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Classical Chaos

# Early time: sensitivity of phase-space
trajectories to the initial conditions
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% Long time: ;

# Very late time:




Classical Chaos vs Quantum Mechanics

# In quantum systems, the ‘classical’ coarse-graining is set
by h

# The picture above might not be useful (after Ehrenfest
tlme Scale) {Ehrenfest ™ l lOg (/ de/h)
A >

# How the previous discussion should be modified due to
QM

# Classical chaos for nonzero A? Quantum chaos?



Quantum Chaos

# Quantize the classical chaotic system: chaotic systems

have characteristic of random
matrices [Review by D’Alessio, Kafri, Polkovikov, Rigol, 1509.06411]
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# Local chaotic behavior can be generalized
(semi-classical intuition)
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Expectation value of the commutators

[Larkin, Ovchinnikov, JETP (1969); Shenker, Stanford, 1306.0622; Maldcena, Shenker, Stanford, 1503.01409]
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Out-of-Time-Ordered Correlators (OTOC)

[Larkin, Ovchinnikov, JETP (1969); Shenker, Stanford, 1306.0622; Maldcena, Shenker, Stanford, 1503.01409]
» O(t,x) = =([W(t,x), V(O [W(t,%), V(0)])5
% Probing

OQ — Cl — C(t,X)
Co = (VU1(1)|WYa(t)) + (Pa(t)| Wy (t)) =~ Out-of-time Ordered
Ci = (V1()|¥1(¢)) + (Va(t)|¥2(t)) 3 Time ordered

Uy (t)) = VoW:|TFD)
Wa(t)) = Wi Vo|TFD)

L4 for interacting
quantum systems with many degrees of freedom

Cy=1—eer (t=3%) t, <t < t,

Different (diffusive) spreading might be seen in non-maximally chaotic systems



Holographic OTOC

[Shenker, Stanford, 1306.0622; 1412.6087]

#» OTOC = amplitudes for of particles
dual to W and V in a black hole geometry dual to the

thermal state |TFD)

# |n elastic eikonal gravity approximation, the dominate

contribution is related to the
the horizon of a two-sided black hole

on

# Universal Lyapunov exponent Ay, = 271’

# The butterfly velocity depends on the details of the black
hole geometry



C h aOS bO U n d [Maldacena, Shenker, Stanford, 1503.01409]

# Related regulated function

4 €

F(t) = Tr(yV(O)yW(t)yV(O)yW(t)) ~1—eertt, ¢yt =

# For systems with large hierarchy between thermalization
and scrambling, analyticity in correlation functions demands

)\L S 27
# It holds for very generic quantum many-body systems
% Black holes saturate this bound: maximal chaos

» SYK/AdDS2 [Kitaev, 2015]



Chaos from hydrodynamics via pole skipping

[Grozdanov, Schalm, Scopelliti, 1710.00921; Blake, Lee, Liu, 1801.00010; Blake, Davison, Grozdanov, Liu,
1809.01169 ;...]

# Naively hydrodynamics has nothing to do with chaos

# Deep connection from EFT. Signatures of chaos in energy
density two point function of GE 00 (w, k)

# There exists a special point (w.,k.) = (i, Z;‘—L)
B
in GR(w, k) = §§§Z§ With A(w., k) = B(w., k) = 0

# Examples of pole skipping in many maximally chaotic
systems: SYK, AdS black holes in Einstein gravity plus matter

# Pole skipping also exists for 2-pt correlators of other
operators on the lower half plane

[ talks by Koenraad Schalm, Keun-Young Kim, Viktor Jahnke, Mitsuhiro Nishida ]



Motivation

# Gonnection between OTOC and pole skipping, e.g. for

# What is the role of rotation in holographic chaos

# What is the role of massive graviton in holographic chaos



Why 3D gravity
# A “simple” toy model to understand quantum gravity
# We can learn much from CFT calculations
# In the following, we will talk about
> Quantum chaos in 3D Einstein gravity

> Quantum chaos in 3D TMG



3D Einstein gravity

# Einstein-Hilbert action

1 3 — B
/Md v /=g (R — 2A)

SEH = 167G

# BTZ Black hole solution

dr? ror_ 2
ds? = —f(r)dt2 + —— + 7% dp — T —dt
S f(,,,.) + f(’l") —'_T ( 90 €7°2 )

2 2 2 2

fy = ),

£2T2

» M, T, ) are determined by r, , r_.

# The dual theory is expected to be a CFT with 4. = 8(1 ¥ Q) and

3¢
Cy = C_ = @
# The angular direction is periodic. At high temperature G :

¢
we can take (a boosted brane)



Chaos parameters from OTOC

[Jahnke, Kim, Yoon, 1903.09086; (Stikonas 2018; Poojary 2018)]

# From shock wave calculations
OTOC(t, o15) ~ 1+ e FUR(Q — @) ~ 1 4+ Creis TH12) | oy oBn (t-e12)

# Naively we have

2T

SiEa ) v = F

# The chaos bound is violated: » < %” <A

# However, the angular coordinate is , 1.e. the profile
of shock wave is periodic, therefore the two coefficients
C1 and C2 are not independent [Mezei, Sarosi, 1908.03574]

27 27 (4
OTOC(t, p12) ~ 1+ €e’+ b2 | yent W”)]



Instantaneous Lyapunov exponent

[Mezei, Sarosi, 1908.03574]

OTOC(t, p12) = 1+ 6[eﬁ(t+&‘012) s #eg_i(t_@Dm)]

# instantaneous Lyapunov exponent

OTOC(t, O) ~ 14 eekinst.t
B

;{_Ainst(t)
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# In the high temperature limit, the instantaneous Lyapunov
exponents behave as step function.

2T

# The average of instantaneous Lyapunov exponents is E;



Pole skipping in holography

# From EOM near the horizon g, — ¢

Expand n,, = e=otke(r — ) > Rl (=)
n=0

near horizon,

(2o + AmiShk — KB(1 — 9)) Q) = —(2mi — fuw)(1 — 02) [20A) 1+ wh)]

At b = (52 502 e;)  both solutions are regular

27

M= Giran Ve T

% Correlators of energy density from holography
525ren. L k2 (4 + kQ)
shiYohY 2wk + k)

<TTT((,UE, k)TTT(—wE, —]ﬂ)> 0.¢

The pole skipping point is

271 271
k) = (6(1 =) A q:ﬂ))



Pole skipping in CFT

# For CFT on cylinder

3 . . 2
o= (2) (g ot [2] e o0
9 2

cr [ 27\° i E+w\\ . . |Brk iOR
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| Vi 271
From the first term (v.%) = (iga -Q)’ "~ 81 —ﬂ)>
B 21 21
» From the second term (w,k) = (iﬁ(l 1) T +Q))

[see also Haehl, Rozali, 1808.02898]

# Pole skipping is a generic feature of any CFT, including
chaotic CFTs and non-chaotic CFTs.



Topologically Massive Gravity (TMG)

# A gravitational Chern-Simons deformation to Einstein gravity [Deser, Jackiw,
Templeton, 1988]

1 1 2
S = Brv/—g| R+2+ —caberd (g 1¢  + 21 .7/
167TG/ €T g ( + 2+ 2,LL€ ae ( bl cd T 3 bft cd

# Any solution of Einstein gravity is a solution of TMG

# Thermodynamics for rotating BTZ black holes [Krause, Larsen, hep-th/0508218]

J M
M(u)ZMJr;, J(u)=J+7

# The angular direction and
» The dual field theory for TMG on rotating BTZ is a CFT with A= = B(1 F ()

3/ 1 1
and (CL7CR) 2G ( ,LL7 + ,LL>

» When pf < 1: negative central charge; Black hole instability [Park, hep-th/0608165]

% Chiral point  y/ =1 [Li, Song, Stronminger, 0801.4566]



Chaos in TMG from OTOC

//f///l,

M/f,

Profile for shock wave and OTOC ( 1 # 1)

_ 279 27 ¢ 277(9_“2)¢
h(¢) = c1 e BOFD) + ¢cg eBO-9) + c3 e B1-9?)

OTOC(t,0) =1 —e e ? th(Qt — ¢)

Naively, we have Lyapunov exponents (non-maximal
chaos?)
2 2m(1 — pf2 —
At = . Am = UCaled) vy = £1, ’Umzl L

B1FQ)’ B(1—Q2) QO — L
Periodicity in ¢: h(¢) — h(¢ mod 2m)there is a constraint
equation among ¢;

OTOC(t,p) =1 — evwe st [Ozlh1(Qt — ) + agha (U — 90)}

There are independent “instantaneous Lyapunov

exponents” o OOk () o QOha(Q1)
p ALinst. (t) = ? + I (8) ALinst. (t) = F + W




High T limit of instantaneous Lyapunov exponents

> When ;> 1

. {)\_, if ¢ e [0, TLHD) {Am, if +e [0, )
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Lyapunov exponent and butterfly velocities from OTOC

# In the high temperature limit and |2 — ¢| < 1
> When p > 1

# e +(t=¢) if Qt <o

)

OTOC(t,p) =1—¢
( ) {#1 eA— (t+¢) + #5 erm (t_m) : if Qt > ¢

> When u<1
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Chaos in TMG from OTOC

#» When p =1, the profile of the shock wave is

W) = 1 e FOTD?P U o 0 FO-DF A o b o BOFD?
1 + C2 + c3

AL inst. = AIL inst. = A—, for t € |0, %T)

e i Q<o
Ho A=UFP) i Q>

OTOC(t,p) =1—¢ {
# At high temperature, if we impose the chaos bound on the
average of instantaneous Lyapunov exponent, only ,>11s
allowed; If we lower the temperature and impose the chaos
bound, only the chiral point is allowed

# At high temperature, if we impose the chaos bound on the
Lyapunov exponent, only . >1is allowed



Pole skipping from holography

# Pole skipping from near horizon EOM

gmmm+gmmm+42%3+gm%?+4®M®+gnmn+43%2:0
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# Pole skipping from holographic massive mode

hij(p) = e A [hE? +ph$E 4 pPh o0 (B8 4 bl 4 pPb )
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Pole skipping from CFT

# The massive graviton is dual to an operator with
conformal dimension (2 s, )

% The retarded Green’s function

| 1Br (w—Ek ] 10 [w+k
Gr(w, k) o sin 5+27r( 5 )]sm 2+5+27r( 5 )]x

- i1Br (w—Ek 2 B (w+k
< (o+ 22 (25 | (2 0+ 22 (455))

% Pole-skipping point

C(2mi(1 = Qu)  2im (2 — p)
W$“‘(ﬁu—9%’ 6@—9%)
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Conclusion

+» OTOC and pole-skipping (from near horizon dynamics,
holographic correlators, CFT calculations) are two features
of quantum chaos

+ For rotating BTZ in 3D Einstein gravity, we find a match
between the two methods in the high temperature limit

+ For rotating BTZ in 3D TMG, we find a match between these
two methods in the high temperature limit and »>1

# p>1|s also the limit that the chaos bound is satisfied

* |t would be interesting to study other systems with the
non-maximal chaos (from CFT or holography)



Thank you!



