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Introduction

In recent time tools from QI has played important role
to advance our understanding about the mechanism of AdS/CFT

Boundary CFT

For eg: Entanglement entropy

Ryu-Takayanagi prescription:

(Ryu -Takayanagi,
Phys.Rev.Lett.96:181602,20006)

This duality becomes more stimulating in the context of Black hole

hermofield Double

Maldacena ‘2001

{Eternal Black Hole} EI‘
AdS/CFT

NN

/”\

EE 1s not a good probe for physics behind horizon



Two interesting objects probing the interior of black hole ( for more Run-Qju talk)

Complexity = Volume Complexity = Action

(Brown, Roberts, Swingle, Susskind & Zhao)
t— «~lR L= iR

(Carmi, Chapman, Lehner, Myers,
Marrochio, Poisson, Sorkin, Sugishita, Heller
et al, Simon Ross et al, Run-Qiu Yang ,
Keun-Young Kim et al, Mohesn Alishahia,

etal...)
L =l P
V(B 1
Cv(Z) — max [G(N” CA(Z) _ W;I;W

(picture courtesy Jefferson-Myers, 1707.08570 [hep-th])

Grows with time and keep growing even after the thermalization time

“Complexity” is dual to these two objects ?

Can we compute it field theory (or even in guantum mechanical systems) ?


https://inspirehep.net/authors/1039543
https://inspirehep.net/authors/1039543

Computational Complexity

Generically:  How difficult is to implement a task ?
Important applications in QI and Quantum Many body physics

(Vidal ’03, 04, F. Verstraete and I.Cirac '06,09
N. Schuch, I. Cirac, and F. Verstraete ’08,
D. Aharonov, |. Arad, Z. Landau, and U. Vazirani ’11)

Here we will use the notion of “Circuit complexity”

how difficult is to prepare a particular state ?

/ Target State \ / Target State \

) V)

Simple

Big Unitary Operations

& & _ & _§ & -
10)|0}]0) ... ... 10)|0)|0) ... ...
Reference State / \ Reference State /

“minimize the number of operations”

will depend on the choice of the reference state



Basic Setup & Assumptions

Jefferson Myers ‘17

: : : : AB, A.Sinha, A Shekar 18
Lets us illustrate this via a simple example:

1
H = 5 [p% —|—p§ + wz(a:% + x%) + QQ(ZIZl — 1132)2}
To = \%(ml +x9), X1 = \%(CIH — x2),
Next we solve the ground state: . X
Po = ﬁ(pl +p2), D1 = ﬁ(pl — D2),
0f =w?,  @OF = w? + 207
wowq )4 1l /7a1 +a
Yo,0(21,T2) = ( O\/];r_) “AP [_ 5( : 9 2 (22 4+ 22) + (ay —CL2)5’31$2>}’
I a1 = CZJO) o = (I)l

We will refer to
as “Target State”

- This is a Gaussian State
lb (5131,332)

Lets compute the circuit complexity (“Circuit Depth”) for the state



The reference state:

No entanglement in the original basis I.e in the position space

(@1, 22) = Nexp { W;ef (7 + f%)}

Now lets build the circuit:

We choose the following natural set of gates:

1€ 1€ . .
Q11 = exp [5(331 P1+ D1 931)} , Q22 = exp [5(332 P2 + P2 $2)} , Q12 = exp {26% ]92},@21 = exp [26332 pl}

scaling scaling entangling entangling
< > < > — >
O O
11 22 012 021

Note that the operators O’s form a closed algebra.

Then we construct the circuit U with these gates
|¢T($17 552) — UZDR(ZEl, $2)|2 < €

We cantune € — (0 to get a very precise match



(Nielsen quant-ph/0502070,

Nielsen approach: Nieisen, Dowling, Gu, Doherty,quant-ph/0603161
M.~A. Nielsen and M.~R. Dowling,quant-ph/0701004)

To achieve the optimal circuit instead of working in discrete picture
we work in continuous picture, the circuit is parametrized
by continuous parameter “s” and consists of continuous functions

U(s) = P exp(i /O Cdsy(s) O4(s)).

T T Or ={011,0422,012,021 }
Path ordering In the discrete
picture
As = ¢
Y'(s) control functions (note:

there is a freedom

" . @DT r1,T9) =U(s=1 @DR xX1,T2), inchoosing end point
Boundary conditions: ( ) = Uls = Dy ) for “" we fix 1t {0 b at

U(S — O) =1 s=1)
Optimal Circuit: We need to find optimal Y (s)

This can be typically achieved by minimizing some kind of action
“Cost function” F(U,U) forthese Y'(s)

1
Complexity: D(U):/ F(U,U)ds.
0



Some desirable properties of cost functions:

: (Nielsen quant-ph/0502070,
1. Continous Nielsen, Dowling, Gu, Doherty,quant-ph/0603161
M.~A. Nielsen and M.~R. Dowling,quant-ph/0701004,
sy Jefferson-Myers, 1707.08570 [hep-th
2. Positivity g fepnh

3. Homogeneity
4. Satisfy triangle inequality

These help us to identify these functions as distance function
between two point on a given manifold

Jefferson-Myers, 1707.08570 [hep-th],

S everal C hoice: Hackl-Myers, 1803.10638 [hep-th],

Guo-Hernandez-Myers-Ruan, 1807.07677[hep-th]

Fo(U,Y) = \/ZpI(Y—’)Q,}}(U, Y) = Zp; Y'|®, Kk is an integerand ,x > 1,
I I

F (U, Y) = (Tr(VIV)P2OYP VI = YI(s)M;, p is an integer

Fr=1(for py =1,VI)  counts number of gates (for this talk we will mainly consider
these two )

Fo IS the distance on Riemannian manifold



Now the strategy is to minimize these cost functions.
For this we first solve for the geodesics

Remember : Y (s)O; = 0,U(s).U(s)"}

Next we define a metric (right invariant !)
ds* = GrydY*'dYy”’

Find the Geodesic and evaluate the the action on it

/ds\/ZG”YIYJ (here we have used the f2 )

Gr;  Penalty factor

Jefferson-Myers, 1707.08570 [hep-th],

To practically compute this metric we first note:

Our wavefunction can be written in the following way:

. 3 L
Y®(x1,x2) = N?%exp {— iv.A(s).v} V= {:Cl, QEO}
Als = 0) = eref ~O >
s = 0, Reference State =0) ( 0 Grer
And: For our case: ) )
s = 1, Target State Als=1) = ( EEZ1+ZQ§ 381122; )



Now given this basis: ¢

We can find the representations of these operators O’s

O;;. V= (M;j)abVa

We then get, O11 — My = ( 8 ) ,

O —5 Moy ( 8 ) They are nothing but
0 generators of

O12 = Mip = ( 1 0 ) GL(2, R)
0 1

021_>M21_< 0 0 ) Tr(M;M7) =251,

then T/ _ 1 1 24T
Y'(s) = Tr (M M7 (aSU(S).U(S) M; )

Now we have to find the geodesic on GL(2,R) group manifold

A parametrization : GL(2,R) = R x SL(2, R)

— oxn(u(s)) [ €O80(p(8)) cos(7(s)) —sin(0(s)) sinh(p(s))  cos(0(s))sinh(p(s)) — cosh(p(s))sin(7(s))
Uls) = exply(s)) ( cos(6(3)) sinh(p(s)] + cosh(p()) sin(r(s)) _sin(8(s)) sinh(p(s)] L cosh(o(s]) cos(r(s)) )

Choose the penalty factor: Grj =41



Line element:

ds* = 6;;Tr(dUU Y M) Tr(dUU Y M7),
= 2dy® + 2dp* + 2 cosh(2p) cosh(p)?dr? + 2 cosh(2p) sinh(p)?d§* — 2sinh(2p)*drdl

We now solve for the geodesic on this background

Boundary conditions:
We observe that the unitary operator acts ~ A(s) = U(s).A(s = 0).U(s)"

on the wavefunction in the following way

arbitrary, either 0 or’T can be
f uniquely determined

s :=0,{y(0) = 0,p(0) = 0,6(0) + 7(0) = co}

s:=1,exp(2y(1)) = \/Zlfj,cosh(zp(n) - gi/;_zz,tan(é’(l) + (1)) = 0.

Choosing: ¢g = 0  Geodesic became straight line

y(s) = y(1)s,p(s) = p(1) s
7(s) = 0,0(s) = 0y



We can show PWU)= / ds [> GuY'y’  gets minimized on this geodesic
0 I,J

In fact one can check that it is the global minimum

Complexity: D(U) = V/y(1)? + p(1)?

In fact one can check F.—1 Q_IY']) and the associated complexity
I

1
CKLZl — / dSszl
0

also gets minimized when evaluated on this geodesic

In terms of normal mode frequency:

L W w1 |
CKJ:l — A lOg ~ ° lOg ~ 1 ‘
2L Wre f Wref -

This is the strategy we will follow in the remaining of the talk.



A point to note:

A Gaussian state can alternatively characterized by a “Covariance Matrix”

Gab —< w (ZE ks t) ‘ga gb T gb ga ‘w (lek ) t) > Hugo A. Camargo, Pawel Caputa,Diptarka Das,

Michal P. Heller, and Ro Jefferson,

Phys. Rev. Lett. 122, 081601 (2019)

AB, T.Ali, E.Kim, S.Haque, N.Moynihan
JHEP 1904 (2019) 087

ga — {:El y pl; L2 , p27 e } [arXiv: 1810.02734 [hep-th]]

We can compute the complexity in terms of this Covariance matrix

eg: Reference State (7 =0) eg: Target State (7 =1)
2 | £) 72 w(t) iscomplex in general
O B 2
=0 ew] R
_ — =1 __ e(w e(w
GV = wr G = ( Im (w(t)) |w<t>|g )
0 w, Re(w(t))  Re(w(?))



We can compute the complexity in terms of this Covariance matrix

Gl =U(s=1).GEU (s =1)

Given this: We can proceed in the same way as before and compute the
complexity

1 _
Creo = 5 (COSh L

Wy + |w(t)\2')
L 2w, R(w(t)) -

Sometimes we will work with Covariance matrix instead of wavefunction for
eg: in the context of single inverted oscillator and for that case
the general conclusions will not depend on this much.

(For detailed comparison for various methods of computation of circuit complexity refer to

AB, T.Ali, E.Kim, S.Haque, N.Moynihan JHEP 1904 (2019) 087 [arXiv: 1810.02734 [hep-th]]



(Related papers by: Run-Qiu Yang.,. Keun-Young Kim .et al Ap pl ICatIO n AB, T.Ali, E.Kim, S.Haque,
JHEP 05 (2020) 045, 1906.02063, Vijay Balasubramanian et al M N.M ‘h
Matthew DeCross, Arjun Kar, Onkar Parrikar, JHEP01(2020)134) J-Murugan,N.Moynihan,

s.Rev.D 101 ( ) 2, 1
Symptom of Quantum Chaos ? e R T

- Classical chaotic systems are characterized by a hypersensitivity to perturbations in initial conditions under the
Hamiltonian evolution.

This hypersensitivity is usually diagnosed by studying individual orbits in phase space —
The orbits diverges!

- For guantum system: we cannot specify both position and momentum
“ Uncertainty Principle” .

The volume occupied by a single quantum state in the classical phase space is ~

( ! )N for a system with N degrees of freedom.

o
We no longer have the luxury to follow individual orbits !!!

(for more details of quantum chaos New d iag nOStiCS need ed .

Please refer to Yan, Keun-Young,Viktor,
Mitsuhiro’s talk and also Vijay’s talk )

(PhD thesis of Nicholas Hunter Jones

We can only talk about “symptoms” of qguantum chaos !!! “Chaos and Randomaess in

Strongly-Interacting Quantum Systems”)

(M. Berry, “Quantum chaology, not quantum chaos,” Phys. Scr. 40 (1989) 335)



There are several ones !

Wigner 1950: Statistical Properties of energy spectra

Distribution Eigenvalue spacing of energy eigenvalue of
guantum chaotic Hamiltonian is similar to the one for
Gaussian Random Matrix ensembles

But computation of eigen-spectrum is computationally quite taxing

(Viktor Jahnke’s review

So other diagnostics (“Symptoms™ !!) are being developed Arxiv: 1811.06949+
yesterday’s talk)

A popular one Is OTOC(t) =< B (0)AT (1) BO)A(t) >4, T = —
(Out of Time ordered Correlator) : Q (DA BO)AL) > o

Cr(t) = — < [A(t), B(O)]* >5=2(1 — Re(OTOC(t))).

Quantum analog of classical expectation value:

Ox(t)
= (8x(0)

° A
) >R che nt)\,, = Lyapunov Exponent

n


https://arxiv.org/help
https://arxiv.org/help

Early Time characteristic

~ 1 _ Ap(t—ty)
decay of OTOC: OTOC(t) ~ 1 — e}

Quantum Lyapunov Exponent

Recently well explored in Holography: “Chaos Bound” (conjectured)

27T
AL < 5
But it has its own issue: Reliability breaks down at late time and for some well

studied single particle quantum chaotic system like stadium billiard ball model,
some quantum spin chains it does not give the expected Lyapunov decay

(eg K.Hashimoto et al JHEP 10 138 (2017))

(Maldacena Shenker Stanford ’15)

One need other measures.

In this context we ask can we use “complexity” as a diagnostics of quantum chaos ?



" ) 4 ) ~ )
Global « 4 . | otoc | . 5 R Loschmidt
quench B echo
C v - y ‘\ - P
T ‘\
6 N 8 ?
Spectral form 4 N ETH 13
factor Relative
i - J ] |entropy | | Potential — 1}'
- Y O
Iz - - e o
15 14 ¢ o
g R a R ® | Complexity .
Operator 16 Local operator o | DX
entanglement| * > | entanglement ° .
\_ J \_ y ® o o

This our hero
for this talk

(picture courtesy: Jonah Kudler-Flam, Laimei Nie, Shinsei Ryu, JHEP01(2020)175)



The Model
We use “Inverted Harmonic” oscillator model.

Classically it has an unstable fixed point: = 0,p = 0

Its a toy model but nonetheless a powerful and an interesting one

This model has also been demonstrated rich and fruitful in a wider
context in the field of quantum chaos

(Physical Review A 68, 032104, Physical Review Letters 122, 101603 and many more,
experimentally realized: Sci. Rep. 5, 15816 (2015))

It can appear as a local maxima inside various interesting potentials.

Vix)
40 -
2 )‘2 2 1 2 2 4 )‘4
V=ga®——)"=—=\2"+ gz~ -
3¢ 4 64g
2"}-
: .‘
Picture courtesy Koji Hashimoto, Kyoung-Bum Huh, Keun-Young Kim, Ryota Watanabe % _\ 11
ArXiv: 2007.04746 \ Z10F 1
\ V4 N 7
\ / i \, /
A4 ! N/
lllll Sl 3 et 3 ISV N lx
-10 -3 0 5 10




The Setup

L 1 0~
Hamiltonian: H = 5]92 | 5 ° where Q°=m* — )

AB, T.Ali, E.Kim, S.Haque,
J-Murugan,N.Moynihan,

m2 — )\ Free pal’tIC|e Phys.Rev.D 101 (2020) 2, 026021

m? > \ SHO

m< < A\ IHO

Reference State (at t=0): ¢ (z,t =0) = N(t = 0) exp ( wre” ) Wy =M

Target State (at t=0): |1b2 > = 6i(H+5H)t€_th ‘wo >
Ua(w,t) = N(t)exp | — 3(t)a?|
Then following previous method we compute complexity between them

21102 NP I '
CU) = %(COSh_l[zwI&'a(‘t))])? S = et G w(®) + 19 cor( @)




awv

1 10000 20000 0000 40000 SO000

Regular Oscillator Inverted Oscillator
(m=1,)\=0.2) (m=1,)\=15)

Different behavior altogether

: : : AB, T.Ali, E.Kim, S.Haque,
For inverted oscillator the complexity start to J.Murugan,N.Moynihan,

increase considerable after a certain time 7 Phys.Rev.D 101 (2020) 2, 026021

Then grows linearly. We denote the slope of this portion by ¢

We plot both of them w.r.t coupling A\



AB, T.Ali, E.Kim, S.Haque,
J-Murugan,N.Moynihan,

¢
. Phys.Rev.D 101 (2020) 2, 026021
.
1A} .
L
3
L
. <
b L
' 12}
. ' .
. b .
L 3
1D} .
»
3 L
L
3
' ) L
. Xk n
L
. [ ¢
3 .
6 b L
A.A‘L‘LA‘A‘A‘L‘LA \ . .
< .- 1€ - 1¢ 1< AAALJLAAAILALAlLAAALALLALALALIALAL‘_‘
» W e -l, - .‘x P g N ' 8 :12 *"©@ ‘.’ “

Further we compute for IHO,

Cr(t) =< [a(t),pJ? > 2+t

1 27.‘. (Koji Hashimoto, Keiju Murata,

Ryosuke Yoshii, JHEP10(2017)138)
>\L — ‘Q|,t0 — —log—

AL h

We also plot them next



0.50
045;
040;
035;
030;

025

020 |

(m=1)

We fit the previous data with this and find that:

AB, T.Ali, E.Kim, S.Haque,
¢ — 9 ‘ Q‘ = 20\, ts = 4 l?é‘(z) — 4 log(2)t* %ﬁf&'fi’fﬁﬁd?zy&lﬁai’ozeozl

We can extract Lyapunov Exponent and Scrambling time
from the circuit complexity



One more check: by >= 6i<H+5H)te_th‘¢0 ~

We plot complexity for various 0\

C(0)
20 ——
— OA=0.01

— 0A=0.001
— 0A=0.0001

15

10 -

Slope remains same but the pick up time seems to be sensitive to the value of oA



Towards a field theory analysis:

We consider now many coupled oscillator

H=Hy+ Hy = % / dz |11} + (9,61)° + 113 + (962)> + m* (67 + 63) | + A / dx(0261) (0x2)

Discretize on lattice

1 -
2(71) = 36(7), p() = I()/5, w =m, Q== A =A5" and 1o = %
AB, T.Ali, E.Kim, S.Haque,
J-Murugan,N.Moynihan,
5 , , , , , , Phys.Rev.D 101 (2020) 2, 026021
H = 5 Z[ L,n _|_p2,n ™ (Q (xlan_l_l - -Qfl,n) + {2 ($2,n+1 - x27n) ™

n

AN

(12 (23, + 73,0) + A (@011 = T10) (@201 — T20) ) |

Not Diagonal



Do a series of transformation

1 (27T v k ) .
Lla — —,— eXp a )X k,
VN 3 N
1 Nz‘l ( 2k )
= — cX — a ks
Pla VN — P N b1, AB, T.Ali, E.Kim, S.Haque,
N_— 1 J-Murugan,N.Moynihan,
1 Z (27rik )~ Phys.Rev.D 101 (2020) 2, 026021
L2a — —F7— exXp QL2 k,
VN 3 N
1 Nz‘:l ( 2k )
P2a — —F/——= CXp | — a ) P2k
VN 3 N
ﬁl L = Ps.k =+ a,k ﬁQ L = Ps.k — Pa.k
. Tsk T Tak ~  Lsk— Pak
xl,l{ — /§ Y 'CEQ,]C T \/5 )
A
5 N—1
We finally get, H = 5 {p?k + Qs+ po g+ Qixik}
k=0

— == e
— —

02 — <m2 L 4(02 4+ A) sin? (W_k)) 02 = (mQ L 4(02 — }) sin? (W_’f) ", Gives rise to inverted oscillator,
N N _~ We only focus on this part



Coupled Inverted Oscillator

~

H(m, 2, \)

Circuit Complexity:

wr(t) =1 Q) cot(Qt) +

(

1000 k

800 -
600 -
400 +

200 |

(1)

A

5~ [ wk
=3 p§+(m2+4(QQ—A)SmQ(

k=0 -

C(U) =

sin?(Q,t) (wg(t) + i Q) cot(Q.¢))

D2 =2 4(0% — )\ — 6))sin? (”—k)

2w, i Re(w (1))

A A

AB, T.Ali, E.Kim, S.Haque,
J-Murugan,N.Moynihan,
Phys.Rev.D 101 (2020) 2, 026021

N

Similar behaviour and

again we can extract the Lyapunov exponent

C(U) vs time for the Inverted Oscillators (6 = 0.1, m = 1, N = 1000, A\62 = 10, A = 0.01)

and Scrambling time



AB, S.Das, S.Haque, B.Underwood,
Phys.Rev.D 101 (2020) 10, 106020 ,
Phys. Rev. Research 2, 033273 (2020)

Last but not the least:

We apply these concepts to that of scalar cosmological perturbation

We will consider a spatially flat
Friedmann-Lemaitre-Robertson-Walker (FLRW) metric

ds? = —dt? + a(t)d7? = a(n)%(—dn? + d7?)

Perturbation:  Background scalar:  @(z) = ¢o(t) + do(x),

metric:  ds® = a(n)*(—(1 4+ 2¢(z,n))dn* + (1 — 2¢(x, n))dz?)

The action (Einstein action + minimally coupled scar field)
upto quadratic order in fluctuation (scalar) can be written as :



The action becomes after some variable change

S = l/alnal?’.ﬂz:'[v’2 — (0;v)* + (Z—/)sz — QZ—,U,U}

2 Z Z

(prime denotes derivative w.r.t conformal time)

Fourier Transform: N d°k - ik.Z
U(nv CIZ‘) o (27T)2vk (77)6

A. Albrecht, P. Ferreira, M. Joyce,T. Prokopec, Phys. Rev. D50 (1994)
4807-4820 [astro-ph/9303001].
J. Martin, Lect. Notes Phys. 738 (2008) 193-241
1 [0704.3540].

. oo N . R
Creation and annihilation: Vp = Cr+C' -
2k (% )

e T A
The Hamiltonian becomes: H = /deH,; = /dg/f{k(clgci +é&t e p) —@—(Clgc_;;—CI;CT )}

/
2z
— >> k£, IHO dominates T
~ Free particle Hamiltonian IHO



Reference State: CE|O >;;,_/;;: 0

H
Target State: K PR R e’ t|0 >EE

We compute the complexity for single mode “k” given this two state:

Off course we need to know the background : a(n) ~ (E)B
"o

1
a — — —1.de Sitter - We focus on this case
(1) Hn’ p 7 for now. Other cases
n o can be similarly handled
a(n) = —, = 1, Radiation
770 ) )

a(n) = (%)2 B = 2, Matter



35 P

30 e AB, S.Das, S.Haque, B.Underwood,
e Phys.Rev.D 101 (2020) 10, 106020 ,

€o e Phys. Rev. Research 2, 033273 (2020)

20 .

15 yd
10 ~

—

0.01 100.00 10(-' 101[" 1014 101.‘! a

dC H
At late time: — = —

it 2

Slope is bounded by Hubble.

. aCc H
At late time: — = —,

dt /2

dC H
— ~ A2l ~H (T~ —
dt AS 2 ( 27'(')

Similar to the Chaos Bound. Recently verified by direct OTOC computation
(L. Aalsma and G. Shiu, 2002.01326)



Summary

To give a proof of principle argument for circuit complexity as a symptoms of quantum chaos we have used the toy inverted
harmonic oscillator model

We can explicitly extract the information about Lyapunov Exponent and Scrambling time from the compelxity

We discussed few interesting setup where inverted Harmonic oscillator can appear for eg. cosmological model

Pleasingly for cosmological we can infer some information of Lyapunov exponent from circuit complexity

Inverted Harmonic Oscillator is just a toy model we need to extend this for more realistic models.

eg. Kicked rotor, Kicked Top - Work in progress (hope to report soon)

Certainly interesting to expand this line of study for non trivial chaotic field theories



Lots to explore !l

(" )

Quantum Information Theory
o W,

Comp.lexity for Sub-Systgm Complexity Complexity
Chaotic System Complexity Interacting  Experiment
(RMT) (Work in
rogress)
(Gauge theory ?) i
’ Open System ?
Complexity Black Hole D d Complexity for
for d (hopefully to - Network
Cosmology an appear soon) ensor Networ
Holography

(go beyond linear
fluctuation ?
Direct computation of
OTOC, various
equation of state )




