Introduction to Quantum Computation for Particle Physicists

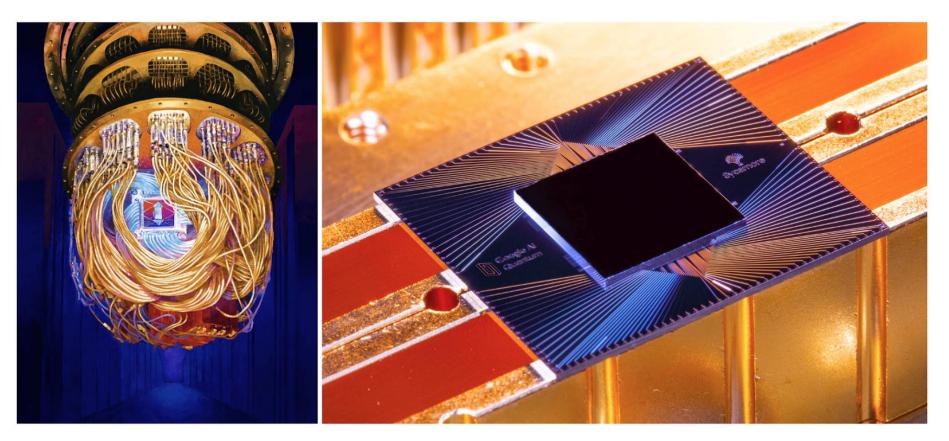
Masazumi Honda

(本多正純)

Center for Gravitational Physics Yukawa Institute for Theoretical Physics

APCTP workshop "Quantum Matter and Quantum Information with Holography"

Quantum computer sounds growing well...

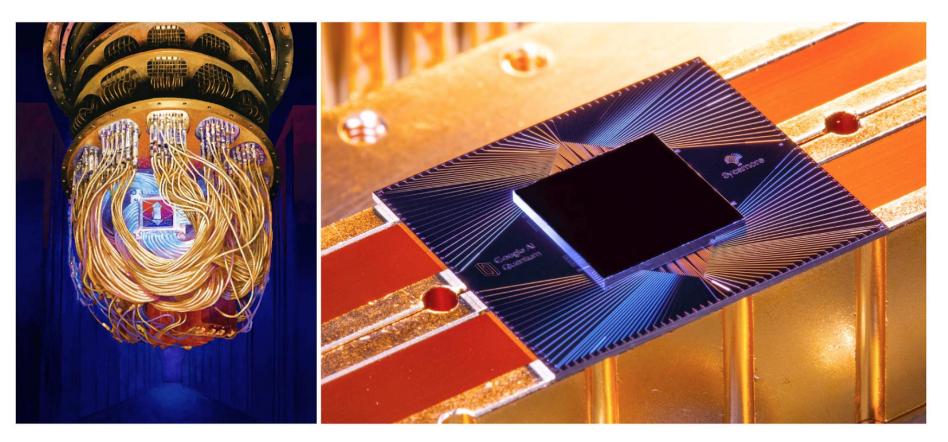


Article

Quantum supremacy using a programmable superconducting processor

https://doi.org/10.1038/s41586-019-1666-5 Frank Arute¹, Kunal Arya¹, Ryan Babbush¹, Dave Bacon¹, Joseph C. Bardin^{1,2}, Rami Barends¹,

Quantum computer sounds growing well...



Article

Quantum supremacy using a programmable superconducting processor

This lecture = How can we use it for particle physics?

This lecture is on

Application of Quantum Computation to Quantum Field Theory (QFT)

Generic motivation:

simply would like to use powerful computers?

Specific motivation:

This lecture is on

Application of Quantum Computation to Quantum Field Theory (QFT)

Generic motivation:

simply would like to use powerful computers?

Specific motivation:

Quantum computation is suitable for Hamiltonian formalism

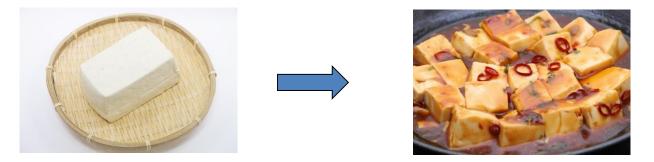
→ Liberation from infamous sign problem in Monte Carlo?

Sign problem in Monte Carlo simulation

Conventional approach to simulate QFT:

(this point is explained to give a motivation & isn't essential to understand main contents of the lectures)

① Discretize Euclidean spacetime by lattice:



& make path integral finite dimensional:

$$\int D\phi \ \mathcal{O}(\phi) e^{-S[\phi]} \qquad \longrightarrow \qquad \int d\phi \ \mathcal{O}(\phi) e^{-S(\phi)}$$

② Numerically Evaluate it by (Markov Chain) Monte Carlo method regarding the Boltzmann factor as a probability:

$$\langle \mathcal{O}(\phi) \rangle \simeq \frac{1}{\sharp(\text{samples})} \sum_{i \in \text{samples}} \mathcal{O}(\phi_i)$$

Sign problem in Monte Carlo simulation (Cont'd)

Markov Chain Monte Carlo:

$$\int d\phi \ \mathcal{O}(\phi) e^{-S(\phi)}$$
probability

problematic when Boltzmann factor isn't $R_{\geq 0}$ & is highly oscillating

Examples w/ sign problem:

- topological term complex action chemical potential indefinite sign of fermion determinant real time " $e^{iS(\phi)}$ " much worse

Sign problem in Monte Carlo simulation (Cont'd)

Markov Chain Monte Carlo:

$$\int d\phi \ \mathcal{O}(\phi) e^{-S(\phi)}$$
probability

problematic when Boltzmann factor isn't $R_{\geq 0}$ & is highly oscillating

Examples w/ sign problem:

- $\label{eq:complex} \begin{array}{c} \mbox{ topological term } & -- \mbox{ complex action} \\ \mbox{ chemical potential } & -- \mbox{ indefinite sign of fermion determinant} \\ \mbox{ real time } & -- \mbox{ " } e^{iS(\phi)} \mbox{ " much worse} \end{array}$

In Hamiltonian formalism,

sign problem is absent from the beginning

Cost of Hamiltonian formalism

We have to play with huge vector space

since QFT typically has $\underbrace{\infty-\text{dim.}}_{regularization needed!}$ Hilbert space

Technically, computers have to

memorize huge vector & multiply huge matrices

Cost of Hamiltonian formalism

We have to play with huge vector space

since QFT typically has $\underbrace{\infty-\text{dim.}}_{regularization needed!}$ Hilbert space

Technically, computers have to

memorize huge vector & multiply huge matrices

Quantum computers do this job?

Should we care now as "users"?

Quantum computers don't have sufficient powers yet. Shouldn't we start to care after quantum supremacy comes?

I personally think:

³Many things to do even now in various contexts

(numerical/analytic/purely algorithmic/lat/th/ph)

For instance,

we haven't established

how to put QCD efficiently on quantum computers

how to efficiently pick up various real time physics

(e.g. scattering/dynamical hadronization)

• [¬] only 1 example so far to take a serious continuum limit

[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya '20]

Some good news...

- If you have google or facebook account, you can immediately use IBM's quantum computer
- Algorithms for simulating quantum system are much easier than ones for generic purpose (e.g. Shor's algorithm for prime factorization)
- Simple code can be made by drug & drop in IBM's website and serious code is made by python
- I am beginner of both python and quantum computation (started on last June)
- It's fun!!

<u>Plan</u>

- 0. Introduction
- 1. Qubits and gates
- 2. Some demonstrations in IBM Q Experience
- 3. Quantum simulation of Spin system
- 4. QFT as qubits (mapping to spin system)
- 5. Summary

<u>Qubit = Quantum Bit</u>

Qubit = Quantum system w/ 2 dim. Hilbert space

Basis:

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \qquad |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 "computational basis"

Generic state:

$$\alpha |0\rangle + \beta |1\rangle$$
 w/ $|\alpha|^2 + |\beta|^2 = 1$

Ex.) Spin 1/2 system:

 $|0\rangle = |\uparrow\rangle, |1\rangle = |\downarrow\rangle$

(We don't need to mind how it is realized as "users")

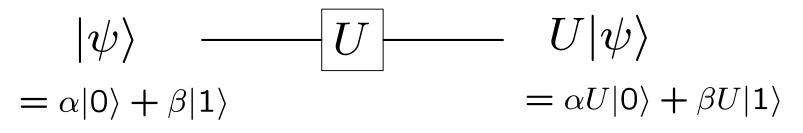
Single qubit operations

• <u>Acting unitary operator:</u> $|\psi\rangle \rightarrow U|\psi\rangle$ (multiplying 2x2 unitary matrix) In quantum circuit notation,

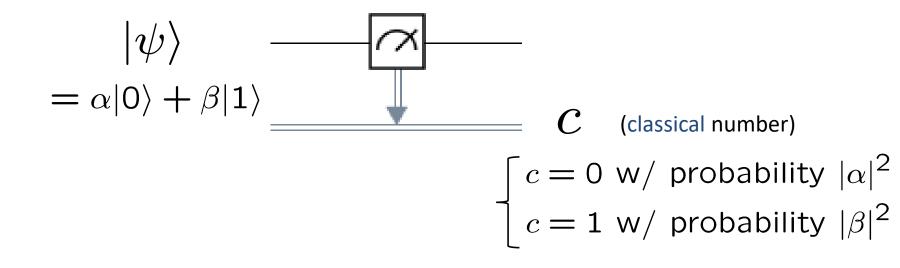
$$\begin{aligned} |\psi\rangle & - U \\ = \alpha |0\rangle + \beta |1\rangle & U |\psi\rangle \\ = \alpha U |0\rangle + \beta U |1\rangle \end{aligned}$$

Single qubit operations

• <u>Acting unitary operator:</u> $|\psi\rangle \rightarrow U|\psi\rangle$ (multiplying 2x2 unitary matrix) In quantum circuit notation,



Measurement:



X, Y, Z gates : (just Pauli matrices)

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

X is "NOT": $X|0\rangle = |1\rangle, X|1\rangle = |0\rangle$

 $\begin{array}{ll} \underline{X,Y,Z \ \text{gates}:} & \text{(just Pauli matrices)} \\ & X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \\ & \text{X is "NOT":} \quad X|0\rangle = |1\rangle, \quad X|1\rangle = |0\rangle \\ & R_X, R_Y, R_Z \text{ gates}: \end{array}$

$$R_X(\theta) = e^{-\frac{i\theta}{2}X}, \quad R_Y(\theta) = e^{-\frac{i\theta}{2}Y}, \quad R_Z(\theta) = e^{-\frac{i\theta}{2}Z}$$

 $X, Y, Z \text{ gates :} \quad \text{(just Pauli matrices)}$ $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ $X \text{ is "NOT":} \quad X|0\rangle = |1\rangle, \quad X|1\rangle = |0\rangle$

 $\underline{R_X,R_Y,R_Z}$ gates :

$$R_X(\theta) = e^{-\frac{i\theta}{2}X}, \quad R_Y(\theta) = e^{-\frac{i\theta}{2}Y}, \quad R_Z(\theta) = e^{-\frac{i\theta}{2}Z}$$

Hadamard gate :

$$H = \frac{1}{\sqrt{2}}(X+Z) = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$
$$H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \equiv |+\rangle, \quad H|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) \equiv |-\rangle$$

 $\frac{X, Y, Z \text{ gates :}}{X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ X is "NOT": $X|0\rangle = |1\rangle, \quad X|1\rangle = |0\rangle$

 $\underline{R_X,R_Y,R_Z}$ gates :

$$R_X(\theta) = e^{-\frac{i\theta}{2}X}, \quad R_Y(\theta) = e^{-\frac{i\theta}{2}Y}, \quad R_Z(\theta) = e^{-\frac{i\theta}{2}Z}$$

Hadamard gate :

$$H = \frac{1}{\sqrt{2}}(X+Z) = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$
$$H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \equiv |+\rangle, \quad H|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) \equiv |-\rangle$$

T gate :

$$T = e^{\frac{\pi i}{8}} R_Z \left(\frac{\pi}{4}\right) = \begin{pmatrix} 1 & 0\\ 0 & e^{\frac{i\pi}{4}} \end{pmatrix}$$

Multiple qubits

2 qubits – 4 dim. Hilbert space:

$$|\psi\rangle = \sum_{i,j=0,1} c_{ij} |ij\rangle, \qquad |ij\rangle \equiv |i\rangle \otimes |j\rangle$$

$$|00\rangle = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \qquad |01\rangle = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \qquad |10\rangle = \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}, \qquad |11\rangle = \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}$$

Multiple qubits

2 qubits – 4 dim. Hilbert space:

$$|\psi\rangle = \sum_{i,j=0,1} c_{ij} |ij\rangle, \qquad |ij\rangle \equiv |i\rangle \otimes |j\rangle$$

$$|00\rangle = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \qquad |01\rangle = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \qquad |10\rangle = \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}, \qquad |11\rangle = \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}$$

<u>N qubits – 2^{N} dim. Hilbert space:</u>

$$\begin{aligned} |\psi\rangle &= \sum_{i_1,\dots,i_N=0,1} c_{i_1\dots,i_N} |i_1\dots,i_N\rangle, \\ |i_1i_2\dots,i_N\rangle &\equiv |i_1\rangle \otimes |i_2\rangle \otimes \dots \otimes |i_N\rangle \end{aligned}$$

Two qubit gates used here

<u>Controlled X (NOT) gate</u>:

$$\begin{cases} CX|00\rangle = |00\rangle, & CX|01\rangle = |01\rangle, \\ CX|10\rangle = |11\rangle, & CX|11\rangle = |10\rangle \end{cases}$$

or equivalently

 $CX|0\rangle \otimes |\psi\rangle = |0\rangle \otimes |\psi\rangle, \quad CX|1\rangle \otimes |\psi\rangle = |1\rangle \otimes X|\psi\rangle$ $CX = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} =$

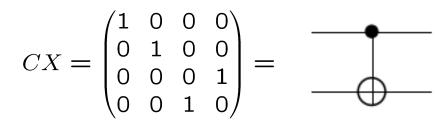
Two qubit gates used here

<u>Controlled X (NOT) gate</u>:

$$\begin{bmatrix} CX|00\rangle = |00\rangle, & CX|01\rangle = |01\rangle, \\ CX|10\rangle = |11\rangle, & CX|11\rangle = |10\rangle \end{bmatrix}$$

or equivalently

 $CX|0\rangle\otimes|\psi\rangle=|0\rangle\otimes|\psi\rangle, \quad CX|1\rangle\otimes|\psi\rangle=|1\rangle\otimes X|\psi\rangle$



SWAP gate:

 $\mathsf{SWAP}|\psi\rangle\otimes|\phi\rangle=|\phi\rangle\otimes|\psi\rangle$

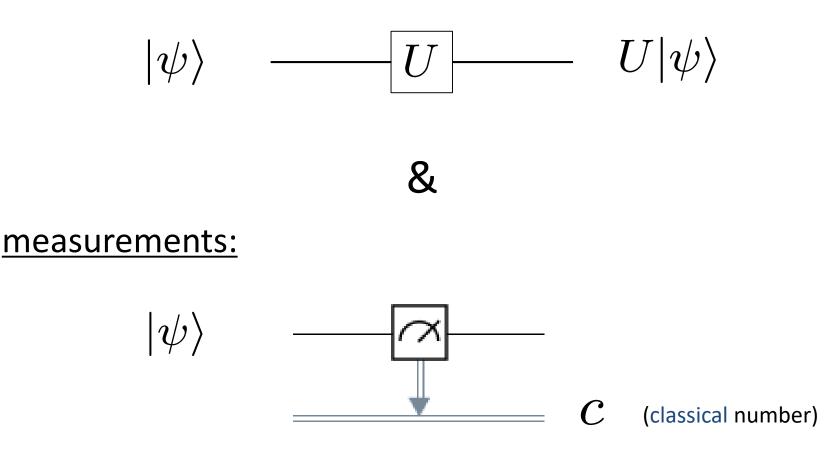
$$SWAP = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} =$$

We'll see this is useful to compute Renyi entropy

Rule of the game

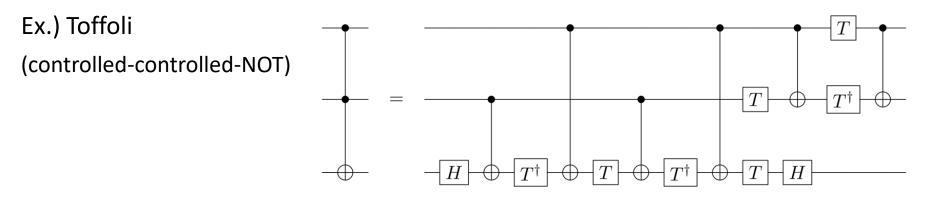
Do something interesting by a combination of

action of Unitary operators:



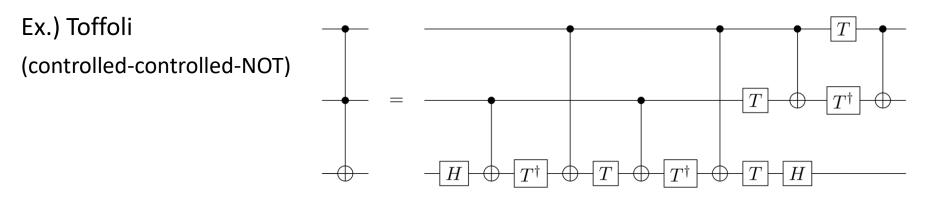
Universality

 Any unitary gate is a combination of single qubit gates & CX ("Single qubit gates & CX are universal")



Universality

 Any unitary gate is a combination of single qubit gates & CX ("Single qubit gates & CX are universal")

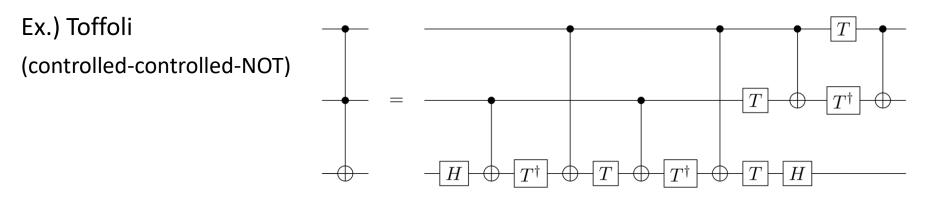


 Any single qubit gate is approximated by a combination of H & T in arbitrary precision

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}, \quad T = \begin{pmatrix} 1 & 0\\ 0 & e^{\frac{i\pi}{4}} \end{pmatrix}$$

Universality

 Any unitary gate is a combination of single qubit gates & CX ("Single qubit gates & CX are universal")



 Any single qubit gate is approximated by a combination of H & T in arbitrary precision

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}, \quad T = \begin{pmatrix} 1 & 0\\ 0 & e^{\frac{i\pi}{4}} \end{pmatrix}$$

•*H*, *T* & *CX* are universal

Errors in Quantum computer

In real quantum computer,

Qubits in quantum circuit ≠ isolated system

Interactions w/ environment cause errors/noises

We need to include "quantum error corrections" which seem to require a huge number of qubits (~ major obstruction of the development)

This lecture won't discuss quantum error corrections but it can be taken into account in an independent way of details of algorithm

(Classical) simulator for Quantum computer

Quantum computation \subset Linear algebra

The same algorithm can be implemented in classical computer but w/o speed-up (1 quantum step = many classical steps)

Simulator = Tool to simulate quantum computer by classical computer

Doesn't have errors → ideal answers

 (More precisely, classical computer also has errors but its error correction is established)

 The same code can be run in quantum computer w/ speed-up

Useful to test algorithm & estimate computational resources (~# of qubits, gates)

Short summary

- Qubit = Quantum bit
- Important gates:

$$R_X(\theta) = e^{-\frac{i\theta}{2}X}, \quad R_Y(\theta) = e^{-\frac{i\theta}{2}Y}, \quad R_Z(\theta) = e^{-\frac{i\theta}{2}Z}$$
$$H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \equiv |+\rangle, \quad H|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) \equiv |-\rangle$$
$$CX|0\rangle \otimes |\psi\rangle = |0\rangle \otimes |\psi\rangle, \quad CX|1\rangle \otimes |\psi\rangle = |1\rangle \otimes X|\psi\rangle$$

- Do something interesting by a combination of acting unitary op. & measurement
- •*H*, *T* & *CX* are universal

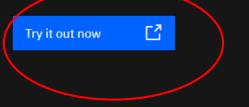
 $T = e^{\frac{\pi i}{8}} R_Z \left(\frac{\pi}{4}\right) = \begin{pmatrix} 1 & 0\\ 0 & e^{\frac{i\pi}{4}} \end{pmatrix}$

- Real quantum computer has errors
- Simulator = Tool to simulate quantum computer by classical computer

Some demonstrations in IBM Quantum Experience

IBM Quantum Experience is quantum on the cloud

Accelerate your research and applications with the next generation of the leading quantum cloud services and software platform.



Powerful software for the most powerful hardware

Put quantum to work

Run experiments on IBM Q systems and simulators available to the public and IBM Q Network.

Develop and deploy

Explore quantum applications in areas such as chemistry, optimization, finance, and AI.

Quar

Stay inf quantu commu Ċ

(?)

Welcome Honda Masazumi

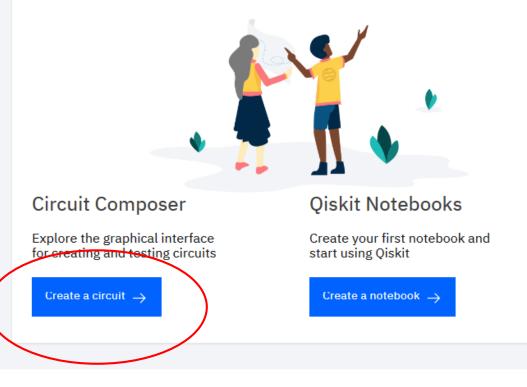
Your providers

Personal profile

See more

New here? Get started with the IBM Quantum Experience!

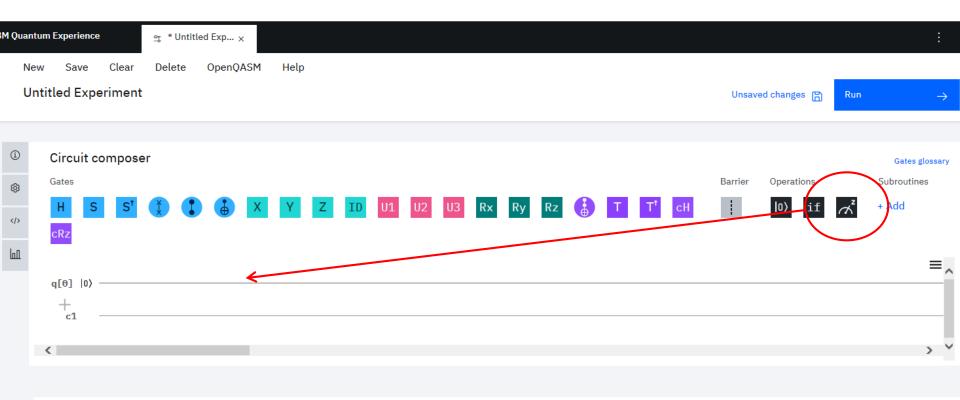
×



Pending results (0)

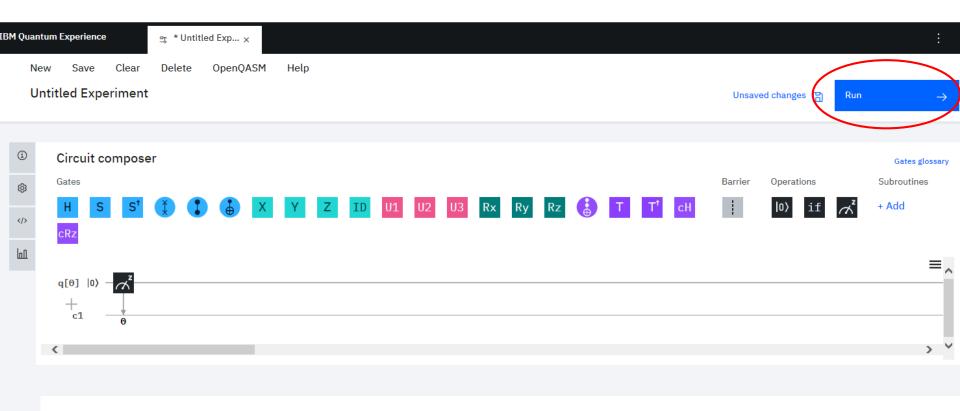
You have no experiment runs in the queue.

<u>A trivial problem: measure $|0\rangle$ </u>



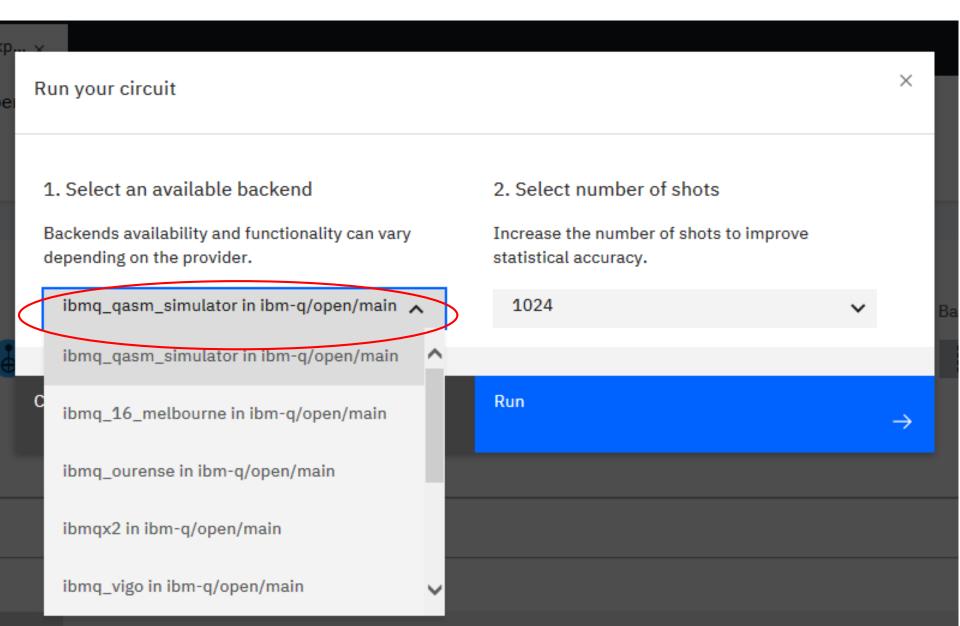
Pending results (0)

<u>A trivial problem: measure 0 (Cont'd)</u>

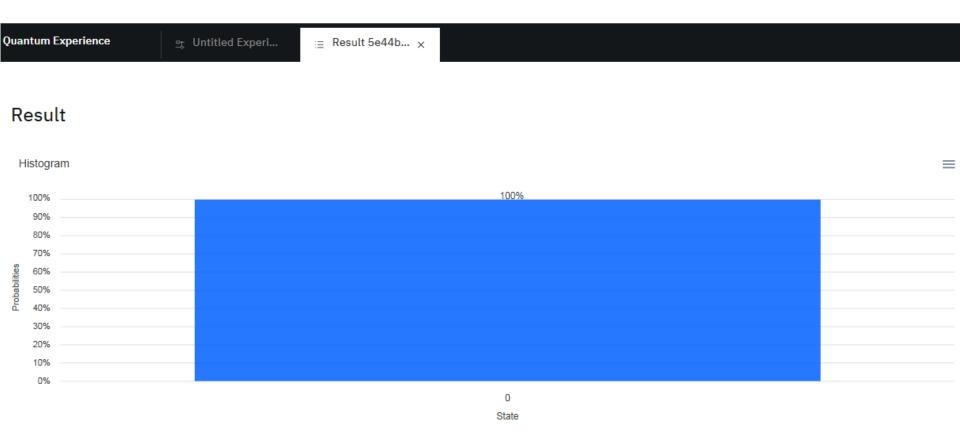


Pending results (0)

Measure 1024 times in simulator



Trivial result



Of Course!

Measure 1024 times in quantum computer

Run your circuit

1. Select an available backend

Backends availability and functionality can vary depending on the provider.

ibmq_qasm_simulator in ibm-q/open/main 🔥

ibmq_qasm_simulator in ibm-q/open/main

ibmq_16_melbourne in ibm-q/open/main

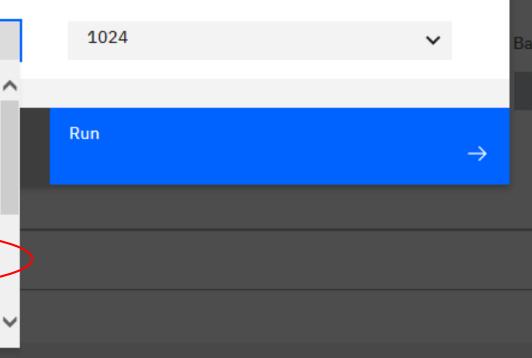
ibmq_ourense in ibm-q/open/main

ibmqx2 in ibm-q/open/main

ibmq_vigo in ibm-q/open/main

2. Select number of shots

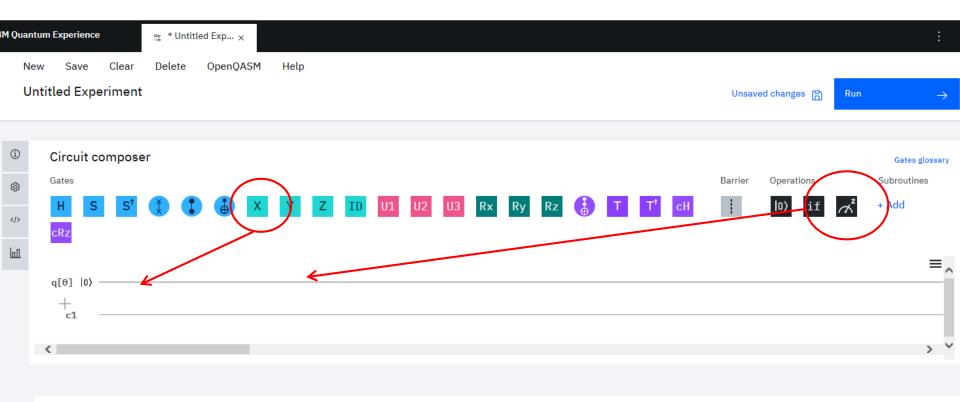
Increase the number of shots to improve statistical accuracy.



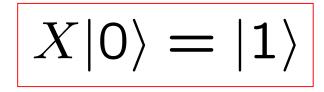
Result of quantum computer?

This is the error!

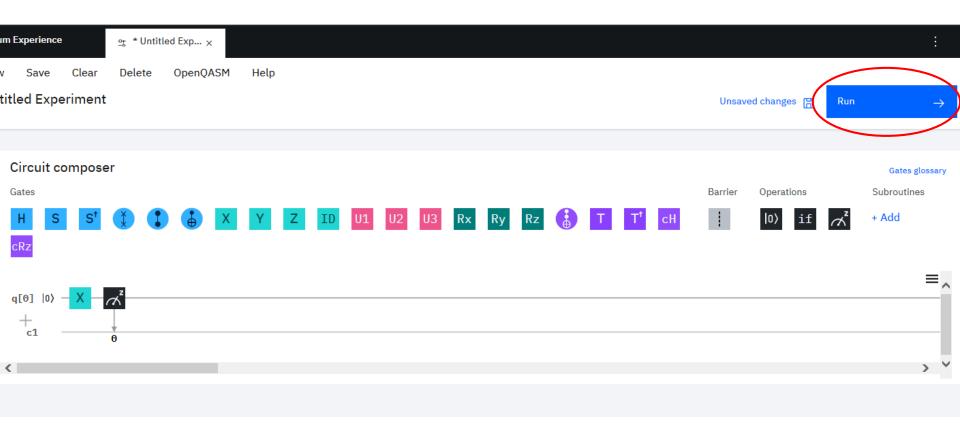
<u>A trivial problem2: measure |1></u>



Pending results (0)

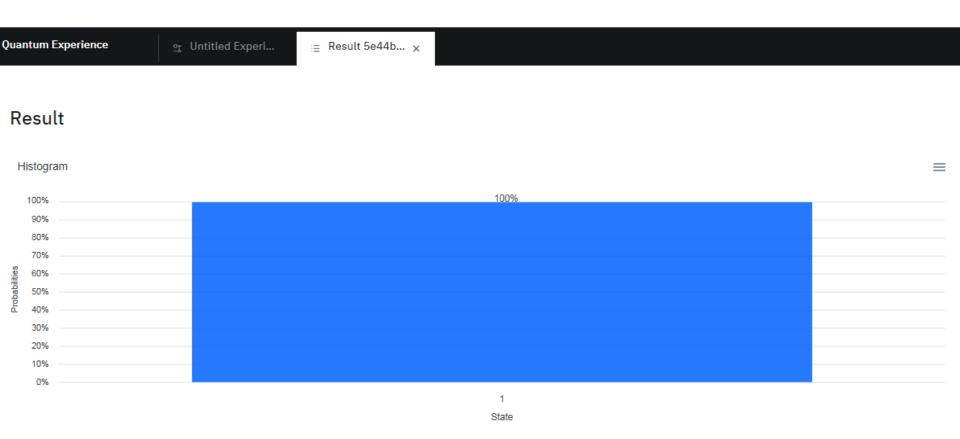


<u>A trivial problem2: measure 1) (Cont'd)</u>

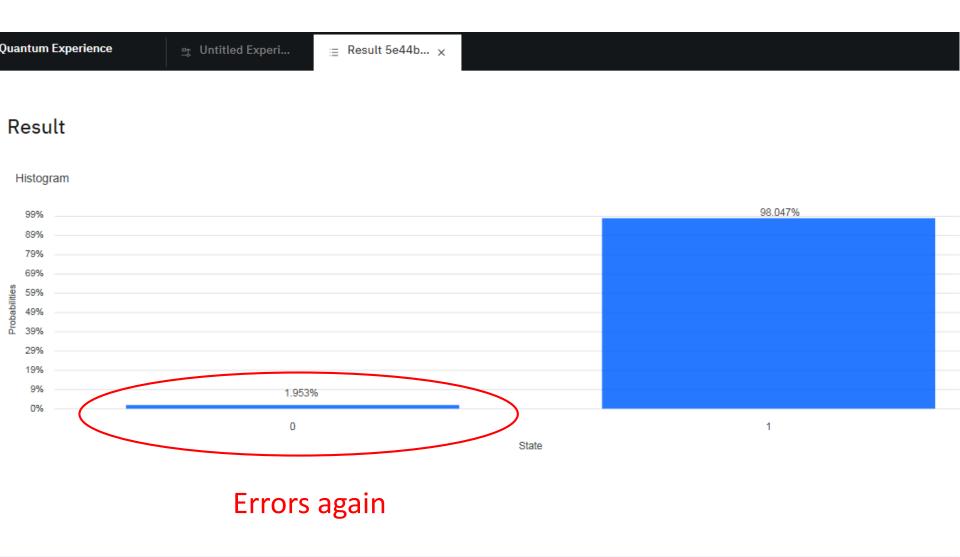


Pending results (0)

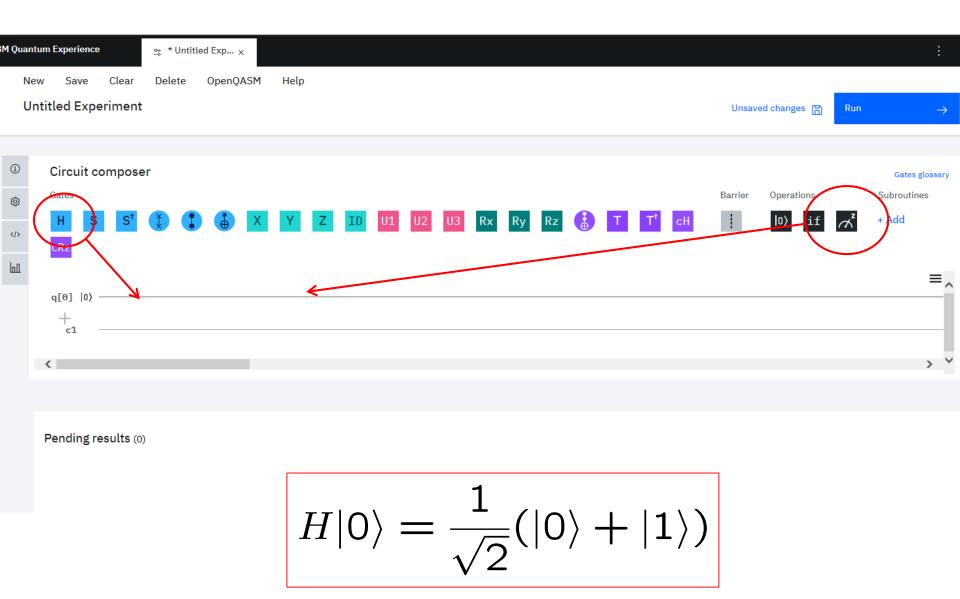
Result of simulator (1024 shots)



Result of quantum computer (1024shots)



The simplest nontrivial problem: Hadamard gate



Result of simulator (1024 shots)



State

Not 50:50 because of statistical errors

Result of simulator (8192 shots)

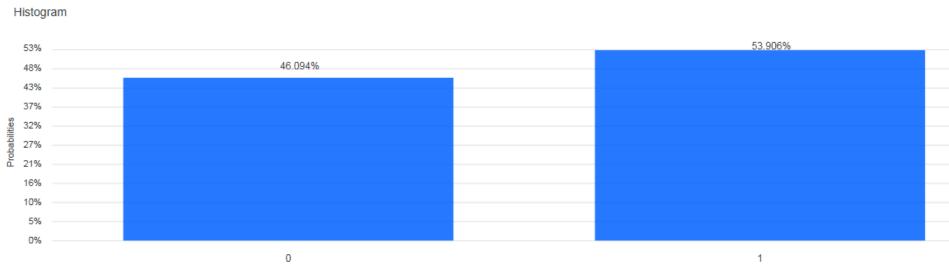
Histogram

State

Improved!

Result of quantum computer (1024 shots)

Result



State

³Both errors & statistical errors

Result of quantum computer (8192 shots)

Result

Histogram

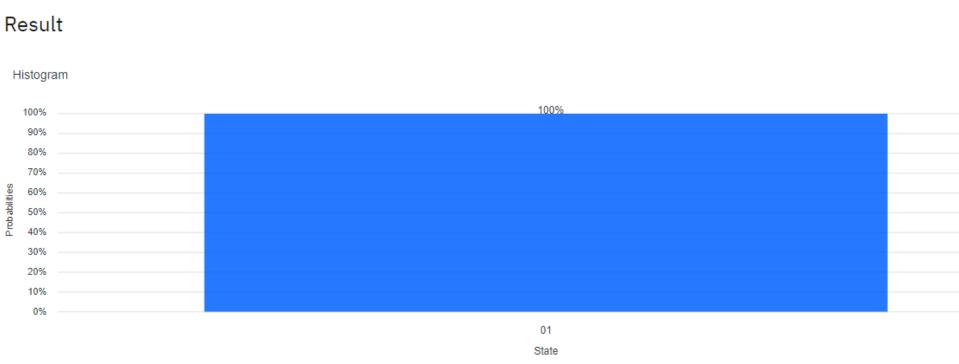
State

Statistical errors are improved

A trivial problem for 2 qubits

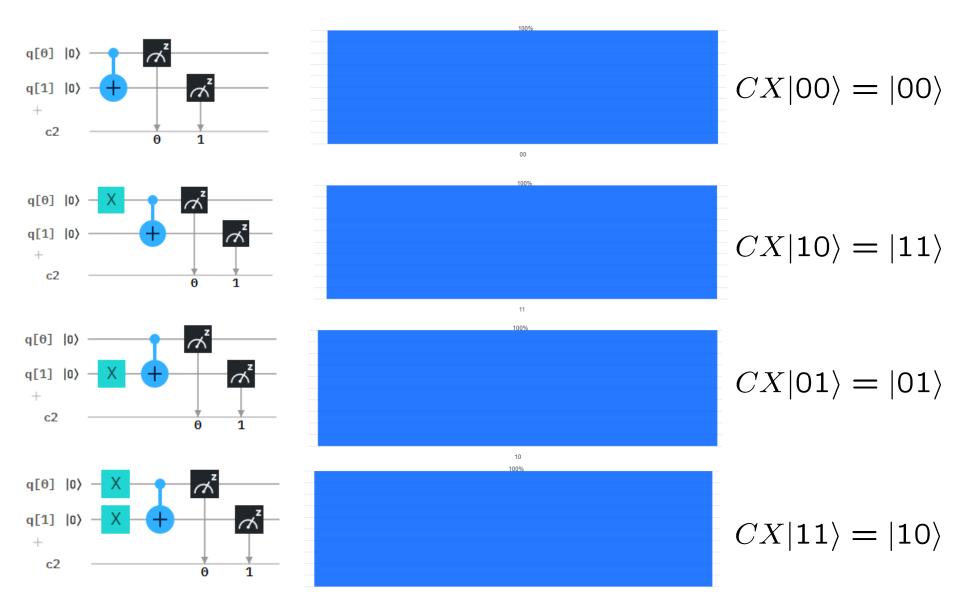
$X_1|00\rangle = |10\rangle$

Result of simulator (1024 shots)

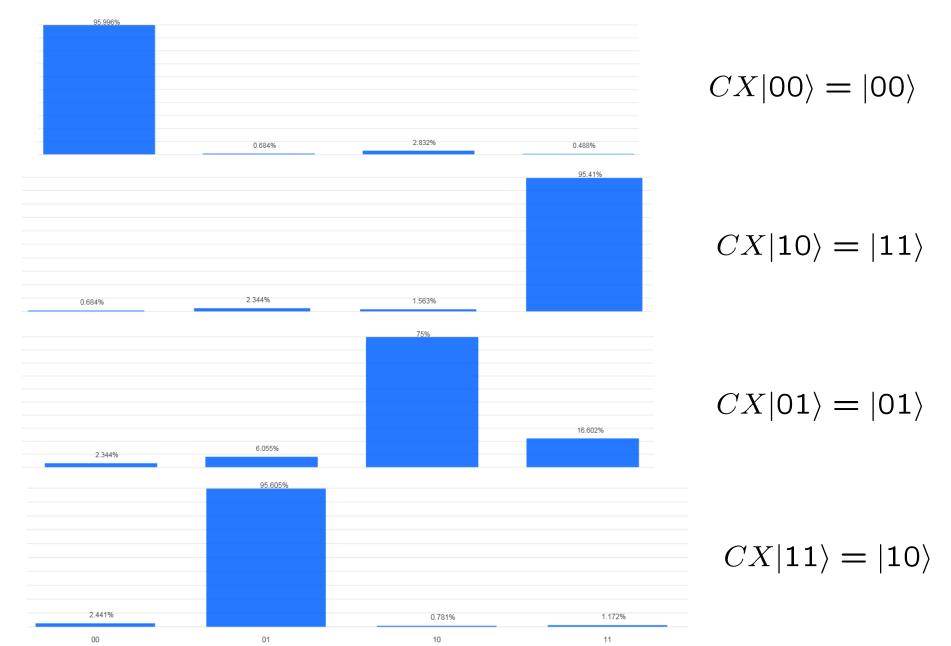


Note that notation is different from the ket notation

2 qubit operation by simulator

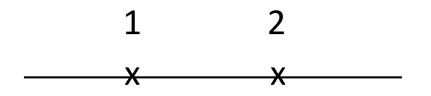


2 qubit operation by quantum computer (1024 shots)



Quantum simulation of Spin system

Warm up: 2-site transverse Ising model



 $\hat{H} = -JZ_1Z_2 - h(X_1 + X_2)$

We are going to

construct time evolution operator

obtain vacuum state

compute vacuum expectation values

compute Renyi entropy

Time evolution operator

Time evolution of any state is studied by acting the operator

$$e^{-i\hat{H}t} = e^{-i(H_X + H_{ZZ})t}$$

where

$$H_X = -h(X_1 + X_2), \quad H_{ZZ} = -JZ_1Z_2$$

How do we express this in terms of elementary gates? (such as X, Y, Z, R_{X,Y,Z}, CX etc...)

Time evolution operator

Time evolution of any state is studied by acting the operator

$$e^{-i\hat{H}t} = e^{-i(H_X + H_{ZZ})t}$$

where

$$H_X = -h(X_1 + X_2), \quad H_{ZZ} = -JZ_1Z_2$$

How do we express this in terms of elementary gates? (such as X, Y, Z, R_{X,Y,Z}, CX etc...)

<u>Step 1: Suzuki-Trotter decomposition:</u>

 $e^{-i\hat{H}t} = \left(e^{-i\hat{H}\frac{t}{M}}\right)^{M}$

([∃]higher order improvements)

(M: large positive integer)

$$\simeq \left(e^{-iH_X \frac{t}{M}} e^{-iH_{ZZ} \frac{t}{M}} \right)^M + \mathcal{O}(1/M)$$

Time evolution operator (Cont'd)

 $e^{-i\hat{H}t} \simeq \left(e^{-iH_X\frac{t}{M}}e^{-iH_{ZZ}\frac{t}{M}}\right)^M$

<u>Time evolution operator (Cont'd)</u> $e^{-i\hat{H}t} \simeq \left(e^{-iH_X\frac{t}{M}}e^{-iH_{ZZ}\frac{t}{M}}\right)^M$

The 1st one is trivial:

$$e^{-iH_X\frac{t}{M}} = e^{-i\frac{ht}{M}X_2}e^{-i\frac{ht}{M}X_1} = R_X^{(2)}\left(\frac{2ht}{M}\right)R_X^{(1)}\left(\frac{2ht}{M}\right)$$

 $\frac{\text{Time evolution operator (Cont'd)}}{e^{-i\hat{H}t} \simeq \left(e^{-iH_X\frac{t}{M}}e^{-iH_{ZZ}\frac{t}{M}}\right)^M}$

The 1st one is trivial:

$$e^{-iH_X\frac{t}{M}} = e^{-i\frac{ht}{M}X_2}e^{-i\frac{ht}{M}X_1} = R_X^{(2)}\left(\frac{2ht}{M}\right)R_X^{(1)}\left(\frac{2ht}{M}\right)$$

The 2nd one is nontrivial:

$$e^{-iH_{ZZ}\frac{t}{M}} = e^{-i\frac{Jt}{M}Z_1Z_2} = \cos\frac{Jt}{M} - iZ_1Z_2\sin\frac{Jt}{M}$$

 $\frac{\text{Time evolution operator (Cont'd)}}{e^{-i\hat{H}t} \simeq \left(e^{-iH_X\frac{t}{M}}e^{-iH_{ZZ}\frac{t}{M}}\right)^M}$

The 1st one is trivial:

$$e^{-iH_X\frac{t}{M}} = e^{-i\frac{ht}{M}X_2}e^{-i\frac{ht}{M}X_1} = R_X^{(2)}\left(\frac{2ht}{M}\right)R_X^{(1)}\left(\frac{2ht}{M}\right)$$

The 2nd one is nontrivial:

$$e^{-iH_{ZZ}\frac{t}{M}} = e^{-i\frac{Jt}{M}Z_1Z_2} = \cos\frac{Jt}{M} - iZ_1Z_2\sin\frac{Jt}{M}$$

One can show (see next slide)

$$e^{-i\frac{Jt}{M}Z_1Z_2} = CXR_Z^{(2)}\left(\frac{2Jt}{M}\right)CX$$

Time evolution operator (Cont'd)

$$e^{-icZ_1Z_2} = CXR_Z^{(2)}(2c)CX$$

Proof:

$$CXR_Z^{(2)}(2c)CX|0\rangle \otimes |\psi\rangle$$

= $CXR_Z^{(2)}(2c)|0\rangle \otimes |\psi\rangle = CX|0\rangle \otimes R_Z(2c)|\psi\rangle$
= $|0\rangle \otimes R_Z(2c)|\psi\rangle = \cos c|0\rangle \otimes |\psi\rangle - i\sin c \ Z|0\rangle \otimes Z|\psi\rangle$
$$CXR_Z^{(2)}(2c)CX|1\rangle \otimes |\psi\rangle$$

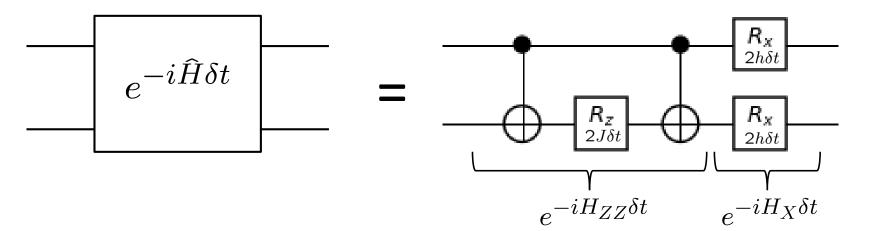
= $CXR_Z^{(2)}(2c)|1\rangle \otimes X|\psi\rangle = CX|1\rangle \otimes R_Z(2c)X|\psi\rangle = |1\rangle \otimes XR_Z(2c)X|\psi\rangle$
= $\cos c|1\rangle \otimes XX|\psi\rangle - i\sin c \ |1\rangle \otimes XZX|\psi\rangle$
= $\cos c|1\rangle \otimes |\psi\rangle - i\sin c \ Z|1\rangle \otimes Z|\psi\rangle$

Thus,

$$CXR_Z^{(2)}(2c)CX|\varphi\rangle \otimes |\psi\rangle = \cos c|\varphi\rangle \otimes |\psi\rangle - i\sin c \ Z|\varphi\rangle \otimes Z|\psi\rangle$$
$$= e^{-icZ_1Z_2}|\varphi\rangle \otimes |\psi\rangle$$

Quantum circuit for time evolution op.

 $H_X = -h(X_1 + X_2), \quad H_{ZZ} = -JZ_1Z_2$ $\delta t = \frac{t}{M} \ll 1$



 $+\mathcal{O}(\delta t)$

Survival probability of free vacuum

For J=0, ground state is

 $\hat{H}|_{J=0} = -h(X_1 + X_2)$

$$|++\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}} \otimes \frac{|0\rangle + |1\rangle}{\sqrt{2}} = H^{(2)}H^{(1)}|00\rangle$$

We can compute survival probability of the free vacuum:

$$P(t) = \left| \langle + + | e^{-i\hat{H}t} | + + \rangle \right|^2$$

$$= \left| \langle 00 | H^{(2)} H^{(1)} e^{-i\hat{H}t} H^{(2)} H^{(1)} | 00 \rangle \right|^2$$

$$Toy \text{ version of Schwinger effect}$$

Survival probability of free vacuum

For J=0, ground state is

$$\hat{H}|_{J=0} = -h(X_1 + X_2)$$

$$|++\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}} \otimes \frac{|0\rangle + |1\rangle}{\sqrt{2}} = H^{(2)}H^{(1)}|00\rangle$$

We can compute survival probability of the free vacuum:

$$P(t) = \left| \langle + + | e^{-i\hat{H}t} | + + \rangle \right|^2$$

$$= \left| \langle 00 | H^{(2)} H^{(1)} e^{-i\hat{H}t} H^{(2)} H^{(1)} | 00 \rangle \right|^2$$

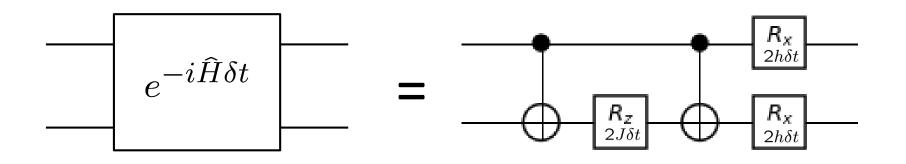
$$Toy version of Schwinger effect$$

Measure the probability having $|00\rangle$ inside the state

$$H^{(2)}H^{(1)}e^{-i\hat{H}t}H^{(2)}H^{(1)}|00\rangle$$

Demonstration for the survival probability

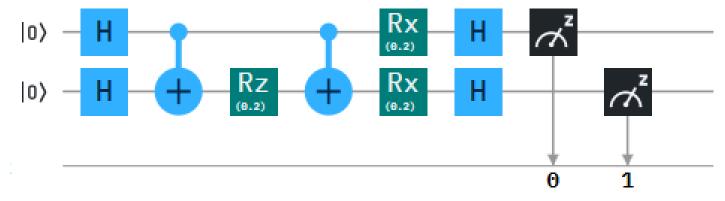
$$P(t) = \left| \langle + + |e^{-i\hat{H}t}| + + \rangle \right|^2 = \left| \langle 00|H^{(2)}H^{(1)}e^{-i\hat{H}t}H^{(2)}H^{(1)}|00\rangle \right|^2$$



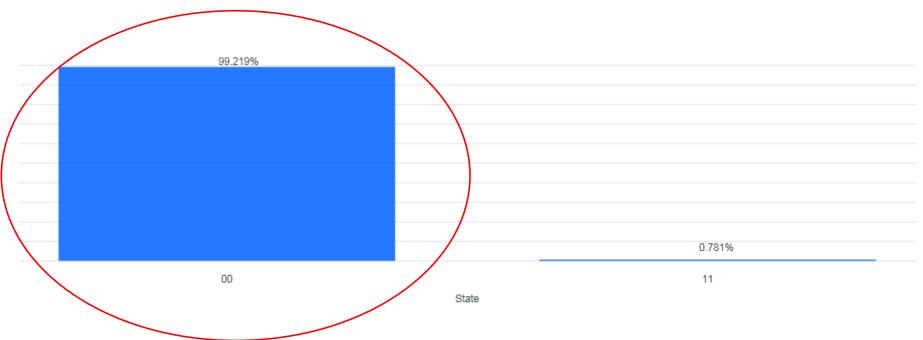
Let's compute it for J = 1, h = 1, t = 0.1, M = 1

 $\delta t = \frac{t}{M}$

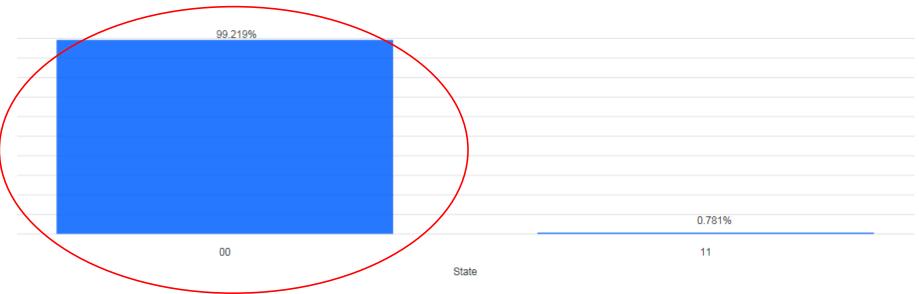
Demonstration for the survival probability (Cont'd)



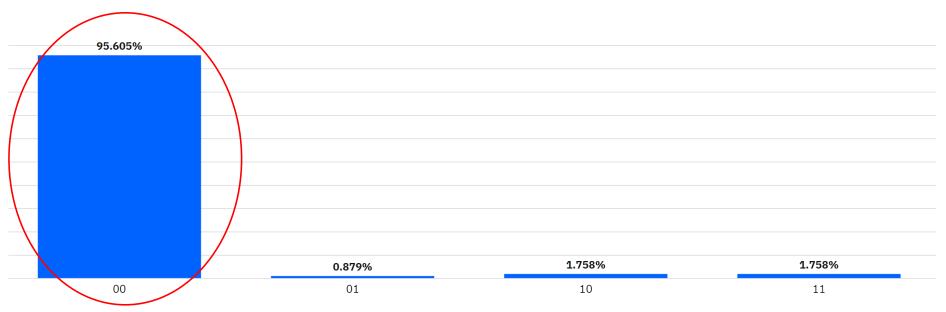
Result by simulator w/ 1024 shots:



Result of simulator (1024 shots):

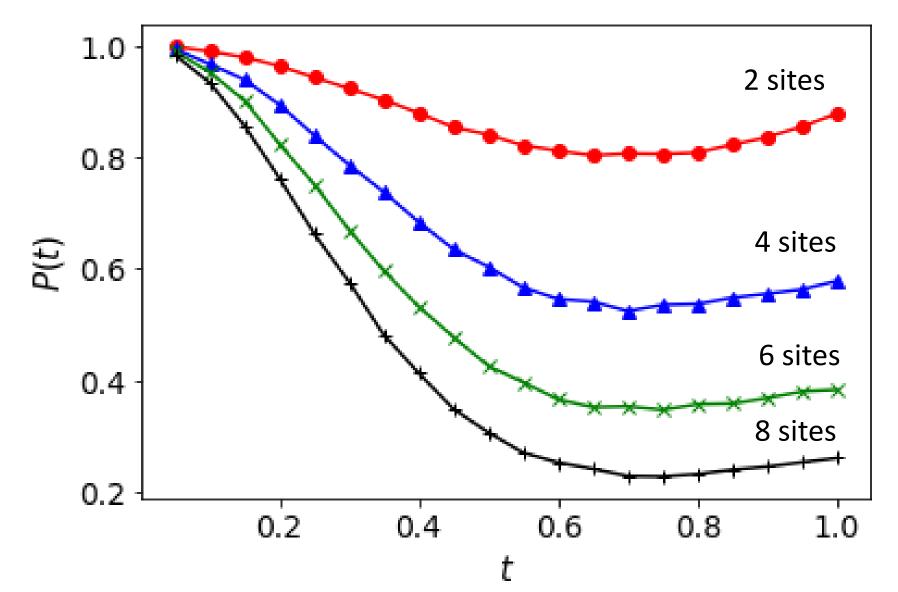


Result of quantum computer (1024 shots):



More serious computation

J = 1, h = 1, t = 1, M = 100, 10000 shots



Adiabatic state preparation of vacuum

<u>Step 1</u>: Choose an initial Hamiltonian H_0 of a simple system whose ground state $|vac_0\rangle$ is known and unique

<u>Step 2</u>: Consider the time evolution

$$\mathcal{T}\exp\left(-i\int_0^T dt \ H_A(t)\right)|\mathsf{vac}_0 > \mathbf{w}/ \quad H_A(0) = H_0, \ H_A(T) = \hat{H}$$

<u>Step 3</u>: Use the adiabatic theorem

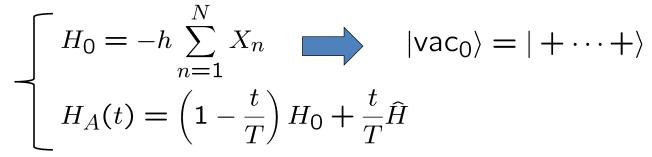
If the system w/ the Hamiltonian $H_A(t)$ has a unique gapped vacuum, then the desired ground state is obtained by

$$|\operatorname{vac} \rangle = \lim_{T \to \infty} \mathcal{T} \exp\left(-i \int_0^T dt \ H_A(t)\right) |\operatorname{vac}_0 \rangle$$

For transverse Ising model

$$\hat{H} = -J \sum_{n=1}^{N-1} Z_n Z_{n+1} - h \sum_{n=1}^{N} X_n - m \sum_{n=1}^{N} Z_n$$

Choose



For transverse Ising model

$$\hat{H} = -J \sum_{n=1}^{N-1} Z_n Z_{n+1} - h \sum_{n=1}^{N} X_n - m \sum_{n=1}^{N} Z_n$$

Choose

$$\int H_0 = -h \sum_{n=1}^N X_n \quad |\mathsf{vac}_0\rangle = |+\dots+\rangle$$
$$H_A(t) = \left(1 - \frac{t}{T}\right) H_0 + \frac{t}{T} \widehat{H}$$

Discretize the integral:

$$\mathcal{T} \exp\left(-i \int_0^T dt \ H_A(t)\right) | \mathsf{vac}_0 > \simeq U(T)U(T-\delta t) \cdots U(2\delta t)U(\delta t) | \mathsf{vac}_0 >$$

where

$$U(t) = e^{-iH_A(t)\delta t}, \ \delta t = \frac{T}{M} \ll 1$$

Magnetization

Once we get the vacuum, we can compute VEV of operators: $\langle vac | \mathcal{O} | vac \rangle$

It is easiest to compute magnetization:

$$\frac{1}{N} \langle \operatorname{vac} | \sum_{n=1}^{N} Z_{n} | \operatorname{vac} \rangle = \frac{1}{N} \sum_{n=1}^{N} \sum_{i_{1} \cdots i_{N} = 0, 1}^{N} \langle \operatorname{vac} | Z_{n} | i_{1} \cdots i_{N} \rangle \langle i_{1} \cdots i_{N} | \operatorname{vac} \rangle$$
$$= \frac{1}{N} \sum_{n=1}^{N} \sum_{i_{1} \cdots i_{N} = 0, 1}^{N} (-1)^{i_{n}} | \langle i_{1} \cdots i_{N} | \operatorname{vac} \rangle |^{2}$$

Magnetization

Once we get the vacuum, we can compute VEV of operators: $\langle vac | \mathcal{O} | vac \rangle$

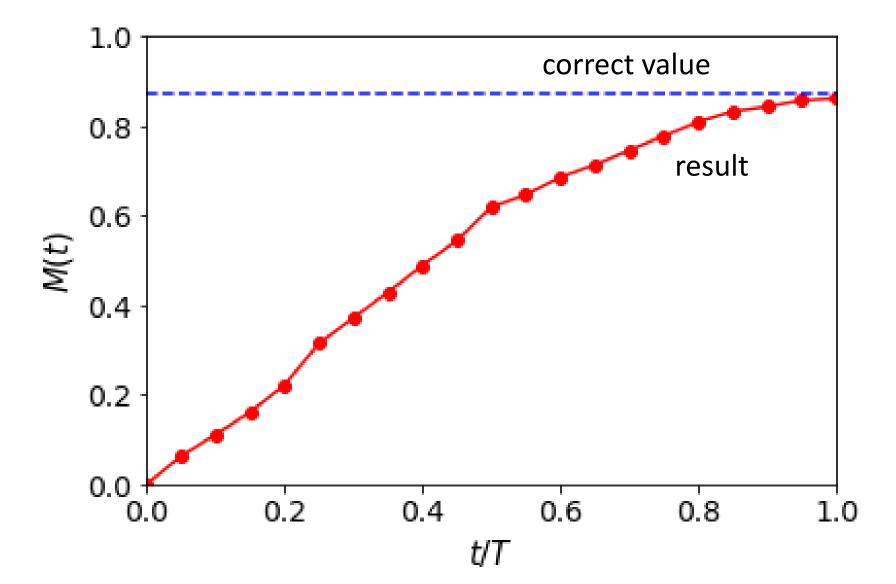
It is easiest to compute magnetization:

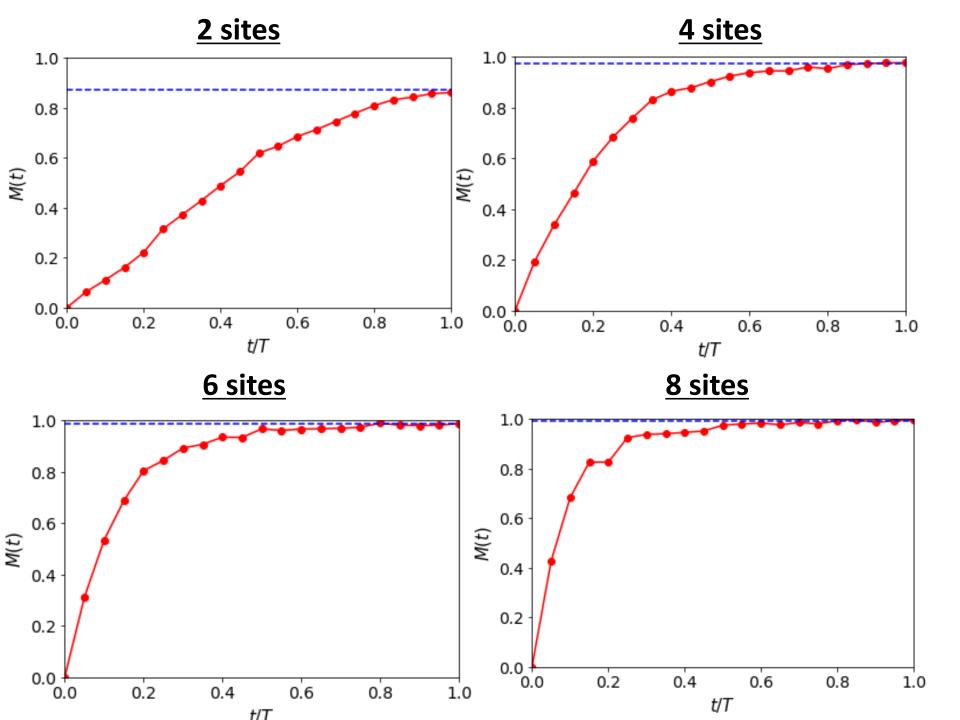
$$\frac{1}{N} \langle \operatorname{vac} | \sum_{n=1}^{N} Z_{n} | \operatorname{vac} \rangle = \frac{1}{N} \sum_{n=1}^{N} \sum_{i_{1} \cdots i_{N} = 0, 1}^{N} \langle \operatorname{vac} | Z_{n} | i_{1} \cdots i_{N} \rangle \langle i_{1} \cdots i_{N} | \operatorname{vac} \rangle$$
$$= \frac{1}{N} \sum_{n=1}^{N} \sum_{i_{1} \cdots i_{N} = 0, 1}^{N} (-1)^{i_{n}} | \langle i_{1} \cdots i_{N} | \operatorname{vac} \rangle |^{2}$$

Transverse one is a bit more tricky: $\frac{1}{N} \langle \text{vac} | \sum_{n=1}^{N} X_n | \text{vac} \rangle = \frac{1}{N} \langle \text{vac} | \sum_{n=1}^{N} H^{(n)} Z_n H^{(n)} | \text{vac} \rangle$ $= \frac{1}{N} \sum_{n=1}^{N} \sum_{i_1 \cdots i_N = 0,1}^{N} (-1)^{i_n} \left| \langle i_1 \cdots i_N | H^{(n)} | \text{vac} \rangle \right|^2$

Result by simulator (10000 shots)

2 sites, $J = 1, h = 1, m = 1, T = 100, \delta t = 0.05, 2000$ time steps





Dividing total Hilbert space as

 $\mathcal{H}_{tot} = \mathcal{H}_A \otimes \mathcal{H}_B,$

reduced density matrix is defined as

$$\rho_A = \operatorname{tr}_{\mathcal{H}_B}\left(\rho_{\operatorname{tot}}\right)$$

Entanglement entropy:

$$S_A = -\operatorname{tr}_{\mathcal{H}_A}\left(\rho_A \log \rho_A\right)$$

n-th Renyi entropy:

$$S_n = \frac{1}{1-n} \log \operatorname{tr}_{\mathcal{H}_A} \left(\rho_A^n \right)$$

Quantum algorithm for 2nd Renyi entropy

Consider ($N_A + N_B$)-qubit system and the density matrix $ho_{N_A + N_B} = |\Psi\rangle\langle\Psi|$

Let's divide the system into two systems: $\mathcal{H}_{N_A+N_B} = \mathcal{H}_{N_A} \otimes \mathcal{H}_{N_B}$ & consider the 2nd Renyi entropy

$$S_{2} = -\log \operatorname{tr}_{\mathcal{H}_{N_{A}}}\left(\rho_{A}^{2}\right), \quad \rho_{A} = \operatorname{tr}_{\mathcal{H}_{N_{B}}}\left(\rho_{N_{A}} + N_{B}\right)$$

Quantum algorithm for 2nd Renyi entropy

Consider ($N_A + N_B$)-qubit system and the density matrix $\rho_{N_A+N_B} = |\Psi\rangle\langle\Psi|$

Let's divide the system into two systems: $\mathcal{H}_{N_A+N_B} = \mathcal{H}_{N_A} \otimes \mathcal{H}_{N_B}$ & consider the 2nd Renyi entropy

$$S_{2} = -\log \operatorname{tr}_{\mathcal{H}_{N_{A}}}\left(\rho_{A}^{2}\right), \quad \rho_{A} = \operatorname{tr}_{\mathcal{H}_{N_{B}}}\left(\rho_{N_{A}+N_{B}}\right)$$

One can show (next slide)

[Hastings-Gonzalez-Kallin-Melko'10]

$$\operatorname{tr}_{\mathcal{H}_{N_{A}}}\left(\rho_{A}^{2}\right) = \langle \Psi | \otimes \langle \Psi | \operatorname{SWAP}_{A} | \Psi \rangle \otimes | \Psi \rangle$$

 SWAP_A : Exchange of $A - \mathsf{part}$ in $|\Psi\rangle \otimes |\Psi\rangle$

$$\begin{cases} \mathsf{For} \ |\Psi\rangle = \sum_{i,j} c_{ij} |i_1 \cdots i_{N_A} j_1 \cdots j_{N_B}\rangle, \\ \mathsf{SWAP}_A |\Psi\rangle \otimes |\Psi\rangle \equiv \sum_{i,j,i',j'} c_{ij} c_{i'j'} |i_1' \cdots i_{N_A}' j_1 \cdots j_{N_B}\rangle \otimes |i_1 \cdots i_{N_A} j_1' \cdots j_{N_B}'\rangle \end{cases}$$

Quantum algorithm for 2nd Renyi entropy (Cont'd)

$$\operatorname{tr}_{\mathcal{H}_{N_{A}}}\left(\rho_{A}^{2}\right) = \langle \Psi | \otimes \langle \Psi | \operatorname{SWAP}_{A} | \Psi \rangle \otimes | \Psi \rangle$$

Proof:

 $\langle \Psi | \otimes \langle \Psi |$ SWAP $_A | \Psi
angle \otimes | \Psi
angle$

 $= \sum_{k,\ell,k',\ell'} \bar{c}_{k\ell} \bar{c}_{k'\ell'} \langle \{k'\}\{\ell'\} | \otimes \langle \{k\}\{\ell\} | \sum_{i,j,i',j'} c_{ij} c_{i'j'} | \{i'\}\{j\} \rangle \otimes | \{i\}\{j'\} \rangle$

$$= \sum_{i,j,i',j'} c_{ij} \bar{c}_{i'j} c_{i'j'} \bar{c}_{ij'}$$

$$(\rho_A)_{ii'} = \sum_j \langle \{i\} \{j\} | \rho_{N_A + N_B} | \{i'\} \{j\} \rangle = \sum_j c_{ij} \bar{c}_{i'j}$$
$$\sum_{i,i'} (\rho_A)_{ii'} (\rho_A)_{i'i} = \operatorname{tr}_{\mathcal{H}_{N_A}} \left(\rho_A^2\right)$$

Demonstration: 2nd Renyi entropy of Bell state

Bell state:

$$|B\rangle = \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle\right)$$

Reduced density matrix:

$$\rho_{\text{red}} = \text{tr}_2 |B\rangle \langle B| = \frac{1}{2} (|0\rangle \langle 0| + |1\rangle \langle 1|)$$

2nd Renyi entropy:

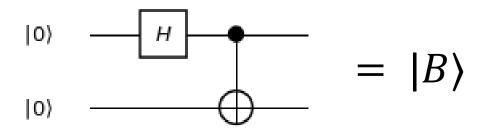
$$tr\rho_{red}^2 = tr\begin{pmatrix} 1/4 & 0\\ 0 & 1/4 \end{pmatrix} = \frac{1}{2}$$
$$S_2 = -\log tr\rho_{red}^2 = \log 2$$

Let's reproduce it in IBM Q Experience

Demonstration: 2nd Renyi entropy of Bell state (Cont'd)

We know $\begin{aligned} &|B\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \\ &\text{tr}\rho_{\text{red}}^2 = \langle B| \otimes \langle B| \text{ SWAP}^{(1,3)} |B\rangle \otimes |B\rangle \end{aligned}$

The Bell state is written as

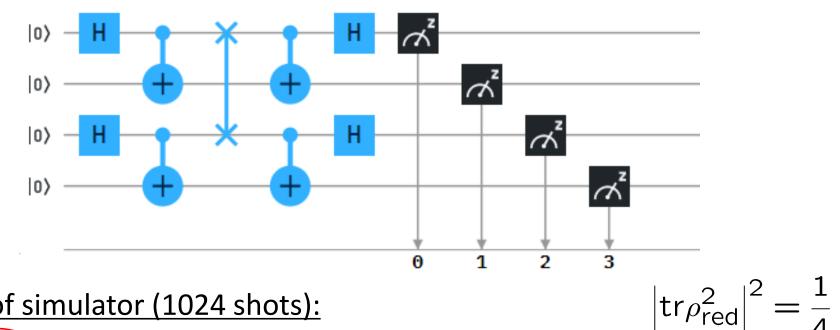


Therefore,

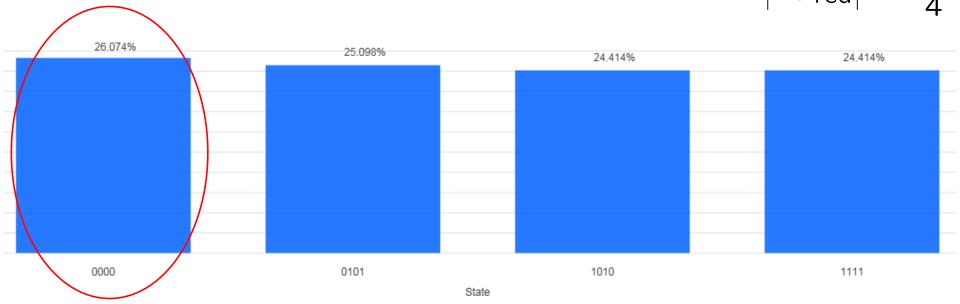
 $\mathrm{tr}\rho_{\mathrm{red}}^2 = \langle 0000 | U^{\dagger} \mathrm{SWAP}^{(1,3)} U | 0000 \rangle \quad (|B\rangle \otimes |B\rangle \equiv U | 0000 \rangle)$

$$\left|\operatorname{tr}\rho_{\mathrm{red}}^{2}\right|^{2} = \left|\langle 0000 | U^{\dagger} \mathrm{SWAP}^{(1,3)} U | 0000 \rangle\right|^{2}$$

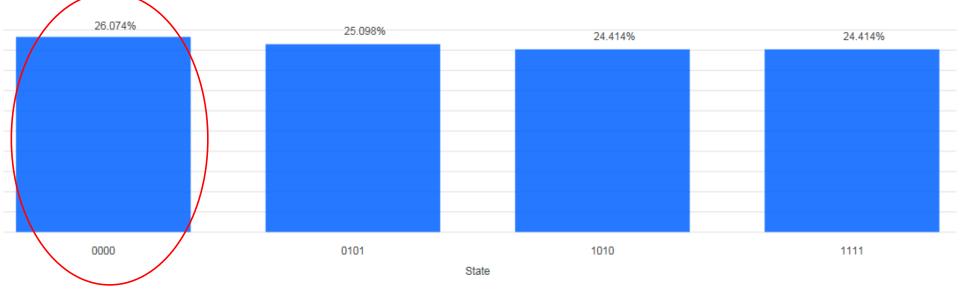
Demonstration: 2nd Renyi entropy of Bell state (Cont'd)



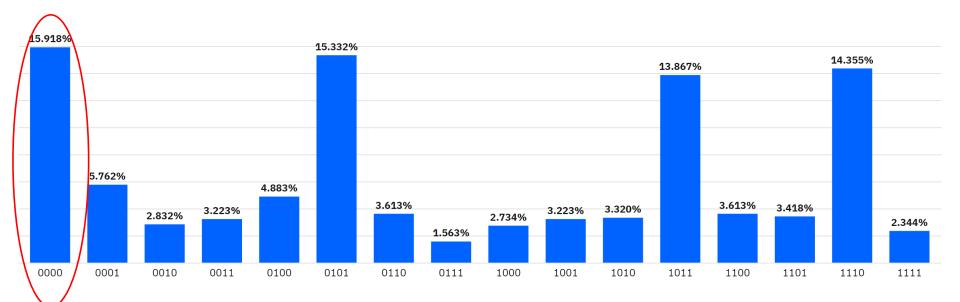
Result of simulator (1024 shots):



Result of simulator (1024 shots):



Result of quantum computer (1024 shots):



We've directly computed

$$\left| \mathrm{tr} \rho_{\mathrm{red}}^2 \right|^2 = \left| \langle 0000 | U^{\dagger} \mathrm{SWAP}^{(1,3)} U | 0000 \rangle \right|^2$$

rather than itself:

$$\mathrm{tr}\rho_{\mathrm{red}}^2 = \langle 0000 | U^{\dagger} \mathrm{SWAP}^{(1,3)} U | 0000 \rangle$$

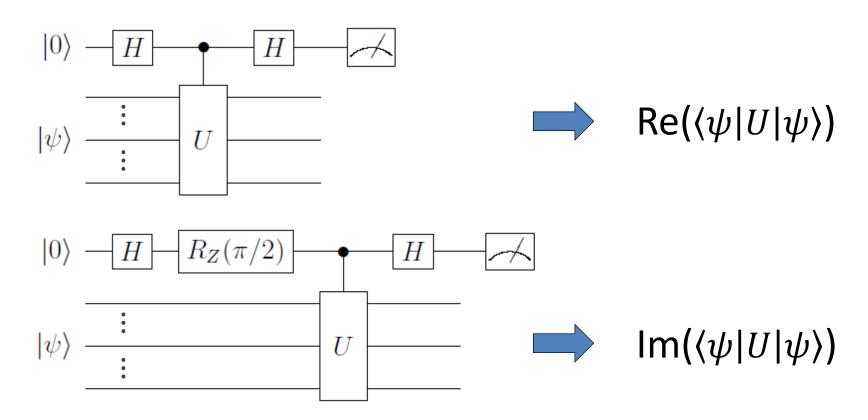
Can we directly compute it?

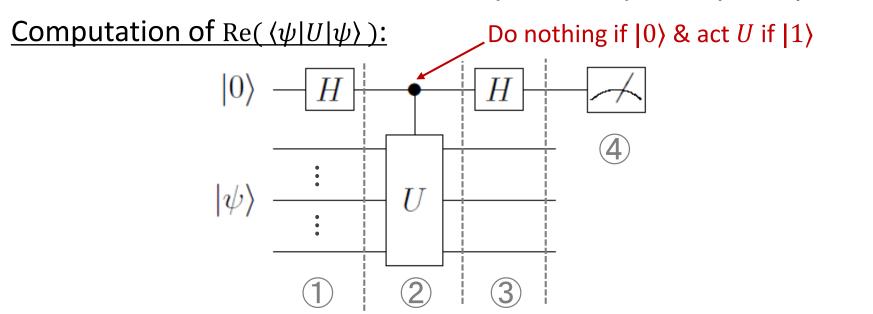
— Yes, there is a way to compute expectation value of unitary op. under any state: (next slide) $\langle \psi | U | \psi \rangle$

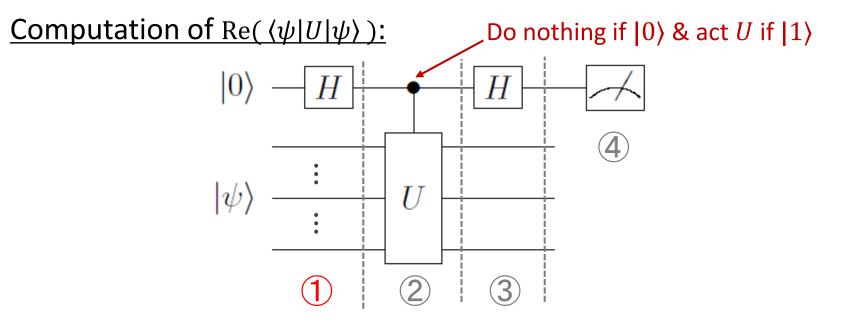
① Extend Hilbert space & consider the state

 $|0\rangle \otimes |\psi\rangle$ "ancillary qubit"

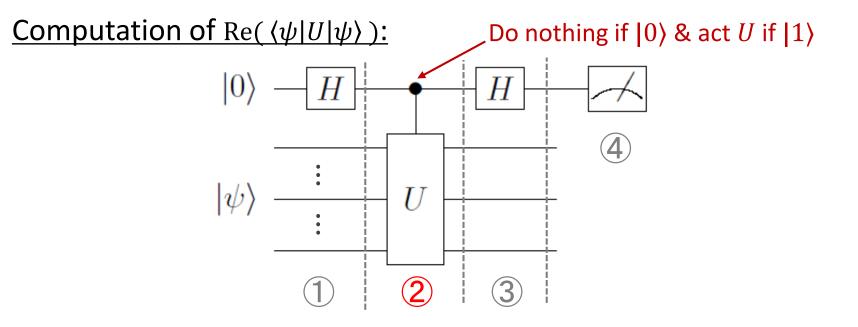
(2) We can compute $\langle \psi | \ U | \psi \rangle$ by using the 2 circuits: (next slide)



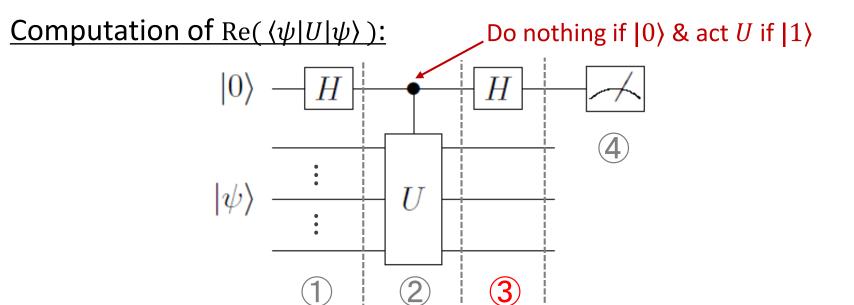




(1) $H|0\rangle \otimes |\psi\rangle = \frac{1}{\sqrt{2}}|0\rangle \otimes |\psi\rangle + \frac{1}{\sqrt{2}}|1\rangle \otimes |\psi\rangle$

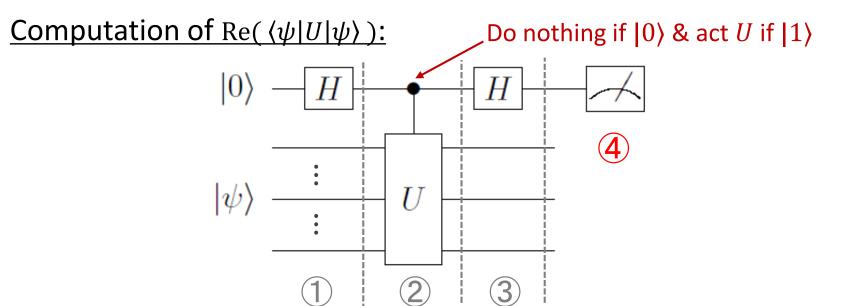


(1) $H|0\rangle \otimes |\psi\rangle = \frac{1}{\sqrt{2}}|0\rangle \otimes |\psi\rangle + \frac{1}{\sqrt{2}}|1\rangle \otimes |\psi\rangle$ (2) $\frac{1}{\sqrt{2}}|0\rangle \otimes |\psi\rangle + \frac{1}{\sqrt{2}}|1\rangle \otimes U|\psi\rangle$

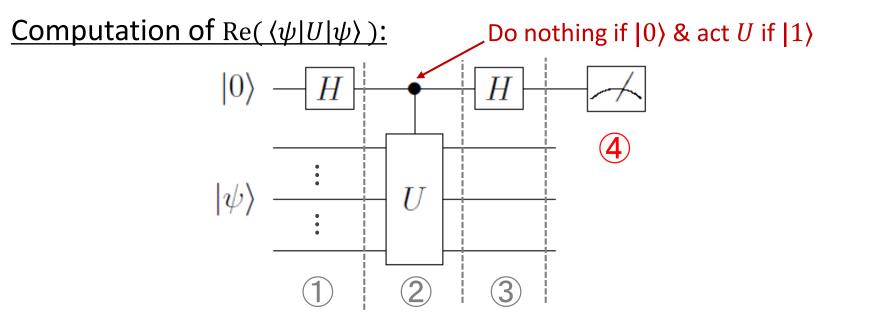


(1)
$$H|0\rangle \otimes |\psi\rangle = \frac{1}{\sqrt{2}}|0\rangle \otimes |\psi\rangle + \frac{1}{\sqrt{2}}|1\rangle \otimes |\psi\rangle$$

(2) $\frac{1}{\sqrt{2}}|0\rangle \otimes |\psi\rangle + \frac{1}{\sqrt{2}}|1\rangle \otimes U|\psi\rangle$
(3) $\frac{1}{2}(|0\rangle + |1\rangle) \otimes |\psi\rangle + \frac{1}{2}(|0\rangle - |1\rangle) \otimes U|\psi\rangle$
 $= \frac{1}{2}|0\rangle \otimes (1+U)|\psi\rangle + \frac{1}{2}|1\rangle \otimes (1-U)|\psi\rangle$



$$\begin{array}{cccc} \textcircled{1} & H|0\rangle \otimes |\psi\rangle = \frac{1}{\sqrt{2}}|0\rangle \otimes |\psi\rangle + \frac{1}{\sqrt{2}}|1\rangle \otimes |\psi\rangle \\ \textcircled{2} & \frac{1}{\sqrt{2}}|0\rangle \otimes |\psi\rangle + \frac{1}{\sqrt{2}}|1\rangle \otimes U|\psi\rangle \\ \textcircled{3} & \frac{1}{2}(|0\rangle + |1\rangle) \otimes |\psi\rangle + \frac{1}{2}(|0\rangle - |1\rangle) \otimes U|\psi\rangle \\ &= \frac{1}{2}|0\rangle \otimes (1+U)|\psi\rangle + \frac{1}{2}|1\rangle \otimes (1-U)|\psi\rangle \\ \textcircled{4} & P_0 = \frac{1}{4}|(1+U)|\psi\rangle|^2 = \frac{1}{2}(1+\operatorname{Re}\langle\psi|U|\psi\rangle) \\ & P_1 = \frac{1}{4}|(1-U)|\psi\rangle|^2 = \frac{1}{2}(1-\operatorname{Re}\langle\psi|U|\psi\rangle) \end{aligned}$$

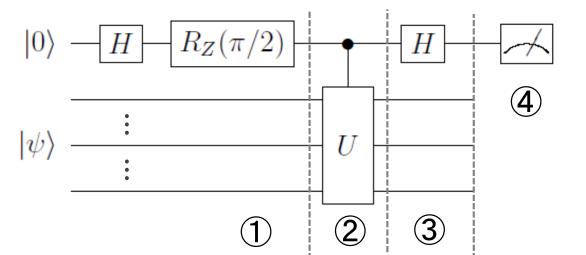


(1)
$$H|0\rangle \otimes |\psi\rangle = \frac{1}{\sqrt{2}}|0\rangle \otimes |\psi\rangle + \frac{1}{\sqrt{2}}|1\rangle \otimes |\psi\rangle$$

(2) $\frac{1}{\sqrt{2}}|0\rangle \otimes |\psi\rangle + \frac{1}{\sqrt{2}}|1\rangle \otimes U|\psi\rangle$
(3) $\frac{1}{2}(|0\rangle + |1\rangle) \otimes |\psi\rangle + \frac{1}{2}(|0\rangle - |1\rangle) \otimes U|\psi\rangle$
 $= \frac{1}{2}|0\rangle \otimes (1+U)|\psi\rangle + \frac{1}{2}|1\rangle \otimes (1-U)|\psi\rangle$
(4) $P_0 = \frac{1}{4}|(1+U)|\psi\rangle|^2 = \frac{1}{2}(1 + \operatorname{Re}\langle\psi|U|\psi\rangle)$
 $P_1 = \frac{1}{4}|(1-U)|\psi\rangle|^2 = \frac{1}{2}(1 - \operatorname{Re}\langle\psi|U|\psi\rangle)$

$$\mathsf{Re}\langle\psi|U|\psi\rangle = P_0 - P_1$$

Computation of $Im(\langle \psi | U | \psi \rangle)$:



$$(1) \operatorname{R}_{Z}(\pi/2)H|0\rangle \otimes |\psi\rangle = \frac{e^{-\frac{\pi i}{4}}}{\sqrt{2}}|0\rangle \otimes |\psi\rangle + \frac{e^{+\frac{\pi i}{4}}}{\sqrt{2}}|1\rangle \otimes |\psi\rangle$$
$$(2) \frac{e^{-\frac{\pi i}{4}}}{\sqrt{2}}|0\rangle \otimes |\psi\rangle + \frac{e^{+\frac{\pi i}{4}}}{\sqrt{2}}|1\rangle \otimes U|\psi\rangle$$

$$(3) \frac{e^{-\frac{\pi i}{4}}}{2} |0\rangle \otimes (1+iU) |\psi\rangle + \frac{e^{-\frac{\pi i}{4}}}{2} |1\rangle \otimes (1-iU) |\psi\rangle$$

$$\widehat{4} P_0 = \frac{1}{4} |(1 + iU)|\psi\rangle|^2 = \frac{1}{2} (1 - \text{Im}\langle\psi|U|\psi\rangle)$$

$$P_1 = \frac{1}{4} |(1 - iU)|\psi\rangle|^2 = \frac{1}{2} (1 + \text{Im}\langle\psi|U|\psi\rangle)$$

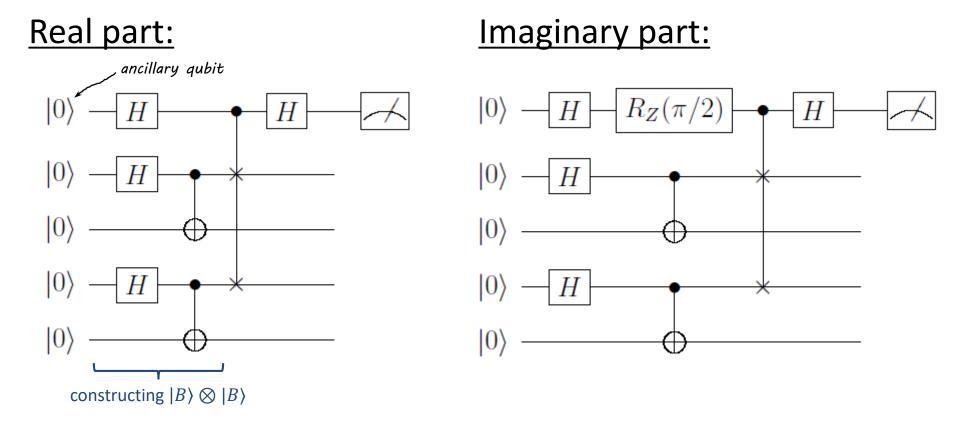
$$\operatorname{Im}\langle\psi|U|\psi\rangle = P_1 - P_0$$

 $\left(R_Z(\theta) = e^{-\frac{i\theta}{2}Z}\right)$

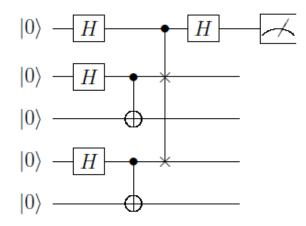
Coming back to the Renyi entropy of Bell state

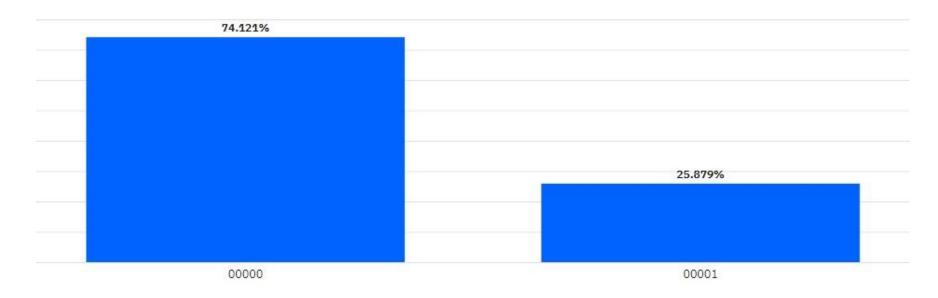
Taking $|\psi\rangle = |B\rangle \otimes |B\rangle \otimes U = \text{SWAP}^{(1,3)}$, we can directly compute

 $\mathrm{tr}\rho_{\mathrm{red}}^2 = \langle B | \otimes \langle B | \mathrm{SWAP}^{(1,3)} | B \rangle \otimes | B \rangle$



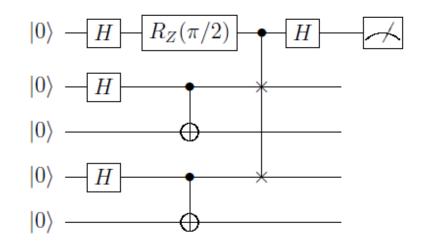
Result of simulator (real part, 1024 shots)

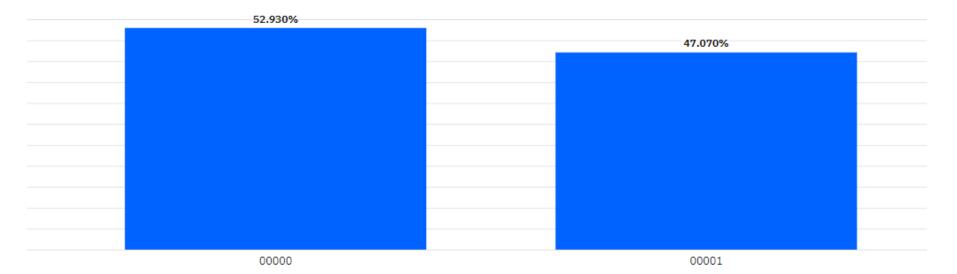




Expectation: $P_0 - P_1 = \operatorname{Re} \operatorname{tr} \rho_{\text{red}}^2 = \frac{1}{2}$

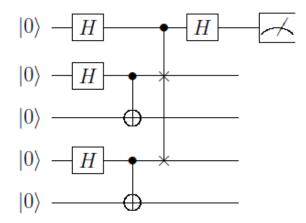
Result of simulator (imaginary part, 1024 shots)

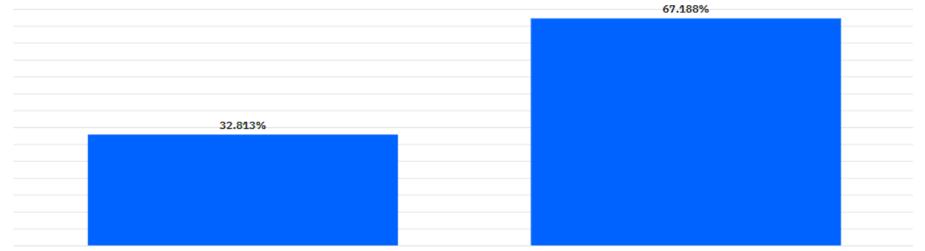




Expectation: $P_1 - P_0 = \text{Im tr}\rho_{\text{red}}^2 = 0$

Result of quantum computer (real part, 1024 shots)



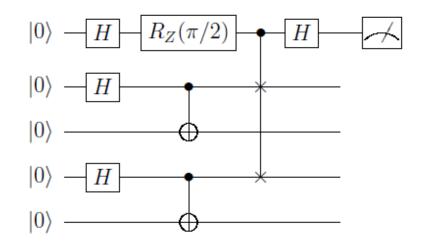


00000

00001

Expectation: $P_0 - P_1 = \text{Re tr}\rho_{\text{red}}^2 = \frac{1}{2}$

Result of quantum computer (imaginary part, 1024 shots)





Expectation: $P_1 - P_0 = \operatorname{Im} \operatorname{tr} \rho_{\text{red}}^2 = 0$

QFT as qubits

(mapping to spin system)

"Regularization" of Hilbert space

Hilbert space of QFT is typically ∞ dimensional

→ Make it finite dimensional!

• Fermion is easiest (up to doubling problem)

—— Putting on spatial lattice, Hilbert sp. is finite dimensional

• scalar

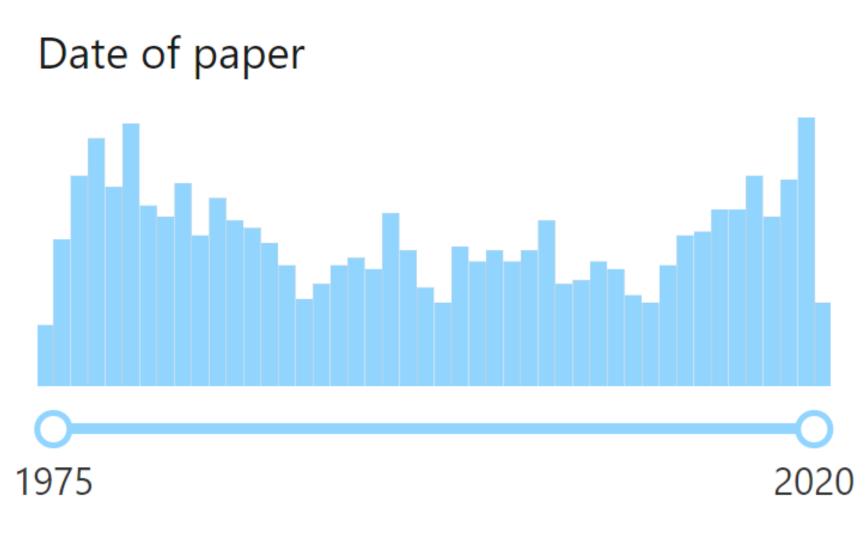
—— Hilbert sp. at each site is ∞ dimensional (need truncation or additional regularization)

•gauge field (w/ kinetic term)

no physical d.o.f. in 0+1D/1+1D (w/ open bdy. condition)
 ∞ dimensional Hilbert sp. in higher dimensions

<u>Citation history of "Hamiltonian Formulation of</u> <u>Wilson's Lattice Gauge Theories" by Kogut-Susskind</u>

(totally 1832 at this moment)



Free Dirac fermion in 1+1D

Continuum:

$$\stackrel{\stackrel{...}{=}}{\to} \mathcal{L} = i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi - m\bar{\psi}\psi$$
$$\rightarrow \hat{H} = \int dx \Big[-i\bar{\psi}\gamma^{1}\partial_{1}\psi + m\bar{\psi}\psi\Big]$$

Lattice (w/ N sites and spacing a):

For staggered fermion:
$$\frac{\chi_n}{\sqrt{a}} \leftrightarrow \begin{cases} \psi_u(x) & n : \text{even} \\ \psi_d(x) & n : \text{odd} \end{cases}$$
 $\psi(x) = \begin{pmatrix} \psi_u(x) \\ \psi_d(x) \end{pmatrix}$

$$\hat{H} = -\frac{i}{2a} \sum_{n=1}^{N-1} \left(\chi_n^{\dagger} \chi_{n+1} - \text{h.c.} \right) + m \sum_{n=1}^{N} (-1)^n \chi_n^{\dagger} \chi_n$$

(anti-)commutation relation:

$$\{\chi_n^{\dagger},\chi_m\}=\delta_{mn},\ \{\chi_n,\chi_m\}=0$$

Jordan-Wigner transformation

$$\{\chi_n^{\dagger},\chi_m\}=\delta_{mn},\ \{\chi_n,\chi_m\}=0$$

This is satisfied by the operator:

[Jordan-Wigner'28]

$$\chi_n = \left(\prod_{\ell < n} iZ_\ell\right) \frac{X_n - iY_n}{2}$$

Then the system is mapped to the spin system:

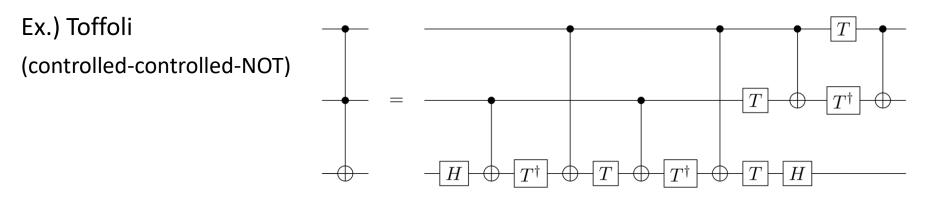
$$\hat{H} = \frac{w}{2} \sum_{n=1}^{N-1} \left(X_n X_{n+1} + Y_n Y_{n+1} \right) + \frac{m}{2} \sum_{n=1}^{N} (-1)^n Z_n$$

We can apply quantum algorithms to QFT!

Here is the end of the 1st day

Universality

 Any unitary gate is a combination of single qubit gates & CX ("Single qubit gates & CX are universal")



 Any single qubit gate is approximated by a combination of H & T in arbitrary precision

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}, \quad T = \begin{pmatrix} 1 & 0\\ 0 & e^{\frac{i\pi}{4}} \end{pmatrix}$$

•*H*, *T* & *CX* are universal

Approximation of single qubit gate by H & T

 $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}, \ T = \begin{pmatrix} 1 & 0\\ 0 & e^{\frac{i\pi}{4}} \end{pmatrix}$ (1) Get a rotation with angle $2\pi \times (irrational)$: $THTH = e^{\frac{i\pi}{4}} R_{\vec{n}}(\theta) \qquad \text{with } R_{\vec{n}}(\theta) \equiv e^{-\frac{i}{2}\vec{n}\cdot\vec{\sigma}}$ where $\vec{n} = \frac{1}{\sqrt{1 + \cos^2(\pi/8)}} \begin{pmatrix} \cos(\pi/8) \\ \sin(\pi/8) \\ \cos(\pi/8) \end{pmatrix} \& \cos(\theta/2) \equiv \cos^2(\pi/8) \\ \frac{2\pi \times (\text{irrational})!}{2\pi \times (\text{irrational})!}$

(2) Use Weyl's uniform distribution theorem:

 $\theta \mathbf{Z}$ is uniformly distributed mod 1 \square approximate $R_{\vec{n}}(\alpha)$ for $\forall \alpha$

(3) Construct rotation around another axis:

$$HR_{\vec{n}}(\alpha)H = R_{\vec{m}}(\alpha) \quad \text{with} \quad \vec{m} = \frac{1}{\sqrt{1 + \cos^2(\pi/8)}} \begin{pmatrix} \cos(\pi/8) \\ -\sin(\pi/8) \\ \cos(\pi/8) \end{pmatrix}$$

(4) Approximate \forall single qubit gate: $R_{\vec{n}}(\alpha)R_{\vec{m}}(\beta)R_{\vec{n}}(\gamma)$

What if we replace T by something else?

$$T = e^{\frac{i\pi}{8}} R_Z(\pi/4) \qquad \qquad T' \equiv R_Z(\phi) ??$$

We have the identity:

$$T'HT'H = R_{\vec{n}}(\theta)$$

where

$$\vec{n} = \frac{1}{\sqrt{1 + \cos^2(\phi/2)}} \begin{pmatrix} \cos(\phi/2) \\ \sin(\phi/2) \\ \cos(\phi/2) \end{pmatrix} \& \cos(\theta/2) \equiv \cos^2(\phi/2) \end{pmatrix}$$

We can approximate any single qubit gate by combining H & T' if $\theta/2\pi$ is irrational

Advantage of using discrete gates

- To get approximation w/ precision ϵ , we need to use $\mathcal{O}(1/\epsilon)$ discrete gates
- But it is useful for quantum error correction
- If we use continuous gates, we have to consider algorithms to correct errors for ∞ gates

The beginning of the 2nd day (3rd slot)

Schwinger model w/ topological term

Continuum:

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{g\theta}{4\pi} \epsilon_{\mu\nu} F^{\mu\nu} + i\bar{\psi}\gamma^{\mu} (\partial_{\mu} + igA_{\mu})\psi - m\bar{\psi}\psi$$

Using "chiral anomaly", the same physics can be studied by

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + i\bar{\psi}\gamma^{\mu}(\partial_{\mu} + igA_{\mu})\psi - m\bar{\psi}e^{i\theta\gamma^{5}}\psi$$
[Fujikawa'79]

 $\Pi = \dot{A}^1$

Taking temporal gauge $A_0 = 0$,

$$\hat{H} = \int dx \left[-i\bar{\psi}\gamma^{1}(\partial_{1} + igA_{1})\psi + m\bar{\psi}e^{i\theta\gamma^{5}}\psi + \frac{1}{2}\Pi^{2} \right]$$

Physical states are constrained by Gauss law:

$$\mathbf{O} = -\partial_1 \mathbf{\Pi} - g \bar{\psi} \gamma^0 \psi$$

Sign problem in path integral formalism

In Minkowski space,

$$S = \int d^4x \left[-\frac{1}{4} F_{\mu\nu}^2 + \bar{\psi} (i\gamma^{\mu} D_{\mu} - m) \psi \right] + \frac{g\theta}{4\pi} \int F \in \mathbf{R}$$

$$\langle \mathcal{O} \rangle = \frac{\int DAD\psi D\overline{\psi} \ \mathcal{O} \ e^{iS}}{\int DAD\psi D\overline{\psi} \ e^{iS}} \quad \text{highly oscillating}$$

In Euclidean space,

$$S = \int d^{4}x \left[-\frac{1}{4} F_{\mu\nu}^{2} + \bar{\psi} (i\gamma^{\mu}D_{\mu} - m)\psi \right] + \frac{i}{4\pi} \frac{g\theta}{4\pi} \int F \in \mathbf{C}$$
$$\langle \mathcal{O} \rangle = \frac{\int DAD\psi D\bar{\psi} \ \mathcal{O} \ e^{-S}}{\int DAD\psi D\bar{\psi} \ e^{-S}} \quad \text{highly oscillating for non-small } \theta$$

Accessible region by analytic computation

• Massive limit:

The fermion can be integrated out

&

the theory becomes effectively pure Maxwell theory w/ θ

Bosonization:

[Coleman '76]

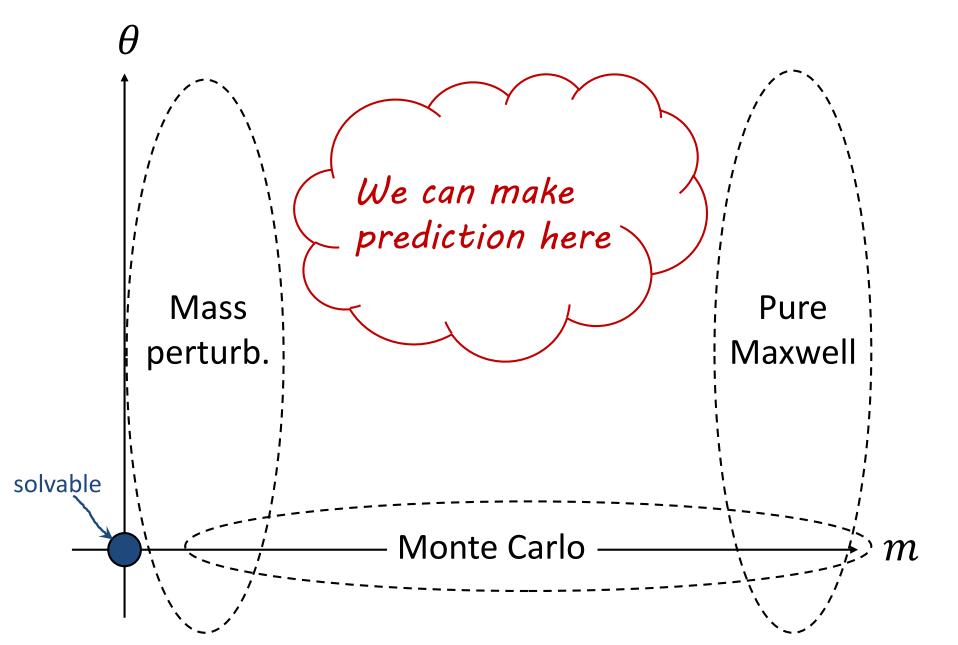
$$\mathcal{L} = \frac{1}{8\pi} (\partial_{\mu} \phi)^{2} - \frac{g^{2}}{8\pi^{2}} \phi^{2} + \frac{e^{\gamma} g}{2\pi^{3/2}} m \cos(\phi + \theta)$$

exactly solvable for m = 0

&

small m regime is approximated by perturbation

Map of accessibility/difficulty



Put the theory on lattice

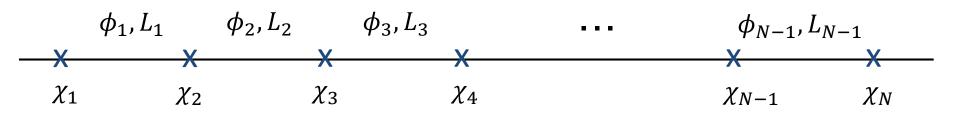
Fermion (on site):

"Staggered fermion" [Susskind, Kogut-Susskind '75]

$$\frac{\chi_n}{a^{1/2}} \longleftrightarrow \psi(x) = \begin{pmatrix} \psi_u & \to & \text{odd site} \\ \psi_d & \to & \text{even site} \\ \end{bmatrix}$$

•Gauge field (on link):

$$\phi_n \leftrightarrow -agA^1(x), \qquad L_n \leftrightarrow -\frac{\Pi(x)}{g}$$



Lattice theory w/ staggered fermion

Hamiltonian:

$$\hat{H} = -i\sum_{n=1}^{N-1} \left(w - (-1)^n \frac{m}{2} \sin \theta \right) \left[\chi_n^{\dagger} e^{i\phi_n} \chi_n - \text{h.c.} \right] + m \cos \theta \sum_{n=1}^N (-1)^n \chi_n^{\dagger} \chi_n + J \sum_{n=1}^{N-1} L_n^2 \qquad \left[w = \frac{1}{2a}, J = \frac{g^2 a}{2} \right]$$

Commutation relation:

$$\{\chi_n^{\dagger}, \chi_m\} = \delta_{mn}, \ \{\chi_n, \chi_m\} = 0, \ [\phi_n, L_m] = i\delta_{mn}$$

Gauss law:

$$L_n - L_{n-1} = \chi_n^{\dagger} \chi_n - \frac{1 - (-1)^n}{2}$$

Eliminate gauge d.o.f.

1. Take open b.c. & solve Gauss law:

$$L_n = \sum_{\ell=1}^{n-1} \left[\chi_{\ell}^{\dagger} \chi_{\ell} - \frac{1 - (-1)^{\ell}}{2} \right]$$

$$(took L_0 = 0)$$

2. Redefine fermion to absorb ϕ_n :

$$\chi_n \to \prod_{\ell < n} \left[e^{-i\phi_\ell} \right] \chi_n$$

Then,

$$\begin{split} \hat{H} &= -i\sum_{n=1}^{N-1} \left(w - (-1)^n \frac{m}{2} \sin \theta \right) \left[\chi_n^{\dagger} \chi_{n+1} - \text{h.c.} \right] + m \cos \theta \sum_{n=1}^{N} (-1)^n \chi_n^{\dagger} \chi_n \\ &+ J \sum_{n=1}^{N-1} \left[\sum_{\ell=1}^{n-1} \left(\chi_\ell^{\dagger} \chi_\ell - \frac{1 - (-1)^\ell}{2} \right) \right]^2 \end{split}$$

This acts on finite dimensional Hilbert space

Going to spin system

$$\{\chi_n^{\dagger},\chi_m\}=\delta_{mn},\ \{\chi_n,\chi_m\}=0$$

This is satisfied by the operator:

$$\chi_n = \left(\prod_{\ell < n} iZ_\ell\right) \frac{X_n - iY_n}{2}$$

"Jordan-Wigner transformation"

[Jordan-Wigner'28]

Going to spin system

$$\{\chi_n^{\dagger}, \chi_m\} = \delta_{mn}, \ \{\chi_n, \chi_m\} = 0$$

This is satisfied by the operator:

$$\chi_n = \left(\prod_{\ell < n} iZ_\ell\right) \frac{X_n - iY_n}{2}$$

"Jordan-Wigner transformation"

[Jordan-Wigner'28]

Now the system is purely a spin system:

$$\hat{H} = H_{ZZ} + H_{\pm} + H_{Z}$$

$$\int H_{ZZ} = \frac{J}{2} \sum_{n=2}^{N-1} \sum_{1 \le k < \ell \le n} Z_k Z_\ell,$$

$$H_{\pm} = \frac{1}{2} \sum_{n=1}^{N-1} \left(w - (-1)^n \frac{m}{2} \sin \theta \right) \left[X_n X_{n+1} + Y_n Y_{n+1} \right],$$

$$H_Z = \frac{m \cos \theta}{2} \sum_{n=1}^{N} (-1)^n Z_n - \frac{J}{2} \sum_{n=1}^{N-1} (n \mod 2) \sum_{\ell=1}^n Z_\ell$$

Qubit description of the Schwinger model !!

Time evolution operator

Suzuki-Trotter decomposition:

$$e^{-i\hat{H}t} = \left(e^{-i\hat{H}\frac{t}{M}}\right)^{M} \qquad \text{(M: large positive integer)}$$
$$\simeq \left(e^{-iH_{Z}\frac{t}{M}}e^{-iH_{ZZ}\frac{t}{M}}e^{-iH_{XX}\frac{t}{M}}e^{-iH_{YY}\frac{t}{M}}\right)^{M} + \mathcal{O}(1/M)$$

$$\begin{aligned} H_Z &= \frac{m \cos \theta}{2} \sum_{n=1}^N (-1)^n Z_n - \frac{J}{2} \sum_{n=1}^{N-1} (n \mod 2) \sum_{\ell=1}^n Z_\ell \\ H_{ZZ} &= \frac{J}{2} \sum_{n=2}^{N-1} \sum_{1 \le k < \ell \le n} Z_k Z_\ell, \\ H_{XX} &= \frac{1}{2} \sum_{n=1}^{N-1} \left(w - (-1)^n \frac{m}{2} \sin \theta \right) X_n X_{n+1} \\ H_{YY} &= \frac{1}{2} \sum_{n=1}^{N-1} \left(w - (-1)^n \frac{m}{2} \sin \theta \right) Y_n Y_{n+1} \end{aligned}$$

Can we express it in terms of elementary gates?

Time evolution operator (cont'd)

$$e^{-i\hat{H}t} \simeq \left(e^{-iH_Z\frac{t}{M}}e^{-iH_{ZZ}\frac{t}{M}}e^{-iH_{XX}\frac{t}{M}}e^{-iH_{YY}\frac{t}{M}}\right)^M$$

The 1st one is trivial:

$$e^{-icZ} = R_Z(2c)$$

The 2nd one appeared in Ising model:

$$e^{-icZ_1Z_2} = CXR_Z^{(2)}(2c)CX$$

The 3rd one (see next slide):

$$e^{-icX_1X_2} = CXR_X^{(1)}(2c)CX$$

The 4th one:

$$e^{-icY_1Y_2} = R_Z^{(1)}\left(-\frac{\pi}{2}\right)R_Z^{(2)}\left(-\frac{\pi}{2}\right)e^{-icX_1X_2}R_Z^{(2)}\left(\frac{\pi}{2}\right)R_Z^{(1)}\left(\frac{\pi}{2}\right)$$

Time evolution operator (Cont'd)

$$e^{-icX_1X_2} = CXR_X^{(1)}(2c)CX$$

Proof:

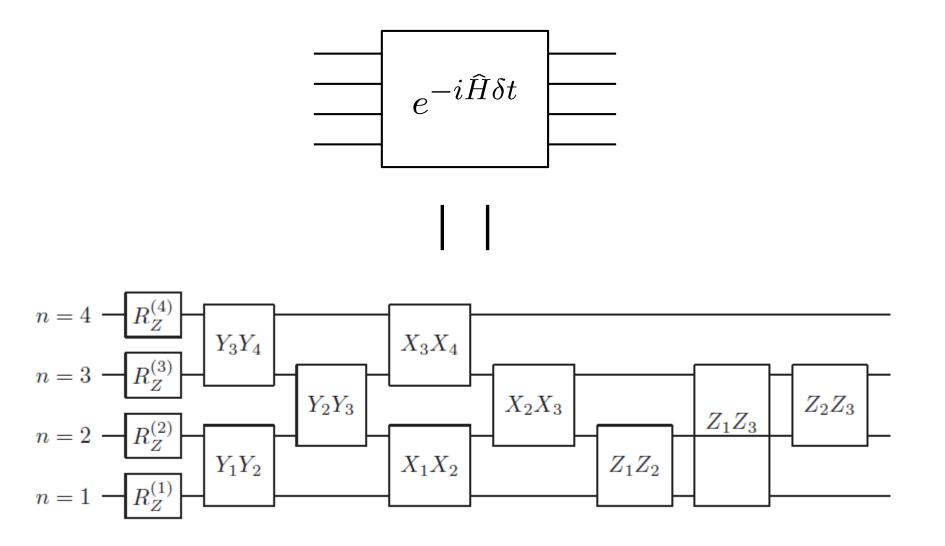
$$CXR_X^{(1)}(2c)CX|0\rangle \otimes |\psi\rangle$$

= $CXR_X^{(1)}(2c)|0\rangle \otimes |\psi\rangle = CX\left[\cos c|0\rangle \otimes |\psi\rangle - i\sin c|1\rangle \otimes |\psi\rangle\right]$
= $\cos c|0\rangle \otimes |\psi\rangle - i\sin c|1\rangle \otimes X|\psi\rangle = \cos c|0\rangle \otimes |\psi\rangle - i\sin c X|0\rangle \otimes X|\psi\rangle$
 $CXR_X^{(1)}(2c)CX|1\rangle \otimes |\psi\rangle$
= $CXR_X^{(1)}(2c)|1\rangle \otimes X|\psi\rangle = CX\left[\cos c|1\rangle \otimes X|\psi\rangle - i\sin c|0\rangle \otimes X|\psi\rangle\right]$
= $\cos c|1\rangle \otimes |\psi\rangle - i\sin c|0\rangle \otimes X|\psi\rangle = \cos c|1\rangle \otimes |\psi\rangle - i\sin c X|1\rangle \otimes X|\psi\rangle$

Thus,

$$CXR_X^{(1)}(2c)CX|\varphi\rangle \otimes |\psi\rangle = \cos c|\varphi\rangle \otimes |\psi\rangle - i\sin c \ X|\varphi\rangle \otimes X|\psi\rangle$$
$$= e^{-icX_1X_2}|\varphi\rangle \otimes |\psi\rangle$$

Quantum circuit for time evolution op. (N=4)



Improvement of Suzuki-Trotter decomposition

The leading order decomposition:

$$e^{-i(H_1+H_2)\delta t} = e^{-iH_1\delta t}e^{-iH_2\delta t} + \mathcal{O}(\delta t^2)$$

The 2nd order improvement:

Improvement of Suzuki-Trotter decomposition

The leading order decomposition:

$$e^{-i(H_1+H_2)\delta t} = e^{-iH_1\delta t}e^{-iH_2\delta t} + \mathcal{O}(\delta t^2)$$

The 2nd order improvement:

$$e^{-i(H_1+H_2)\delta t} = e^{-iH_1\frac{\delta t}{2}}e^{-iH_2\delta t}e^{-iH_1\frac{\delta t}{2}} + \mathcal{O}(\delta t^3)$$

cf. Baker-Campbell-Hausdorff formula: $e^{A}e^{B} = e^{A+B+\frac{1}{2}[A,B]+\frac{1}{12}[A,[A,B]]+\cdots}$

This increases the number of gates at each time step but we can take larger δt (smaller M) to achieve similar accuracy. Totally we save the number of gates.

Survival probability of massive vacuum

[cf. Martinez etal. Nature 534 (2016) 516-519]

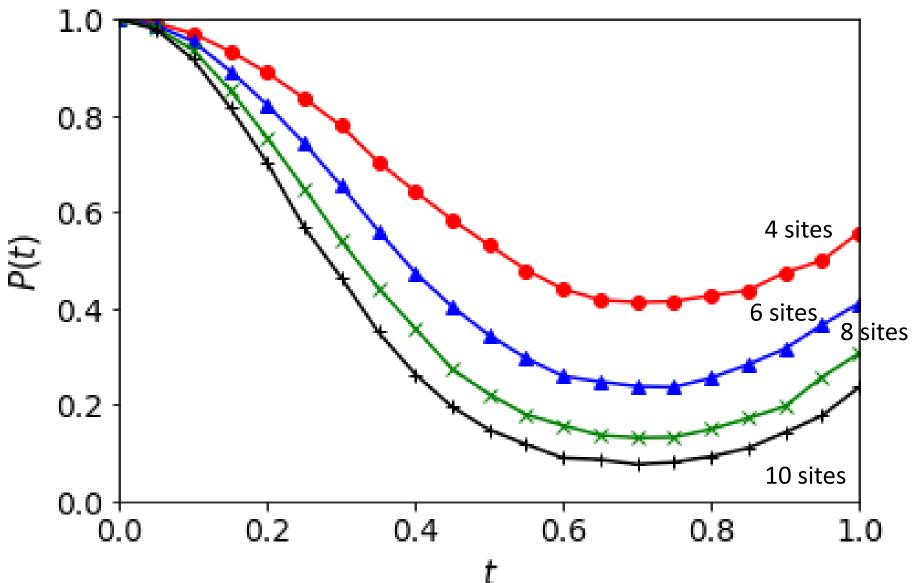
The ground state in the large mass limit is $(mass term) \propto m \sum_{n=1}^{N} (-1)^n Z_n$

 $|\text{massive}\rangle = |0101 \cdots 01\rangle$

Survival probability:

$$P(t) = \left| \langle \text{massive} | e^{-i\hat{H}t} | \text{massive} \rangle \right|^2 \qquad \text{"Schwinger effect"} \\ = \left| \langle 00 \cdots 0 | X_N \cdots X_4 X_2 e^{-i\hat{H}t} X_2 X_4 \cdots X_N | 00 \cdots 0 \rangle \right|^2$$

Result of simulator (10000 shots) $J = 1, w = 1, m = 1, \theta = 0, \delta t = 0.01, 100$ time steps



VEV of mass operator (chiral condensation)

$$\langle \bar{\psi}(x)\psi(x)\rangle = \langle \mathsf{vac}|\bar{\psi}(x)\psi(x)|\mathsf{vac}\rangle$$

Instead of the local op., we analyze the average over the space:

$$\frac{1}{2Na} \langle \mathsf{vac} | \sum_{n=1}^{N} (-1)^n Z_n | \mathsf{vac} \rangle$$

Once we get the vacuum, we can compute the VEV as

$$\frac{1}{2Na} \langle \text{vac} | \sum_{n=1}^{N} (-1)^{n} Z_{n} | \text{vac} \rangle = \frac{1}{2Na} \sum_{n=1}^{N} (-1)^{n} \sum_{i_{1} \cdots i_{N} = 0, 1} \langle \text{vac} | Z_{n} | i_{1} \cdots i_{N} \rangle \langle i_{1} \cdots i_{N} | \text{vac} \rangle$$
$$= \frac{1}{2Na} \sum_{n=1}^{N} \sum_{i_{1} \cdots i_{N} = 0, 1} (-1)^{n+i_{n}} | \langle i_{1} \cdots i_{N} | \text{vac} \rangle |^{2}$$

Adiabatic state preparation of vacuum

$$|\operatorname{vac}\rangle = \lim_{T \to \infty} \mathcal{T} \exp\left(-i \int_0^T dt \ H_A(t)\right) |\operatorname{vac}_0\rangle$$
$$\simeq U(T)U(T - \delta t) \cdots U(2\delta t)U(\delta t) |\operatorname{vac}_0\rangle$$

 $\left(U(t) = e^{-iH_A(t)\delta t}\right)$

Here we choose

$$\begin{bmatrix} H_0 = H_{ZZ} + H_Z|_{m \to m_0, \theta \to 0} & \implies |vac_0\rangle = |0101 \cdots 01\rangle \\ H_A(t) = \hat{H}\Big|_{w \to w(t), \theta \to \theta(t), m \to m(t)} \\ w(t) = \frac{t}{T}w, \ \theta(t) = \frac{t}{T}\theta, \ m(t) = \left(1 - \frac{t}{T}\right)m_0 + \frac{t}{T}m$$

m₀ can be any positive number in principle but it is practically chosen to have small systematic error

Massless case

For massless case,

θ is absorbed by chiral rotation $\theta = 0$ w/o loss of generality

No sign problem

Nevertheless,

it's difficult in conventional approach because computation of fermion determinant becomes very heavy

[∃]Exact result:

[Hetrick-Hosotani '88]

$$\langle \bar{\psi}(x)\psi(x)\rangle = -\frac{e^{\gamma}}{2\pi^{3/2}}g \simeq -0.160g$$

Can we reproduce it?

Estimation of systematic errors

Approximation of vacuum:

[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya '20]

 $|vac\rangle \simeq U(T)U(T-\delta t)\cdots U(2\delta t)U(\delta t)|vac_0\rangle \equiv |vac_A\rangle$

Approximation of VEV:

$$\langle \mathcal{O} \rangle \equiv \langle \mathrm{vac} | \mathcal{O} | \mathrm{vac} \rangle \simeq \langle \mathrm{vac}_A | \mathcal{O} | \mathrm{vac}_A \rangle$$

Introduce the quantity

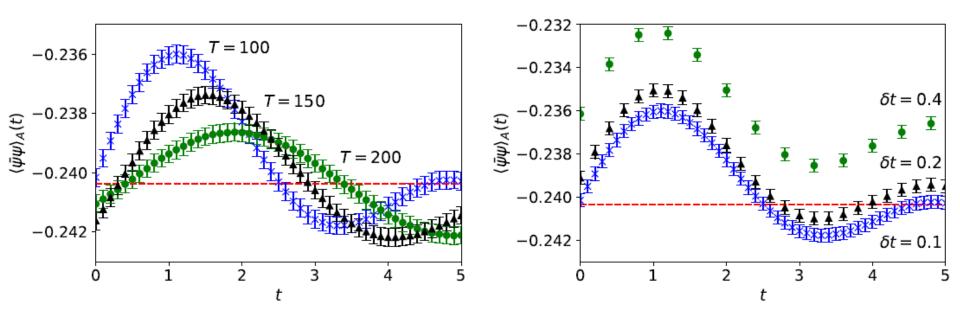
$$\langle \mathcal{O} \rangle_A(t) \equiv \langle \mathsf{vac}_A | e^{i\hat{H}t} \mathcal{O}e^{-i\hat{H}t} | \mathsf{vac}_A \rangle$$

$$\int \text{ independent of t if } | \mathsf{vac}_A \rangle = | \mathsf{vac} \rangle$$

$$dependent on t if | \mathsf{vac}_A \rangle \neq | \mathsf{vac} \rangle$$

This quantity describes intrinsic ambiguities in prediction Useful to estimate systematic errors

Estimation of systematic errors (Cont'd)



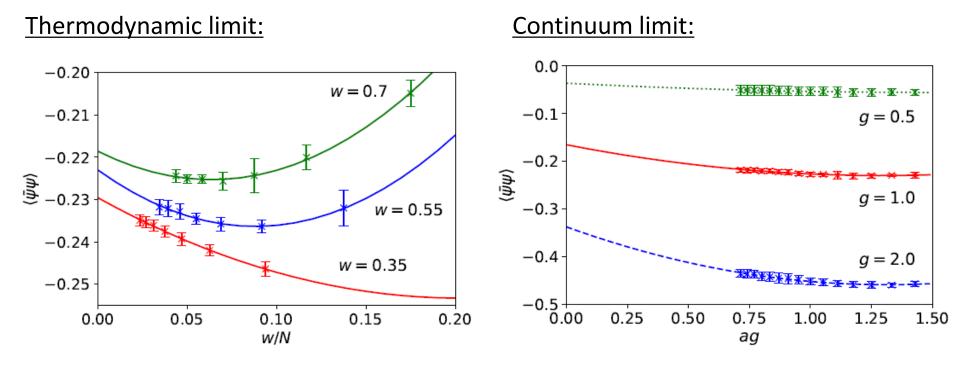
Oscillating around the correct value

Define central value & error as

 $\frac{1}{2}\left(\max\langle\mathcal{O}\rangle_A(t) + \min\langle\mathcal{O}\rangle_A(t)\right) \quad \& \quad \frac{1}{2}\left(\max\langle\mathcal{O}\rangle_A(t) - \min\langle\mathcal{O}\rangle_A(t)\right)$

Thermodynamic & Continuum limit

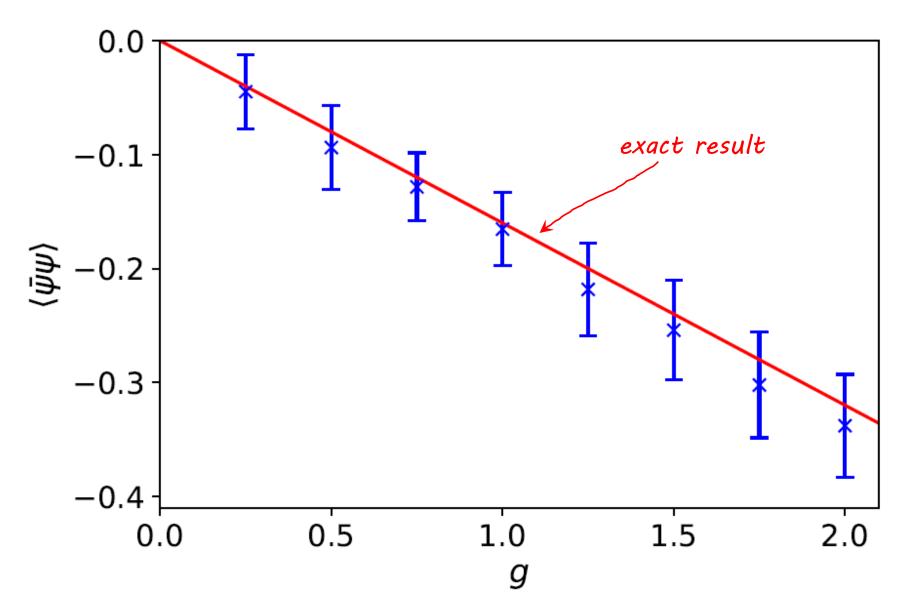
 $g = 1, m = 0, N_{\text{max}} = 16, T = 100, \delta t = 0.1, 1M$ shots #(measurements)



Result for massless case (after continuum limit)

 $T = 100, \delta t = 0.1, N_{max} = 16, 1M$ shots

[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya '20]



Result of mass perturbation theory:

[Adam '98]

 $\langle \bar{\psi}(x)\psi(x)\rangle \sim -0.160g + 0.322m\cos\theta$

However,

³Subtlety in comparison: this quantity is UV divergent $(\sim m \log \Lambda)$

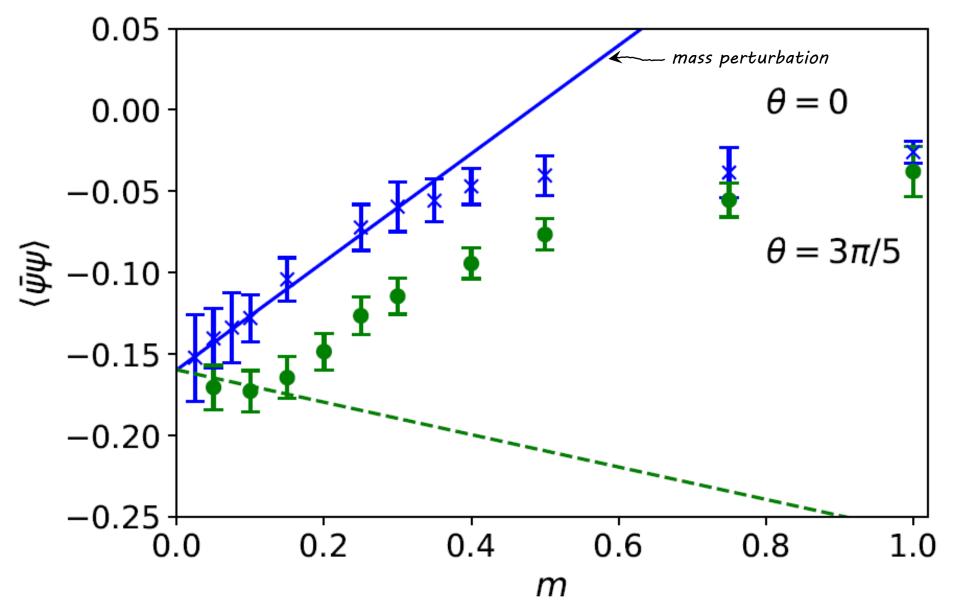
Use a regularization scheme to have the same finite part

Here we subtract free theory result before taking continuum limit:

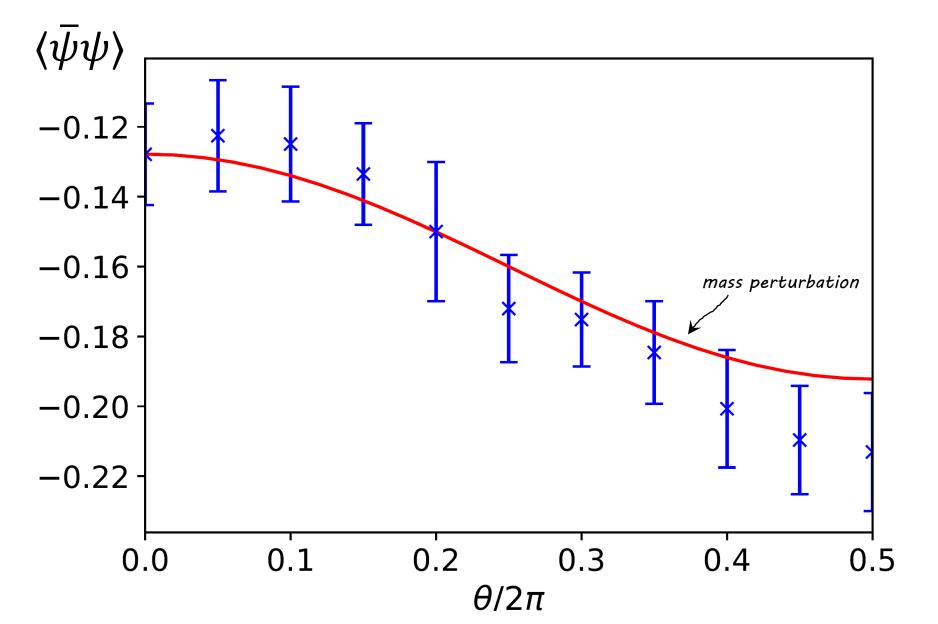
$$\lim_{a\to 0} \left[\langle \bar{\psi}\psi \rangle - \langle \bar{\psi}\psi \rangle_{\rm free} \right]$$

<u>Result for massive case at g = 1</u>

[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya '20]



θ dependence at m = 0.1 & g = 1



Summary

<u>Summary</u>

fun & [∃]many things to do even now

- Quantum computation is suitable for Hamiltonian formalism which is free from sign problem
- Instead we have to deal with huge vector space.
 Quantum computers in future may do this job.
- We haven't established how to put many QFTs efficiently on quantum computers yet
- Quantum error correction is important

What I didn't cover

- Quantum error correction
- How to put "bosonic" QFTs on quantum computers
- Other ways to prepare vacuum
- Classical/quantum hybrid algorithm
- Finite temperature & Real time
- Confinement/screening [work in progress, MH-Itou-Kikuchi-Nagano-Okuda]
- Searching critical point [work in progress, Chakraborty-MH-Kikuchi-Izubuchi-Tomiya]
- Matrix QM & (non-)SUSY QFTs [work in progress, Buser-Gharibyan-Hanada-MH-Liu]

