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Quantum computer sounds growing well…



Quantum computer sounds growing well…

This lecture = How can we use it for particle physics?



Application of Quantum Computation  
to

Quantum Field Theory (QFT)

This lecture is on

・Generic motivation:

simply would like to use powerful computers?

・Specific motivation:



Application of Quantum Computation  
to

Quantum Field Theory (QFT)

This lecture is on

・Generic motivation:

simply would like to use powerful computers?

・Specific motivation:

Quantum computation is suitable for Hamiltonian formalism

Liberation from infamous sign problem in Monte Carlo?
(next slide)



Sign problem in Monte Carlo simulation
Conventional approach to simulate QFT:

② Numerically Evaluate it by (Markov Chain) Monte Carlo method  
regarding the Boltzmann factor as a probability:

& make path integral finite dimensional:

① Discretize Euclidean spacetime by lattice:

(this point is explained to give a motivation & isn’t  
essential to understand main contents of the lectures)



・topological term

problematic when Boltzmann factor isn’t R≧0 & is highly oscillating

much worse

Sign problem in Monte Carlo simulation (Cont’d)

Markov Chain Monte Carlo:

probability

Examples w/ sign problem:

・real time 

・chemical potential

complex action

indefinite sign of fermion determinant

“ 𝑒𝑖𝑆(𝜙) ”



・topological term

problematic when Boltzmann factor isn’t R≧0 & is highly oscillating

much worse

In Hamiltonian formalism,

sign problem is absent from the beginning

Sign problem in Monte Carlo simulation (Cont’d)

Markov Chain Monte Carlo:

probability

Examples w/ sign problem:

・real time 

・chemical potential

complex action

indefinite sign of fermion determinant

“ 𝑒𝑖𝑆(𝜙) ”

(∃various approaches within framework of path integral formalism but I’ll skip it )



Cost of Hamiltonian formalism

We have to play with huge vector space

since QFT typically has ∞-dim. Hilbert space

Technically, computers have to 

memorize huge vector & multiply huge matrices

regularization needed!



Cost of Hamiltonian formalism

We have to play with huge vector space

since QFT typically has ∞-dim. Hilbert space

Technically, computers have to 

memorize huge vector & multiply huge matrices

Quantum computers do this job?

regularization needed!



Should we care now as “users”?

Quantum computers don’t have sufficient powers yet.

Shouldn’t we start to care after quantum supremacy comes?

For instance, 

∃Many things to do even now in various contexts

・we haven’t established

・∃only 1 example so far to take a serious continuum limit 
[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya ’20]

(numerical/analytic/purely algorithmic/lat/th/ph)

how to efficiently pick up various real time physics 

how to put QCD efficiently on quantum computers

(e.g. scattering/dynamical hadronization)

I personally think:



Some good news…

・If you have google or facebook account,
you can immediately use IBM’s quantum computer

・I am beginner of both python and quantum computation
(started on last June)

・Algorithms for simulating quantum system are much easier   
than ones for generic purpose (e.g. Shor’s algorithm for prime factorization)

・Simple code can be made by drug & drop in IBM’s website
and serious code is made by python

・It’s fun!!



1. Qubits and gates

3. Quantum simulation of Spin system

4. QFT as qubits (mapping to spin system)

Plan

0. Introduction

5. Summary

2. Some demonstrations in IBM Q Experience



Qubit = Quantum Bit
Qubit = Quantum system w/ 2 dim. Hilbert space

Ex.) Spin 1/2 system:

(We don’t need to mind how it is realized as “users”)

“computational basis”

Basis:

Generic state:
w/



Single qubit operations
・Acting unitary operator: (multiplying 2x2 unitary matrix)

In quantum circuit notation,



Single qubit operations
・Acting unitary operator:

・Measurement:

(multiplying 2x2 unitary matrix)

(classical number)

In quantum circuit notation,



Single qubit gates used here

X is “NOT”:

(just Pauli matrices)



Single qubit gates used here

X is “NOT”:

(just Pauli matrices)



Single qubit gates used here

X is “NOT”:

(just Pauli matrices)



Single qubit gates used here

X is “NOT”:

(just Pauli matrices)



Multiple qubits
2 qubits – 4 dim. Hilbert space:



Multiple qubits
2 qubits – 4 dim. Hilbert space:

N qubits – 2N dim. Hilbert space:



Two qubit gates used here

or equivalently

Controlled 𝑋 (NOT) gate:



Two qubit gates used here

or equivalently

Controlled 𝑋 (NOT) gate:

SWAP gate:

We’ll see  this is useful to 
compute Renyi entropy



Rule of the game

(classical number)

Do something interesting by a combination of 

&

action of Unitary operators:

measurements:



Universality
・Any unitary gate is a combination of single qubit gates & 𝐶𝑋

(“Single qubit gates & 𝐶𝑋 are universal”)  

Ex.) Toffoli

(controlled-controlled-NOT)
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(“Single qubit gates & 𝐶𝑋 are universal”)  

・Any single qubit gate is approximated by a combination of  
𝐻 & 𝑇 in arbitrary precision

Ex.) Toffoli
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Universality
・Any unitary gate is a combination of single qubit gates & 𝐶𝑋

(“Single qubit gates & 𝐶𝑋 are universal”)  

・Any single qubit gate is approximated by a combination of  
𝐻 & 𝑇 in arbitrary precision

・𝐻, 𝑇 & 𝐶𝑋 are universal

Ex.) Toffoli

(controlled-controlled-NOT)



Errors in Quantum computer

In real quantum computer,

Qubits in quantum circuit ≠ isolated system

Interactions w/ environment cause errors/noises

We need to include “quantum error corrections”
which seem to require a huge number of qubits

(∼ major obstruction of the development)

This lecture won’t discuss quantum error corrections
but it can be taken into account in an independent way 
of details of algorithm  



(Classical) simulator for Quantum computer

Simulator

・Doesn’t have errors → ideal answers

Useful to test algorithm & estimate computational resources 

Quantum computation ⊂ Linear algebra

The same algorithm can be implemented in classical computer
but w/o speed-up (1 quantum step = many classical steps)

Tool to simulate quantum computer
by classical computer

=

・The same code can be run in quantum computer w/ speed-up

(More precisely, classical computer also has errors but its error correction is established)

(∼# of qubits, gates)



Short summary
・Qubit = Quantum bit

・Important gates:

・Do something interesting by a combination of
acting unitary op. & measurement 

・𝐻, 𝑇 & 𝐶𝑋 are universal

・Real quantum computer has errors

・Simulator Tool to simulate quantum computer
by classical computer

=



Some demonstrations 
in IBM Quantum Experience







A trivial problem: measure |0⟩



A trivial problem: measure |0⟩ (Cont’d)



Measure 1024 times in simulator



Trivial result

Of Course!



Measure 1024 times in quantum computer



Result of quantum computer?

This is the error!



A trivial problem2: measure |1⟩



A trivial problem2: measure |1⟩ (Cont’d)



Result of simulator (1024 shots)



Result of quantum computer (1024shots)

Errors again



The simplest nontrivial problem: Hadamard gate



Result of simulator (1024 shots)

Not 50:50 because of statistical errors 



Result of simulator (8192 shots)

Improved!



Result of quantum computer (1024 shots)

∃Both errors & statistical errors 



Result of quantum computer (8192 shots)

Statistical errors are improved



A trivial problem for 2 qubits



Result of simulator (1024 shots)

Note that notation is different from the ket notation



2 qubit operation by simulator



2 qubit operation by quantum computer (1024 shots)



Quantum simulation of Spin system



Warm up: 2-site transverse Ising model

x x

1 2

・construct time evolution operator

・obtain vacuum state

・compute vacuum expectation values

We are going to

・compute Renyi entropy



Time evolution operator

where

How do we express this in terms of elementary gates? 
(such as 𝑋, 𝑌, 𝑍, 𝑅𝑋,𝑌,𝑍, 𝐶𝑋 etc…)

Time evolution of any state is studied by acting the operator



Time evolution operator

Step 1: Suzuki-Trotter decomposition:

where

How do we express this in terms of elementary gates? 
(such as 𝑋, 𝑌, 𝑍, 𝑅𝑋,𝑌,𝑍, 𝐶𝑋 etc…)

(𝑀: large positive integer)

Time evolution of any state is studied by acting the operator

(∃higher order improvements)



Time evolution operator (Cont’d)



Time evolution operator (Cont’d)

The 1st one is trivial:
acting on qubit 1acting on qubit 2



Time evolution operator (Cont’d)

The 1st one is trivial:

The 2nd one is nontrivial:

acting on qubit 1acting on qubit 2



Time evolution operator (Cont’d)

The 1st one is trivial:

The 2nd one is nontrivial:

One can show (see next slide)

acting on qubit 1acting on qubit 2



Time evolution operator (Cont’d)

Proof:

Thus,



Quantum circuit for time evolution op.

=



Survival probability of free vacuum
For J=0, ground state is

Toy version of 
Schwinger effect

We can compute survival probability of the free vacuum:



Survival probability of free vacuum
For J=0, ground state is

Toy version of 
Schwinger effect

We can compute survival probability of the free vacuum:

Measure the probability having |00⟩ inside the state



Demonstration for the survival probability

Let’s compute it for

=



Demonstration for the survival probability (Cont’d)

Result by simulator w/ 1024 shots:



Result of simulator (1024 shots):

Result of quantum computer (1024 shots):



More serious computation

2 sites

4 sites

6 sites

8 sites



Adiabatic state preparation of vacuum 

If the system w/ the Hamiltonian 𝐻𝐴(𝑡) has a unique gapped vacuum, 
then the desired ground state is obtained by

Step 1: Choose an initial Hamiltonian H0 of a simple system
whose ground state |vac0⟩ is known and unique

Step 2: Consider the time evolution 

w/

Step 3: Use the adiabatic theorem



For transverse Ising model

Choose



For transverse Ising model

Choose

Discretize the integral:

where



Magnetization
Once we get the vacuum, we can compute VEV of operators:

It is easiest to compute magnetization:



Magnetization
Once we get the vacuum, we can compute VEV of operators:

It is easiest to compute magnetization:

Transverse one is a bit more tricky:



Result by simulator (10000 shots)

correct value

result



2 sites 4 sites

6 sites 8 sites



Renyi entropy
Dividing total Hilbert space as

reduced density matrix is defined as 

Entanglement entropy:

n-th Renyi entropy:



Quantum algorithm for 2nd Renyi entropy
Consider (𝑁𝐴 + 𝑁𝐵)-qubit system and the density matrix

Let’s divide the system into two systems:

& consider the 2nd Renyi entropy



Quantum algorithm for 2nd Renyi entropy
Consider (𝑁𝐴 + 𝑁𝐵)-qubit system and the density matrix

[Hastings-Gonzalez-Kallin-Melko’10]

Let’s divide the system into two systems:

& consider the 2nd Renyi entropy

One can show (next slide)

For



Quantum algorithm for 2nd Renyi entropy (Cont’d)

Proof:



Demonstration: 2nd Renyi entropy of Bell state

Bell state:

Reduced density matrix:

2nd Renyi entropy:

Let’s reproduce it in IBM Q Experience



Demonstration: 2nd Renyi entropy of Bell state (Cont’d)

We know

The Bell state is written as

Therefore,

= |𝐵⟩



Demonstration: 2nd Renyi entropy of Bell state (Cont’d)

Result of simulator (1024 shots):



Result of simulator (1024 shots):

Result of quantum computer (1024 shots):



More direct way?

We’ve directly computed

rather than itself:

Can we directly compute it?

Yes, there is a way to compute expectation value 
of unitary op. under any state:

𝜓 U |𝜓⟩

(next slide)



“Hadamard test”: standard way to compute 𝜓 U |𝜓⟩

① Extend Hilbert space & consider the state

0 ⊗ |𝜓⟩
“ancillary qubit”

② We can compute 𝜓 𝑈 |𝜓⟩ by using the 2 circuits: 

⋮

⋮

⋮

⋮ Re( 𝜓 𝑈 𝜓 )

Im( 𝜓 𝑈 𝜓 )

(next slide)



“Hadamard test”: standard way to compute 𝜓 U 𝜓 (Cont’d)

Computation of Re( 𝜓 𝑈 𝜓 ): Do nothing if |0⟩ & act 𝑈 if |1⟩

① ② ③

④

⋮

⋮



“Hadamard test”: standard way to compute 𝜓 U 𝜓 (Cont’d)

Computation of Re( 𝜓 𝑈 𝜓 ): Do nothing if |0⟩ & act 𝑈 if |1⟩

① 𝐻 0 ⊗ 𝜓 =
1

2
0 ⊗ 𝜓 +

1

2
|1⟩ ⊗ 𝜓

① ② ③

④

⋮

⋮



“Hadamard test”: standard way to compute 𝜓 U 𝜓 (Cont’d)

Computation of Re( 𝜓 𝑈 𝜓 ): Do nothing if |0⟩ & act 𝑈 if |1⟩

① 𝐻 0 ⊗ 𝜓 =
1

2
0 ⊗ 𝜓 +

1

2
|1⟩ ⊗ 𝜓

②
1

2
0 ⊗ 𝜓 +

1

2
|1⟩ ⊗ 𝑈 𝜓

① ② ③

④

⋮

⋮



“Hadamard test”: standard way to compute 𝜓 U 𝜓 (Cont’d)

Computation of Re( 𝜓 𝑈 𝜓 ): Do nothing if |0⟩ & act 𝑈 if |1⟩

① 𝐻 0 ⊗ 𝜓 =
1

2
0 ⊗ 𝜓 +

1

2
|1⟩ ⊗ 𝜓

②
1

2
0 ⊗ 𝜓 +

1

2
|1⟩ ⊗ 𝑈 𝜓

③
1

2
0 + 1 )⊗ 𝜓 +

1

2
(|0⟩ − |1⟩) ⊗ 𝑈 𝜓

=
1

2
|0⟩ ⊗ (1 + 𝑈) 𝜓 +

1

2
|1⟩ ⊗ (1 − 𝑈) 𝜓

① ② ③

④

⋮

⋮



“Hadamard test”: standard way to compute 𝜓 U 𝜓 (Cont’d)

Computation of Re( 𝜓 𝑈 𝜓 ): Do nothing if |0⟩ & act 𝑈 if |1⟩

① 𝐻 0 ⊗ 𝜓 =
1

2
0 ⊗ 𝜓 +

1

2
|1⟩ ⊗ 𝜓

②
1

2
0 ⊗ 𝜓 +

1

2
|1⟩ ⊗ 𝑈 𝜓

③
1

2
0 + 1 )⊗ 𝜓 +

1

2
(|0⟩ − |1⟩) ⊗ 𝑈 𝜓

=
1

2
|0⟩ ⊗ (1 + 𝑈) 𝜓 +

1

2
|1⟩ ⊗ (1 − 𝑈) 𝜓

𝑃0 =
1

4
(1 + 𝑈) 𝜓⟩|2 =

1

2
( 1 + Re 𝜓 𝑈 𝜓 )

① ② ③

④

𝑃1 =
1

4
(1 − 𝑈) 𝜓⟩|2 =

1

2
( 1 − Re 𝜓 𝑈 𝜓 )

④

⋮

⋮



“Hadamard test”: standard way to compute 𝜓 U 𝜓 (Cont’d)

Computation of Re( 𝜓 𝑈 𝜓 ): Do nothing if |0⟩ & act 𝑈 if |1⟩

① 𝐻 0 ⊗ 𝜓 =
1

2
0 ⊗ 𝜓 +

1

2
|1⟩ ⊗ 𝜓

②
1

2
0 ⊗ 𝜓 +

1

2
|1⟩ ⊗ 𝑈 𝜓

③
1

2
0 + 1 )⊗ 𝜓 +

1

2
(|0⟩ − |1⟩) ⊗ 𝑈 𝜓

=
1

2
|0⟩ ⊗ (1 + 𝑈) 𝜓 +

1

2
|1⟩ ⊗ (1 − 𝑈) 𝜓

𝑃0 =
1

4
(1 + 𝑈) 𝜓⟩|2 =

1

2
( 1 + Re 𝜓 𝑈 𝜓 )

① ② ③

④

𝑃1 =
1

4
(1 − 𝑈) 𝜓⟩|2 =

1

2
( 1 − Re 𝜓 𝑈 𝜓 )

Re 𝜓 𝑈 𝜓 = 𝑃0 − 𝑃1

④

⋮

⋮



“Hadamard test”: standard way to compute 𝜓 U 𝜓 (Cont’d)

Computation of Im( 𝜓 𝑈 𝜓 ):

① RZ(𝜋/2)𝐻 0 ⊗ 𝜓 =
ⅇ
−
𝜋𝑖
4

2
0 ⊗ 𝜓 +

ⅇ
+
𝜋𝑖
4

2
|1⟩ ⊗ 𝜓

②
ⅇ
−
𝜋𝑖
4

2
0 ⊗ 𝜓 +

ⅇ
+
𝜋𝑖
4

2
|1⟩ ⊗ 𝑈 𝜓

➂
ⅇ
−
𝜋𝑖
4

2
|0⟩ ⊗ (1 + 𝑖𝑈) 𝜓 +

ⅇ
−
𝜋𝑖
4

2
|1⟩ ⊗ (1 − 𝑖𝑈) 𝜓

𝑃0 =
1

4
(1 + 𝑖𝑈) 𝜓⟩|2 =

1

2
( 1 − Im 𝜓 𝑈 𝜓 )

① ② ③

④

𝑃1 =
1

4
(1 − 𝑖𝑈) 𝜓⟩|2 =

1

2
( 1 + Im 𝜓 𝑈 𝜓 )

Im 𝜓 𝑈 𝜓 = 𝑃1 − 𝑃0

④

⋮

⋮



Coming back to the Renyi entropy of Bell state

Taking 𝜓 = 𝐵 ⊗ |𝐵⟩ & 𝑈 = SWAP(1,3), we can directly compute

Real part: Imaginary part:
ancillary qubit

constructing 𝐵 ⊗ |𝐵⟩



Result of simulator (real part, 1024 shots)

Expectation: 𝑃0 − 𝑃1 = Re tr𝜌red
2 =

1

2



Result of simulator (imaginary part, 1024 shots)

𝑃1 − 𝑃0 = Im tr𝜌red
2 = 0Expectation:



Result of quantum computer (real part, 1024 shots)

Expectation: 𝑃0 − 𝑃1 = Re tr𝜌red
2 =

1

2



Result of quantum computer (imaginary part, 1024 shots)

𝑃1 − 𝑃0 = Im tr𝜌red
2 = 0Expectation:



QFT as qubits

(mapping to spin system)



“Regularization” of Hilbert space

Hilbert space of QFT is typically ∞ dimensional

Make it finite dimensional!

・Fermion is easiest (up to doubling problem)

Putting on spatial lattice, Hilbert sp. is finite dimensional

・scalar
Hilbert sp. at each site is ∞ dimensional

・gauge field (w/ kinetic term)

no physical d.o.f. in 0+1D/1+1D (w/ open bdy. condition)

∞ dimensional Hilbert sp. in higher dimensions

(need truncation or additional regularization)



Citation history of “Hamiltonian Formulation of 
Wilson's Lattice Gauge Theories” by Kogut-Susskind

(totally 1832 at this moment)

https://inspirehep.net/literature/1336
https://inspirehep.net/literature/1336


Free Dirac fermion in 1+1D

For staggered fermion:

Continuum:

Lattice (w/ N sites and spacing a):

(anti-)commutation relation:



Jordan-Wigner transformation

This is satisfied by the operator: [Jordan-Wigner’28]

Then the system is mapped to the spin system:

We can apply quantum algorithms to QFT!



Here is the end of the 1st day 



Universality
・Any unitary gate is a combination of single qubit gates & 𝐶𝑋

(“Single qubit gates & 𝐶𝑋 are universal”)  

・Any single qubit gate is approximated by a combination of  
𝐻 & 𝑇 in arbitrary precision

・𝐻, 𝑇 & 𝐶𝑋 are universal

Ex.) Toffoli

(controlled-controlled-NOT)



Approximation of single qubit gate by 𝐻 & 𝑇
① Get a rotation with angle 2𝜋 × irrational :

② Use Weyl’s uniform distribution theorem:

③ Construct rotation around another axis:

𝑇𝐻𝑇𝐻 = 𝑒
𝑖𝜋
4 𝑅𝑛(𝜃) with  𝑅𝑛 𝜃 ≡ 𝑒−

𝑖

2
𝑛⋅𝜎

cos(𝜃/2) ≡ cos2(𝜋/8)𝑛 =
1

1 + cos2(𝜋/8)

𝑐𝑜𝑠(𝜋/8)
sin(𝜋/8)
𝑐𝑜𝑠(𝜋/8)

where

&
2𝜋 × irrational !

𝜃𝒁 is uniformly distributed mod 1 approximate 𝑅𝑛 𝛼 for ∀𝛼

𝐻𝑅𝑛 𝛼 𝐻 = 𝑅𝑚 𝛼
𝑐𝑜𝑠(𝜋/8)
−sin(𝜋/8)
𝑐𝑜𝑠(𝜋/8)

𝑚 =
1

1 + cos2(𝜋/8)
with

④ Approximate ∀single qubit gate: 𝑅𝑛 𝛼 𝑅𝑚 𝛽 𝑅𝑛 𝛾



What if we replace 𝑇 by something else?

We have the identity:

𝑇′𝐻𝑇′𝐻 = 𝑅𝑛(𝜃)

cos(𝜃/2) ≡ cos2(𝜙/2)𝑛 =
1

1 + cos2(𝜙/2)

𝑐𝑜𝑠(𝜙/2)
sin(𝜙/2)
𝑐𝑜𝑠(𝜙/2)

where

&

𝑇 = 𝑒
𝑖𝜋
8 𝑅𝑍(𝜋/4) 𝑇′ ≡ 𝑅𝑍(𝜙) ??

We can approximate any single qubit gate 

by combining 𝐻 & 𝑇′ if 𝜃/2𝜋 is irrational



Advantage of using discrete gates

・To get approximation w/ precision 𝜖,
we need to use 𝒪(1/𝜖) discrete gates 

・But it is useful for quantum error correction

・If we use continuous gates, 
we have to consider algorithms to correct errors
for ∞ gates



The beginning of the 2nd day (3rd slot)



Schwinger model w/ topological term

Using “chiral anomaly”, the same physics can be studied by

Continuum:

Taking temporal gauge

Physical states are constrained by Gauss law:

[Fujikawa’79]



Sign problem in path integral formalism

In Euclidean space,

In Minkowski space,

𝒪 =
∫ 𝐷𝐴𝐷𝜓𝐷 ത𝜓 𝒪 𝑒𝑖𝑆

∫ 𝐷𝐴𝐷𝜓𝐷 ത𝜓 𝑒𝑖𝑆

𝑆 = ∫ 𝑑4𝑥 −
1

4
𝐹𝜇𝜈
2 + ത𝜓 𝑖𝛾𝜇𝐷𝜇 −𝑚 𝜓 +

𝑔𝜃

4𝜋
∫ 𝐹 ∈ 𝑹

𝒪 =
∫ 𝐷𝐴𝐷𝜓𝐷 ത𝜓 𝒪 𝑒−𝑆

∫ 𝐷𝐴𝐷𝜓𝐷 ത𝜓 𝑒−𝑆

𝑆 = ∫ 𝑑4𝑥 −
1

4
𝐹𝜇𝜈
2 + ത𝜓 𝑖𝛾𝜇𝐷𝜇 −𝑚 𝜓 + 𝑖

𝑔𝜃

4𝜋
∫ 𝐹 ∈ 𝑪

highly oscillating

highly oscillating for non-small θ



Accessible region by analytic computation

・Massive limit:

・Bosonization: [Coleman ’76]

The fermion can be integrated out

ℒ =
1

8𝜋
𝜕𝜇𝜙

2
−

𝑔2

8𝜋2
𝜙2 +

𝑒𝛾𝑔

2𝜋3/2
𝑚 cos(𝜙 + 𝜃)

the theory becomes effectively pure Maxwell theory w/ 𝜃

&

exactly solvable for 𝑚 = 0

small 𝑚 regime is approximated by perturbation

&



Map of accessibility/difficulty

𝑚

𝜃

Pure
Maxwell

Monte Carlo

solvable

Mass
perturb.

We can make

prediction here



Put the theory on lattice 
・Fermion (on site): [Susskind, Kogut-Susskind ’75]

x x x x x x
・・・𝜙1, 𝐿1 𝜙2, 𝐿2 𝜙3, 𝐿3 𝜙𝑁−1, 𝐿𝑁−1

𝜒1 𝜒2 𝜒3 𝜒4 𝜒𝑁−1 𝜒𝑁

・Gauge field (on link):

𝜓(𝑥) =
𝜓𝑢
𝜓𝑑

𝜒𝑛
𝑎1/2
lattice spacing

odd site

even site

“Staggered fermion”

𝜙𝑛 ↔ −𝑎𝑔𝐴1 𝑥 , 𝐿𝑛 ↔ −
Π 𝑥

𝑔



Lattice theory w/ staggered fermion
Hamiltonian:

Commutation relation:

Gauss law:



Eliminate gauge d.o.f.
1. Take open b.c. & solve Gauss law:

2. Redefine fermion to absorb 𝜙𝑛:

Then,

This acts on finite dimensional Hilbert space



Going to spin system

This is satisfied by the operator:

[Jordan-Wigner’28]

“Jordan-Wigner transformation”



Going to spin system

This is satisfied by the operator:

[Jordan-Wigner’28]

Now the system is purely a spin system:

Qubit description of the Schwinger model !!

“Jordan-Wigner transformation”



Time evolution operator
Suzuki-Trotter decomposition:

(M: large positive integer)

Can we express it in terms of elementary gates?



Time evolution operator (cont’d)

The 1st one is trivial:

The 3rd one (see next slide):

The 4th one:

The 2nd one appeared in Ising model:



Time evolution operator (Cont’d)

Proof:

Thus,



Quantum circuit for time evolution op. (N=4)



Improvement of Suzuki-Trotter decomposition

The leading order decomposition:

The 2nd order improvement:



Improvement of Suzuki-Trotter decomposition

The leading order decomposition:

The 2nd order improvement:

This increases the number of gates at each time step
but we can take larger δt (smaller M) to achieve similar accuracy.
Totally we save the number of gates.

cf. Baker-Campbell-Hausdorff formula:



Survival probability of massive vacuum
[cf. Martinez etal.  Nature 534 (2016) 516-519]

The ground state in the large mass limit is

Survival probability:

“Schwinger effect” 
in massive limit



Result of simulator (10000 shots)

4 sites

6 sites
8 sites

10 sites



VEV of mass operator (chiral condensation)

Instead of the local op., we analyze the average over the space: 

Once we get the vacuum, we can compute the VEV as



Adiabatic state preparation of vacuum

Here we choose

m0 can be any positive number in principle
but it is practically chosen to have small systematic error 



Massless case

[Hetrick-Hosotani ’88]
∃Exact result:

For massless case, 

𝜃 is absorbed by chiral rotation

Nevertheless,

it’s difficult in conventional approach because computation of 
fermion determinant becomes very heavy

Can we reproduce it?

No sign problem

𝜃 = 0 w/o loss of generality



Estimation of systematic errors
[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya ’20]Approximation of vacuum:

Approximation of VEV:

Introduce the quantity

independent of t if

dependent on t if

This quantity describes  intrinsic ambiguities in prediction

Useful to estimate systematic errors



Estimation of systematic errors (Cont’d)

Oscillating around the correct value

Define central value & error as

&



Thermodynamic & Continuum limit

#(measurements)

Thermodynamic limit: Continuum limit:



Result for massless case (after continuum limit)
[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya ’20]

exact result



Massive case

Result of mass perturbation theory: [Adam ’98]

∃Subtlety in comparison: this quantity is UV divergent

Use a regularization scheme to have the same finite part

However,

Here we subtract free theory result before taking continuum limit:



Result for massive case at 𝑔 = 1
[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya ’20]

mass perturbation



𝜃 dependence at 𝑚 = 0.1 & 𝑔 = 1

⟨ ത𝜓𝜓⟩

mass perturbation



Summary



Summary

・Quantum computation is suitable for Hamiltonian formalism
which is free from sign problem

・We haven’t established how to put many QFTs efficiently
on quantum computers yet

fun & ∃many things to do even now

・Quantum error correction is important

・Instead we have to deal with huge vector space.
Quantum computers in future may do this job. 



What I didn’t cover
・Quantum error correction

・Other ways to prepare vacuum

・Classical/quantum hybrid algorithm

・Finite temperature & Real time

・Searching critical point [work in progress, Chakraborty-MH-Kikuchi-Izubuchi-Tomiya]

Thanks!

・How to put “bosonic” QFTs on quantum computers

・Matrix QM & (non-)SUSY QFTs [work in progress, Buser-Gharibyan-Hanada-MH-Liu]

・Confinement/screening [work in progress, MH-Itou-Kikuchi-Nagano-Okuda]


