = 0 ,

∂tπ
∥ + ikxv

2
s δϵ+ γsk

2πx = 0 ,

∂tπ
⊥
i + γηk

2π⊥
i = 0 .

Here v2s = ∂p/∂ϵ, γη = η/(ϵ̄+p̄), γs = (2d−2
d η+ζ)/(ϵ̄+p̄), η and ζ are shear and bulk viscosities,

and d is the number of spatial dimensions.
The transverse momentum density π⊥

i obeys the diffusion equation, with γη playing the
role of the diffusion constant. This means that we should be able to use the results for the
diffusion equation. The source for the momentum density is the velocity, and it appears in
the Hamiltonian in the form

δH = −
∫

ddx vi(t,x) πi(t,x)

[think grand canonical density operator, −βH → βuµP µ ≈ −β(H−v·P)]. The role of the
susceptibility χ is played by the enthalpy density w̄ ≡ (ϵ̄+p̄), because to linear order πi = w̄vi.
The retarded correlation function of the transverse momentum density is now easy to write
down: for k along x, we have

GR
πyπy(ω,k) =

w̄γηk2

iω − γηk2
. (2.20)

Now let us look at the coupled equations for δϵ and π∥. These equations describe sound waves,
and have the form of Eq. (2.10) with ϕa = (δϵ, πx), and

Mab =

(

0 ikx
ikxv2s γsk2

)

.

To find the susceptibility matrix, we need to identify the sources λa. A disturbance in energy
density can be created by a disturbance in temperature, −βH → −(β + δβ)H . Noting that
δβ/β = −δT/T , we have

δH = −
∫

ddx

(

δT (t,x)

T
ϵ(t,x) + vi(t,x)πi(t,x)

)

.

Thus the sources corresponding to the fields ϕa = (δϵ, πx) are λa = (δT/T, vx). The suscepti-
bility matrix is therefore diagonal,

χab =

(

cvT 0
0 w̄

)

where cv = ∂ϵ/∂T = ⟨H2⟩conn/(V T 2) is the specific heat. At µ = 0, it can be easily related
to the enthalpy and the speed of sound, w̄/T = s = ∂p

∂T = ∂p
∂ϵ

∂ϵ
∂T = v2scv. The matrix of

T-eigenvalues is S = diag(1,−1), and one can easily check that the relation (2.18) is satisfied,
so the response functions will come out consistent with the time-reversal invariance. The
retarded function is given by Eq. (2.13),

GR
ab(ω,k) =

w̄

ω2 − k2v2s + iωγsk2

(

k2 ωkx
ωkx k2v2s − iωγsk2

)

.

23

Define

leading

order in k

H is similar to a Hermitian matrix by



I: Looking for topological modes in hydrodynamics:

effective Hamiltonian

• Resemblance to the equation of motion for fermions: Dirac

Hamiltonian

• An effective Hamiltonian in hydrodynamics, whose eigenvalues

give the spectrum

k

E

leading

order in k



II: Engineering the effective Hamiltonian:
gapping the hydrodynamic modes
• Gapless topological modes: stable under perturbations that usually
gap the system
• First step: gap the hydrodynamic modes
• Non-conservation of energy momentum

• Order:
• y, z direction m terms would have the same effect

k

E



II: Engineering the effective Hamiltonian:

gapping the hydrodynamic modes

• Note: different from the usual momentum dissipation considered in

holography

•What we have here:

• Gap:

•What they have there:

• Momentum dissipation



II: Engineering the effective Hamiltonian:

gapping the hydrodynamic modes

• Compare the effective Hamiltonians

• Momentum dissipation vs gap



II: Engineering the effective Hamiltonian:

separating the hydrodynamic modes

• More non-conservation terms

• H is similar to a Hermitian matrix by

k

E

mb

Similar but different spectrum was also found in non-
relativistic hydro in e.g. Perrot et.al., Natue Physics, 2019.



II: Engineering the effective Hamiltonian:

separating the hydrodynamic modes

• Note that the y or z direction mass terms could still gap the system

Topologically nontrivial protected

by certain symmetries: not gapped

by the x direction m terms.

The spectrum with y or z mass terms



Meaning of topologically gapless states
• Accidental vs topological

• Symmetry protection



• (Topological) phase transition: tuning b from larger than m to
smaller than m

b>m, at
ky=kz=0

b<m, at
ky=kz=0

b>m, at
nonzero ky

b=m, at
ky=kz=0



III Origin for non-conservation of energy momentum

• From a symmetric tensor external field:

• Non-conservation equation:

• Choose the operator to be ; carefully choosing the nonzero

components of the external field could give us the non-conservation

equation that is needed.

• The symmetric tensor field could be some external effective matter

field, but its coupling has to be carefully tuned in real systems.
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III Origin for non-conservation of energy momentum

• The most interesting and natural possibility for the symmetric

tensor field: the gravitational field

• Energy momentum is conserved covariantly

• Expanding the covariant conservation equation to first order of



III Origin for non-conservation of energy momentum

•With the following nonzero components of

• The covariant conservation equation gives the non-conservation

terms needed

infinite many possibilities
for , here we pick a
simple choice



• How do we get this gravitational field ?

• Surprisingly all Riemann tensors vanish for this metric!

• could emerge from a coordinate transformation from the flat

spacetime

• In a specific non-inertial frame, we could observe hydrodynamic 

modes that are topologically protected even when they are 

topologically trivial in the original inertial frame.

• Another effect for accelerating frames in addition to the Unruh

effect.



The non-inertial frame
• A rest observer in the new reference frame

• Solving this equation, we have the movement of the rest observer in
the original flat spacetime (at leading order in k)

• Integrating these equations with appropriate boundary conditions,
we have



The non-inertial frame
• The rest observer in the new reference frame:
• Rotating with a constant angular velocity in the y-z
plane
• Accelerating with a constant acceleration in the x
direction

x direction



• A remark: with the coordinate transformation to the new frame, the
constitutive equation has to be transformed, too, which could
contribute to extra terms in the equation.

• By considering these effects carefully by transformation the four
velocity of the fluid to the non-inertial frame, extra terms all vanish
and the spectrum does not change!

• It is also possible to have the fluid also accelerating: the spectrum
does not change up to a rescaling of parameters m, b and vs.

Accelerating observer, with the fluid
rest in the inertial frame



Symmetry of the system
• To keep the exact form of these non-conservation terms, we need the
isometry of the new spacetime metric.

• Isometry: coordinate transformation from the Poincare symmetry of
the original flat spacetime

• Killing vectors





The protecting symmetry

• It could be the whole symmetry of the isometry

• However, we only need the symmetry that forbids the m terms in the y and

z directions. There could be extra b terms that change the value of b, which

do not open the gap.

• The two Killing vectors for this symmetry are

• Combined translational and boost symmetry in the y(z) and z(y) directions

This symmetry looks complicated, however, it

is just the y and z translational symmetry in the

inertial frame.



Summary of the physical picture

• The non-conservation terms look ad-hoc; the protecting symmetry looks weird.

• Let us analyze the physical picture carefully.
• Hydrodynamic modes observed in the accelerating frame where the normal

fluid is at rest in the inertial frame, i.e. the receiver accelerates while the fluid is

at rest.

• In the accelerating frame, the non-conservation terms come out naturally due

to the gravitational field, and the protecting symmetry comes out naturally as

two generators of the isometry.

• Wewill have the covariant conservation of in the accelerating frame as

long as we have the conservation of in the flat spacetime: the symmetry

required is the y and z momentum conservation in the flat spacetime.

• All that is needed is the accelerating receiver who has to accelerate exactly in

the way required and it is a natural accelerating frame of a helix.



Possible experimental realization
• Possible application: doubling of amplitudes at a finite k and w;
stable under perturbations;

• Laboratory tests: accelerating the detector/observer for sound modes
in a helix with small acceleration and angular velocity.

• Direct detection of sound modes; indirect test of transport behavior;

• Implications to other topological materials, e.g. electronic systems.



IV topological invariants
• For symmetry protected topological states
• Topological invariants calculated at
high symmetric points of the system
ky=kz=0;

• |n1> and |n2> normal to each other:
<n1|n2>=0 undetermined Berry phase
The singularity cannot become a trivial
point by continuous change, unless after
a topological phase transition

k

E

|n1>|n2>



V. Transports, second order effects
• Transports: thermal conductivity
• m,b both have effects in thermal conductivity;

• yz components become nonzero due to b terms; xx, yy, zz components
do not diverge anymore due to b or m.



V. Imaginary parts: second order in k effects

• A jump in the imaginary part: indicating topological change?



VI. Holographic realization andWard identities

• Strongly coupled hydrodynamic systems.

• Hydrodynamic modes-> gravitons

• Non-conservation of energy momentum: massive gravity?

• Another prescription for holographic realization of this system:

holographic non-inertial reference frames, coordinate

transformation from the original AdS/CFT correspondence

• First step to prove that it is indeed the holographic system needed:

reproduce theWard identities due to the energy momentum non-

conservation terms



• Ward identities for the conserved energy momentum tensor

• With energy momentum non-conservation terms, the Ward

identities become

VI. Holographic realization and Ward identities



• A new prescription to calculate holographicWard identities without

calculating all the components of the Green functions

• For perturbations of the metric , we denote the ten

components as

Fourier transformed to the momentum space in the t, x, y, z directions

• The action could be written as

VI. Holographic realization andWard identities



• Deriving equations of motion for this system and substituting the

solutions into the action, we could the on-shell action.

• The on-shell action that is relevant to the Green functions:

• ··· are terms related to the contact terms 

• Note that components with r could be viewed as constraint

equations, which could be solved and substituted into the on-shell

action.

VI. Holographic realization and Ward identities



• HolographicWard identities--- diffeomorphism

• The action has to be composed of gauge invariant combinations

• All possible gauge invariant combinations:

VI. Holographic realization andWard identities



• The on-shell action should be

• All 55 components of Green functions should be expressed using the

21 independent Gij functions.

• Eliminating all Gij’s, we obtain 34 identities for holographic Green

functions.

• 40 Ward identities need to be reproduced, 6 of which are 

independent that could be derived from other 34 identities

• They match to each other.

VI. Holographic realization and Ward identities



The holographic non-inertial frame
• The metric for the coordinate transformed AdS spacetime:

• With the new metric, the form of the on-shell action would be 
different from the AdS one, nevertheless, it can still be written as 
sums of gauge invariant terms. 



• New gauge invariant combinations

Using the same method as the

asymptotic AdS case, we could

match theWard identities from

both sides

VI. Holographic realization andWard identities



• This method for calculating holographicWard identities could also
be generalized to massive gravities.

• More to do:
• More details: hydrodynamics modes, Green functions;
• Other holographic realizations, massive gravity? External fields?

VI. Holographic realization andWard identities



VII. Generalized systems with two sectors
• With two separately conserved hydrodynamic systems. 
• Introducing weak interchange of energy and momentum between 

the two systems 
• Start from the simplest case: two 1+1d systems each with an energy

momentum tensor



VII. Generalized systems with two sectors
• A better version with two interacting energy
momentum tensors in 2d+2d

• It does not need to be protected by any
symmetry

k
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• (Topological) phase transition:
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VII. Generalized systems with two sectors



3d+3d: case I

Effective Hamiltonian

Spectrum



• Crossing nodes

Nom in the y direction With m in the y direction

Two red points: symmetry protected; two circles, no need for symmetry protection

VII. Generalized systems with two sectors



3d+3d case II

• Effective H

• Spectrum

Crossing nodes are three

circles, no need for

symmetry protection



4d+4d cases
• More complicated, qualitatively similar;

•With maximal b terms, no need for symmetry protection, while the
crossing nodes are two dimensional spheres: co-dimension one
surfaces;
•With fewer b terms, symmetry protected by the symmetry
forbidding the m term in the direction with no b term: effectively co-
dimension one in the calculation of topological invariants



Topological invariants

• For the 2d+2d case

• Only parameter: kx

• |n1> and |n2> normal to each other:

<n1|n2>=0 undetermined Berry phase

The singularity cannot become a trivial

point by continuous change, unless after

a topological phase transition

k

E

Singularity, topological?

|n1> |n2>



Topological invariants
• For the 3d+3d/4d+4d case: much more complicated
• symmetry protected by yz translation symmetries: calculated at high
symmetric points: ky=kz=0
• The same as previous cases
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Protected by y translation



• Two cases:
•With y translation

•Without y translation

Not symmetry protected ones
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Transport properties
• 2d+2d case: four components of thermal conductivity; m=0 finite;

• No second order effects



Summary

• Gapless topological modes in relativistic hydrodynamics

• Several possible realizations: 4d, 2d+2d, 3d+3d/4d+4d…
• Symmetry protected topological modes; phase transitions;

topological invariants;

• Transport; second order effects; Holography

• The take-homemessage: normal modes become (symmetry protected)
topologically nontrivial gapless modes in a certain non-inertial reference
frame: the frame of the accelerating observer moving in a helix; could be
tested in laboratories;
• A new effect for accelerating observes, in addition to the Unruh

effect;



Open questions

• Next steps:
• Extra U(1) current;
• Holographic calculation of hydrodynamic modes
• Non-Hermitian, PT symmetry related?
• Fermionic topological systems, non-inertial frame? Preliminary
results



Open questions:

• Gapped topological modes?
• Gapless modes with other kinds of topology?
•With U(1)*U(1) symmetry, more transports
• Possible experimental realizations?
• Non-relativistic systems?
• Holographic realizations frommassive gravity?
• Two sector systems: possible non-inertial frames?
• Holographic realization for two sector systems?
• Relation with nontrivial topological modes in gravitational waves?



Thank you!


