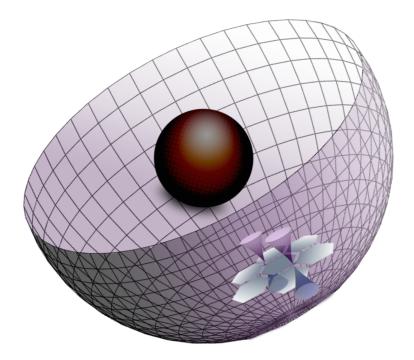
Ginzberg-Landau-Wilson theory for Flat band, Fermi-arc and Fermi-surface for Strongly interacting system.



Sang-Jin Sin (Hanyang U.) 2020.08.26@apctp

Work with Es.Oh,Ys. Seo, Tw.Yuk 2007.12188/1909.13801/1811.07299

Contents

- Introduction
- Observation
- Can it happens? How it happens?
- What it means?

I. Introduction: Holography and GL

 Reformulate strongly interacting system as weakly interacting system in one higher dimension.

 Based on the Universality (=info. Loss) and the similarity of BH and QCP.

• Q: Can we consider it as a LG theory?

What is Order Parameter in this theory?

Let Φ_0 be the source field of $\bar{\chi}\Gamma'\chi$, $\Phi(r, x)$ is the extension of Φ_0 to the bulk.

Order parameter= $\Phi(r, x)$. Interaction : $\Phi_I \cdot \bar{\chi} \Gamma^I \chi$

Flat spacetime spectrum

$$S = S_{\chi} + S_{\Phi} + S_{int},$$

$$S_{\chi} = \int d^{3}x \, \sum_{j=1}^{2} i\bar{\chi}_{j}\gamma^{\mu}\mathcal{D}_{\mu}\chi_{j} - im(\bar{\chi}_{1}\chi_{1} - \bar{\chi}_{2}\chi_{2}),$$

$$S_{\Phi} = \int d^{3}x \left((D_{\mu}\Phi_{I})^{2} - m_{\Phi}^{2}\Phi_{I}\Phi^{I}), \right)$$

$$S_{int} = p_{1} \int d^{3}x \left(\bar{\chi}_{1} \Phi \cdot \gamma \, \chi_{1} + h.c \right) + p_{2} \sum_{j=1}^{2} \int d^{3}x \left(\bar{\chi}_{1} \Phi \cdot \gamma \, \chi_{2} + h.c \right)$$

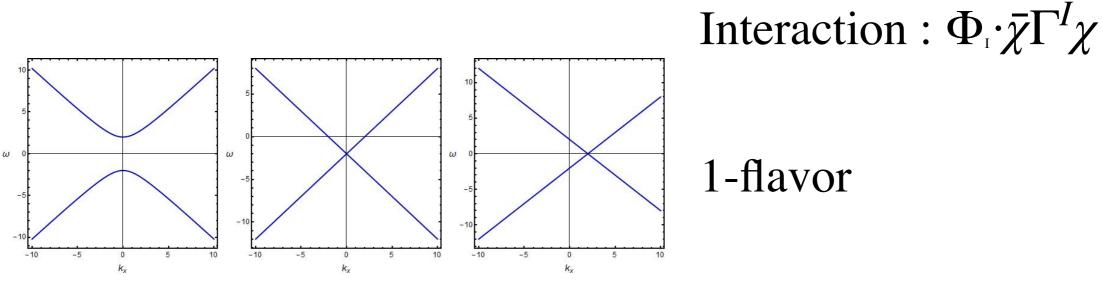
χ

Ψ

 $\Phi_o(x)$

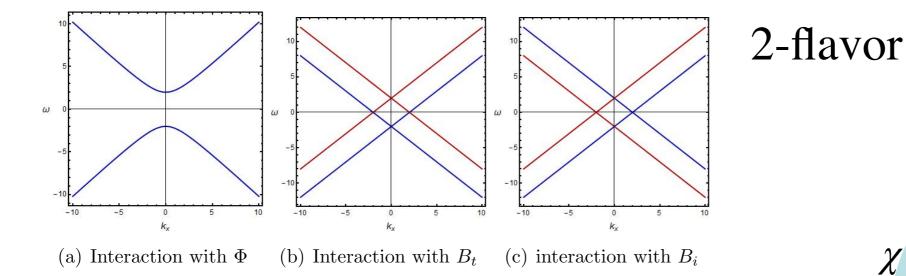
 $\Phi(r, x)$

2+1 spectrum in flat space



(a) Interaction with Φ

1-flavor



 $\Phi_o(x)$ $\Phi(r, x)$ χ Ψ

AdS4 space

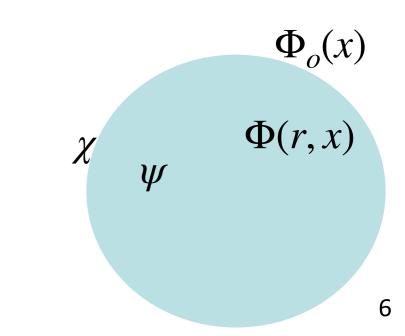
$$S_{\psi} = \int d^4x \, \sum_{j=1}^2 i \bar{\psi}_j \gamma^{\mu} \mathcal{D}_{\mu} \psi_j - im(\bar{\psi}_1 \psi_1 - \bar{\psi}_2 \psi_2), \qquad (3.9)$$

$$S_{bdry} = \frac{1}{2} \int_{bdry} d^3x \; i(\bar{\psi}_1 \psi_1 - \bar{\psi}_2 \psi_2), \tag{3.10}$$

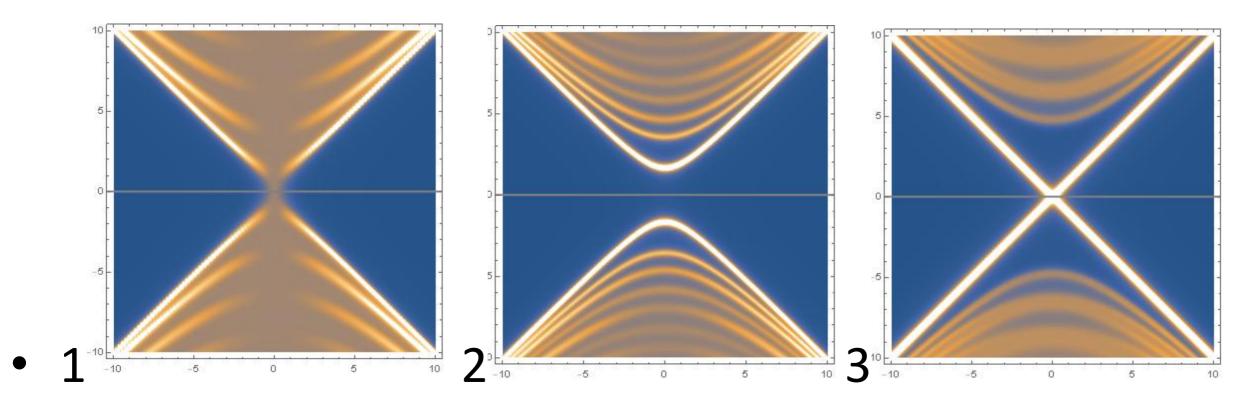
$$S_{\Phi} = \int d^4x \sqrt{-g} \left(|D_{\mu} \Phi_I|^2 - m_{\Phi}^2 \Phi_I^* \Phi^I \right), \qquad (3.11)$$

$$S_{int} = p_{2f} \sum_{j=1}^{2} \int d^4x \left(\bar{\psi}_1 \, \Phi \cdot \gamma \, \psi_2 + h.c \right) + p_{1f} \int d^4x \left(\bar{\psi}_1 \, \Phi \cdot \gamma \, \psi_1 \right), \qquad (3.12)$$

- Source vs Condensation
- Scalar $\Phi = \Phi_0 z^{d-\Delta-p} + \langle O_\Delta \rangle z^{\Delta-p}.$
- Vector/tensor $B_{\mu\nu} = B^{(-1)}_{\mu\nu} z^{-1} + B^{(0)}_{\mu\nu}$



Emergence of weak out of strong by symmetry breaking



1)Typical spect. of fermion with strong correlation2,3) After symmetry breaking

Summary of spectral features

- P(inversion) breaking scalar —> Gap. (very is rare!)
- P preserving scalar —> zero mode

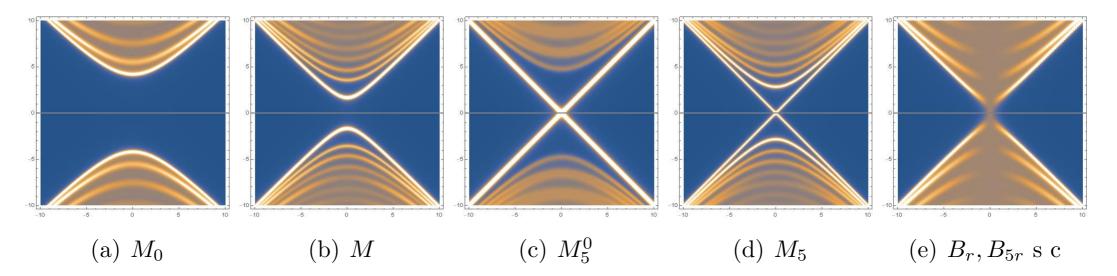


Figure 4: Spectral Function(SF) (a,b) with parity breaking scalar. (a) with source only. Gap $\Delta \sim M_0$. (b) with condensation only, $\Delta \sim \sqrt{M}$; (c,d) with parity conserving source. Notice the zero modes. (c) source only (d) condensation only. (e) B_r, B_{rt} shows the spectrum of zero coupling due to the gamma matrix structrure.

Vector, pseudo-vector

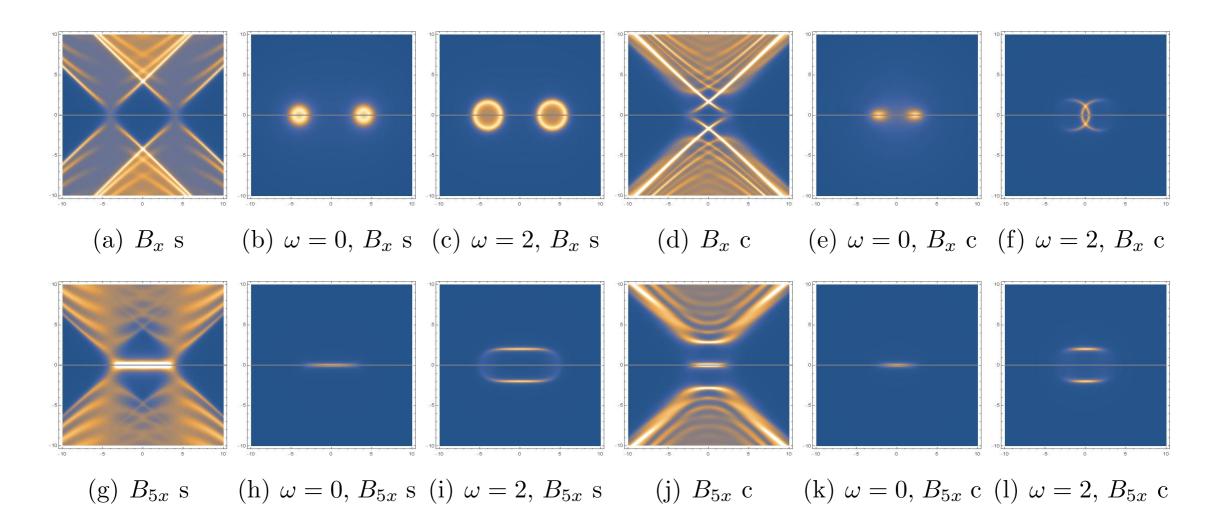


Figure 7: (adgj)Spectral Functions of B_x and B_{5x} with additional sliced view in k_x, k_y plane of $\omega = 0, 2$ slices. Notice that source splits the degenerated Dirac cones. B_x has zero modes nut B_{5x} does not. In all figures, we used $B_* = 4$.

Pseudo vectors

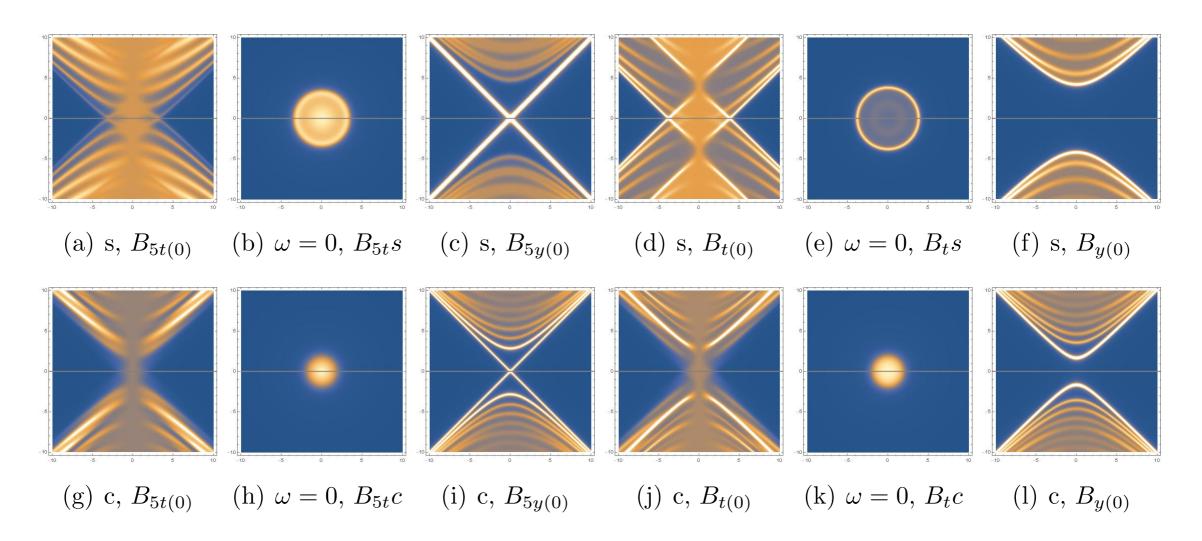


Figure 8: Spectral function with (pseudo) vector source interactions (a-f), and SF with (pseudo)-vector condensation (g-l). s means source and c means condensation.

2-tensors

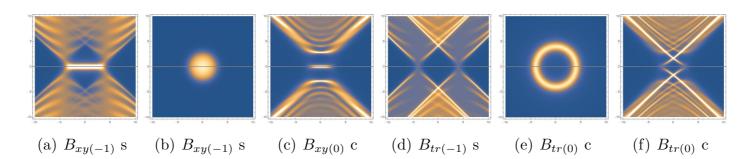


Figure 9: Spectral function with various types tensor interaction, which is decomposed into 2+1 radial vector $B_{\mu r}$'s (ab) and 2-tensor B_{xy} (cd). Notice the zero mode Disk in B_{xy} . There are rotational symmetry in B_{tr}, B_{xy} .

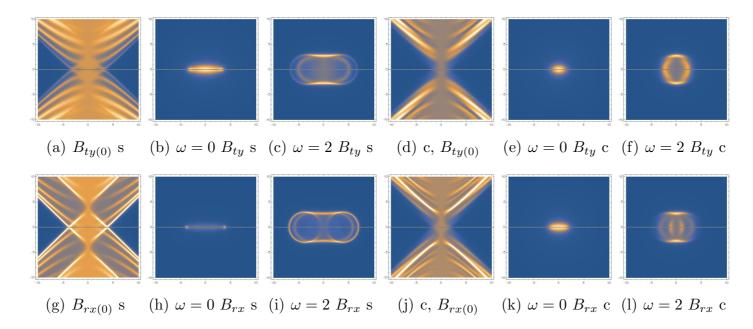
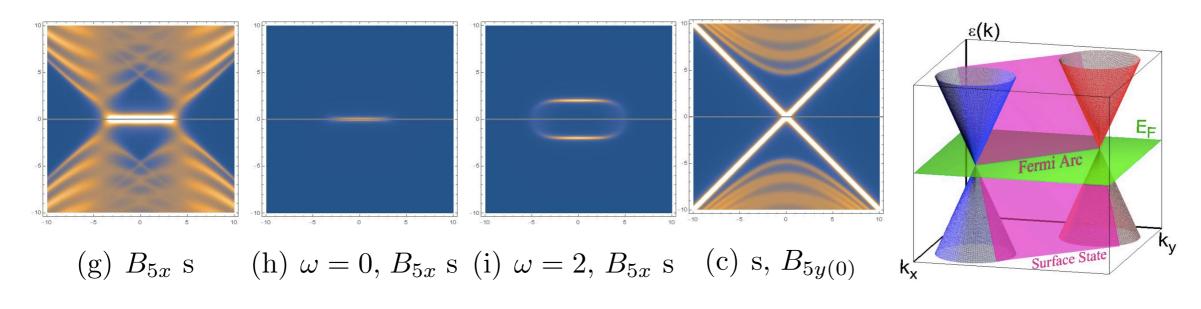
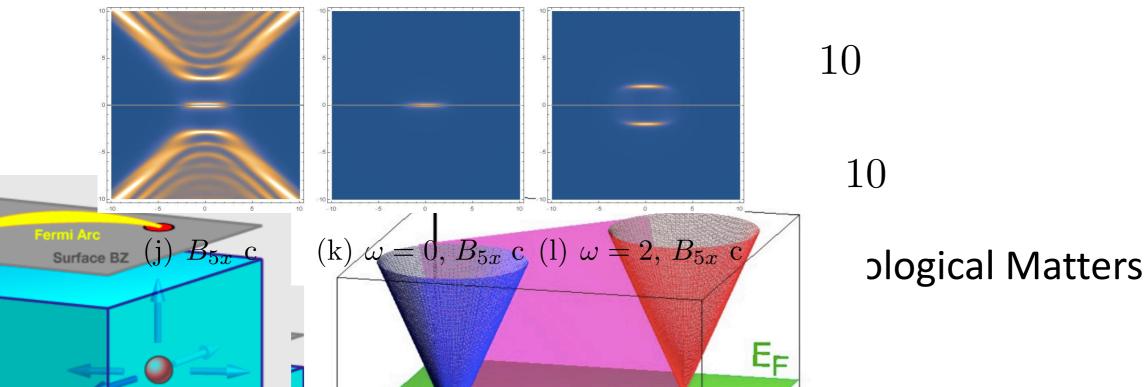


Figure 10: Spectrum of B_{rx} and B_{ty} with sliced views $k_x \cdot k_y$ at $\omega = 0, 2$ slices, without which these spectra are ambiguous. Notice the zero modes and Ribbons connecting the two split cones.

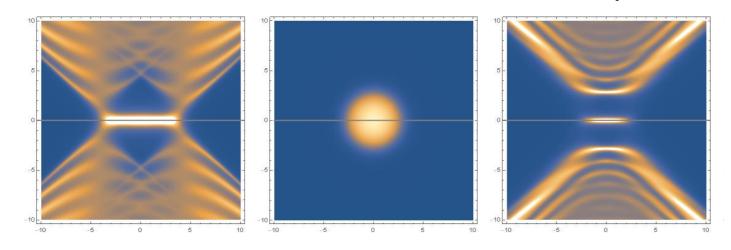
feature1) Fermi-arc: B_{5i} , B_{ri} , B_{ti} P inv

• For vector B_{μ} , the role of source term is to generate the splited Dirac cones there exist a spectral line connecting the tips of two Dirac cones at $\omega = 0$





Feature) Flat band - B_{xy}



- (a) $B_{xy(-1)}$ s (b) $B_{xy(-1)}$ s (c) $B_{xy(0)}$ c
- Possible application: Twisted graphene, Kondo lattice

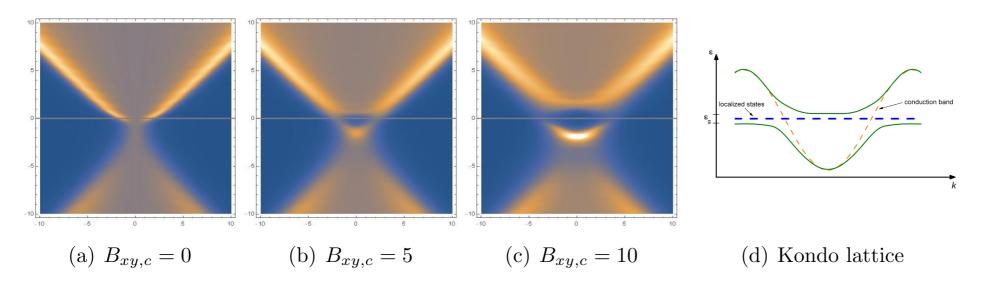
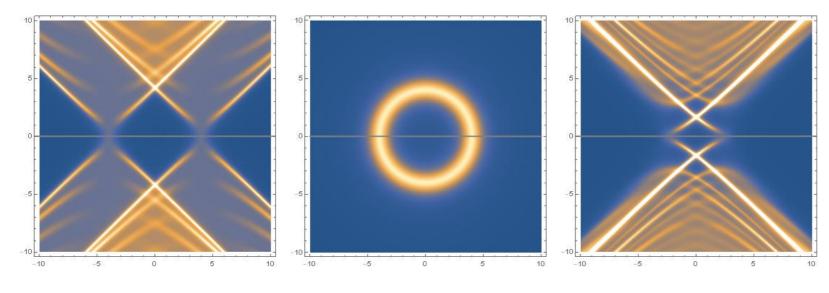


Figure 4: (a-c) Formation process of bent flat band by as we change the strength of the coupling. From the left to right $B_{xyc} = 0, 5, 10$. The chemical potential is fixed to be $\mu = 2\sqrt{3}$. (d) Formation of flat band by hybridization of localized state and conducting state.

Emergent Fermi surfaces Brt



(d) $B_{tr(-1)}$ s (e) $B_{tr(0)}$ c (f) $B_{tr(0)}$ c

Duality

Duality If we change the boundary term to $S_{bdry} = \frac{1}{2} \int_{bdry} d^3x \ i(\bar{\psi}_1\psi_1 + \bar{\psi}_2\psi_2)$, then the spectrum of dual pairs are exchanged. By the dual pair, we mean one of following set of pairs:

 $(\Phi, \Phi_5), (B_{\mu}, B_{5\mu}), (B_{\mu\nu}, \epsilon_{\mu\nu\alpha\beta}B^{\alpha\beta}),$

Contents

- Introduction
- Observation
- Why it happens
- What it means

Exact calculation of green function for the scalar order

$$\left[\partial_z + \left(iK_{\mu}\Gamma^{\mu} + \frac{m+\Phi}{z}\right)\Gamma^r\right]\phi = 0, \text{ with } K_{\mu} = \left(-\frac{\omega + gA_t}{\sqrt{f}}, k_x, k_y\right)$$

m is not a mass! If $\Phi = M_0 z + M z^2$, M_0 is the mass?

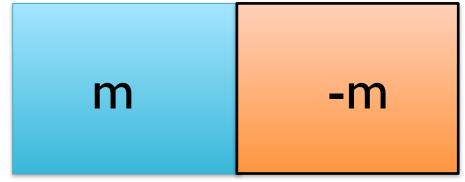
$$G_{S\pm} = \begin{cases} \frac{M^{-\frac{1}{2}+m}(k_1 \mp w)\Gamma(\frac{1}{2}-m)\Gamma(m+\frac{1}{2}+\frac{k_1^2-w^2}{4M})}{2\Gamma(\frac{1}{2}+m)\Gamma(1+\frac{k_1^2-w^2}{4M})} & \text{if } M > 0\\ \frac{2(-M)^{\frac{1}{2}+m}\Gamma(\frac{1}{2}-m)\Gamma(1-\frac{k_1^2-w^2}{4M})}{(k_1\pm w)\Gamma(\frac{1}{2}+m)\Gamma(-m+\frac{1}{2}-\frac{k_1^2-w^2}{4M})} & \text{if } M < 0 \end{cases}$$

Change the sign of the Φ

 $G_{S\pm}(k,\omega;-M,-m) = 1/G_{S\pm}(k,\omega;M,m)$

Jackiw-Rebbi fermion soliton

 If mass changes across the domain wall(DM), Fermion has a soliton zero mode with 1/2 fermion number.



- in a topological insulator,
 DM=real boundary of matter.
 zero mode = the edge mode with 0 E.
- Q: is our zero mode an edge state, I.e, Fermion localized at the AdS boundary?

Holographic Jackiw-Rebbi

• Dirac equation with For scalar order, and in Poincare coordinate,

$$\left[\partial_z + \left(iK_{\mu}\Gamma^{\mu} + \frac{m+\Phi}{z}\right)\Gamma^r\right]\phi = 0, \text{ with } K_{\mu} = \left(-\frac{\omega + gA_t}{\sqrt{f}}, k_x, k_y\right),$$

• so set $k = \omega = \mu = 0$, $\Phi = M_0 z + M z^2$. $\phi \approx \exp\left[-(m \log z + M_0 z + \frac{1}{2}M z^2)\Gamma^r\right]u$

Normalizable upper component ψ_+ , non-normalized down component.

$$\Gamma^r = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \psi = \begin{pmatrix} \psi_+ \\ \psi_- \end{pmatrix}$$

• The rest is the survival game: Is the normalizable mode survived under the projection determined by the boundary fermion action?

Spectral classification: Decompose ads4 spec to 2+1d -> spectral similarity

 $\mathbf{16} = \mathbf{1}(\operatorname{scalar}) + \mathbf{4}(\operatorname{vector}) + \mathbf{6}(\operatorname{tensor}) + \mathbf{4}(\operatorname{axial vector}) + \mathbf{1}(\operatorname{pseudo scalar}),$

- 4 scalars: $1, \Gamma^5, \Gamma^r, \Gamma^{r5} = \sigma^A \otimes \mathbb{1}$ with $\sigma^A = (\mathbb{1}, \sigma^2, \sigma^3, -i\sigma^1)$.
- 3 types of vectors $\Gamma^{\mu} = \sigma^1 \otimes \gamma^{\mu}$, $\Gamma^{\mu 5} = i\sigma^3 \otimes \gamma^{\mu}$, $\Gamma^{r\mu} = i\sigma^2 \otimes \gamma^{\mu}$,
- 3 tensors $\Gamma^{\mu\nu} = \epsilon^{\mu\nu\alpha} \mathbb{1} \otimes \gamma_{\alpha}$, where index runs 0, 1, 2.

Time reversal symmetry: $\mathscr{T} = \Gamma^0 K$ Under the $\psi(t) \rightarrow \psi'(t') = \mathcal{T}\psi(t) = T\psi^*(-t)$,

$$\bar{\psi}_1 \Gamma^I \psi_2 \to \bar{\psi}_2 \Gamma^{I\dagger} \psi_1.$$

Therefore the invariant Hermitian quadratic form are following 8 terms:

$$\Gamma^{I} = \Gamma^{5}, \Gamma^{r}, \Gamma^{5t}, \Gamma^{i}, \Gamma^{ti}, \Gamma^{tr}.$$

Discrete symmetry and zero modes

• The time reversal operation is given by $\mathcal{T} = TK$ $T = \Gamma^1 \Gamma^2 \Gamma^3$.

the invariant Hermitian bilinears correspond to following 8

 $\Gamma^{I} = \Gamma^{5}, \Gamma^{5r}, \Gamma^{t}, \Gamma^{5i}, \Gamma^{ti}, \Gamma^{tr}.$

• Charge conjugation: C=1.K

• The parity symmetry $(t, x, y, z) \rightarrow (t, -x, -y, -z)$ with z = 1/r.

invariant Hermitian quadratic forms correspond to following 8

$$\Gamma^{I} = i\mathbb{1}, \Gamma^{5r}, \Gamma^{t}, \Gamma^{5i}, \Gamma^{ri}, \Gamma^{xy}$$

P controls the existence of the zero mode.

• Chiral symmetry: complement to Parity symmetry. Controls the zero modes in AS quantization.

Zero mode and Parity sym.

In the presence of the background field BI with coupling $B_I\psi^-\Gamma^I\psi$, the spectrum shows the zero modes if the quadratic form is time reversal invariant.

$$\Gamma^{I} = \Gamma^{5}, \Gamma^{r}, \Gamma^{5t}, \Gamma^{i}, \Gamma^{ti}, \Gamma^{tr}$$

Contents

- Introduction
- Observation
- Why it happens
- What it means

New route to topological matter

Two routes to topological matter.
I) 0 ee interaction+lattice configuration
ii) strong interaction+ symmetry breaking.

Order without symmetry breaking

Order without rotational symmetry breaking The presence of the non-vanishing order parameter field mean the breaking of the some rotational or Lorentz symmetry. However, since the radial direction is not geometric from the boundary point of view, the orders involving r-index, like B_{rt} , can be interpreted as order without the rotational symmetry breaking.

Possible applications

Order p./ Fig.#		Gap	zero mode	feature	possible Phy.Sys.
Φ	s/4(a)	0	×	gap	$RS(real \Phi)$
	c/4(b)	0			$\operatorname{SC}(\operatorname{complex}\Phi)$
Φ_5	s/4(c)	×	0	Dirac cone	Dirac semi-metal
	c/4(d)	×			
B_r	s/4e	×	0	Rot. Sym	\sim Non-coupling
	c/4e	×			
B_r^5	s/4e	×	×	Rot. Sym	\sim Non-coupling
	c/4e	×			
B_i	s/6abc	×	0	Split cones	Top. Ins.
	c/6def	×		Fermi arc	
B_i^5	s/6ghi	×	×	Split cones	no gap
	c/6jkl	×			
B_t	s/7abc	×	×	Rot. Sym	
	c/7ghi	×			
B_t^5	s/7def	×	0	Disk flat band	
	c/7jkl	×			
B_{rt}	s/8a	\triangle	0	Disk flat band	twisted bi-layer
	c/8b	\triangle			graphene
B_{ri}	s/9abc	×	×	Split cones, Fermi-arc	Top. Ins.
	c/9def	×			
B_{xy}	s/8c	×	×	Marginal gap	Kondo lattice
	c/8d	×			
B_{ti}	s/9ghi	×	0	Split cones, Fermi-arc	Top. Ins.
	c/9jkl	×			

Table 1: In the table of "Gap", \bigcirc denotes gap at the fermi-level, \triangle represents gap off the fermi level and \times is gapless. SC=superconductivity, RS=Random Singlet. $A(k_x, \omega)$ means we consider the spectral function A as the function of k_x and ω . Under $k_x \leftrightarrow k_y$ those with one spatial index are asymptric. All others are symmetric. NC2=not classified in 2+1 dimension.

•

감사합니다